
Quantitatively Relaxed
Concurrent Data Structures

Thomas A. Henzinger IST Austria
Christoph M. Kirsch University of Salzburg
Hannes Payer University of Salzburg
Ali Sezgin IST Austria
Ana Sokolova University of Salzburg

University of Tokyo 30.10.2012

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

linearizable
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

linearizable
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

we
relax
this

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput

University of Tokyo 30.10.2012

:-)))

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput

University of Tokyo 30.10.2012

:-)))

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput
:-)

University of Tokyo 30.10.2012

:-)))

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput
:-)

:-(

University of Tokyo 30.10.2012

:-|

:-)))

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput
:-)

:-(

University of Tokyo 30.10.2012

The goal

Trading correctness for performance

In a controlled way with quantitative bounds

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The goal

Trading correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The goal

Trading correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Stack - incorrect behavior
push(a)push(b)push(c)pop(a)pop(b)

correct in a relaxed stack
... 2-relaxed? 3-relaxed?

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

???
Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

???
How much does this error cost?

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

Cost 2

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

???
Cost 2

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

c

Cost 2

Cost 1

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

cTotal
cost? Cost 2

Cost 1

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

cTotal
cost? Cost 2

Cost 1 } max = 2
sum = 3

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Why relax?
It is theoretically interesting

Provides potential for better performing concurrent
implementations

...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Why relax?
It is theoretically interesting

Provides potential for better performing concurrent
implementations

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack
top

a

b

c

thread 1
thread 2

thread n
...{ }k

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

What we have

Framework

Generic examples

Concrete relaxation examples

Efficient concurrent implementations

for semantic
relaxations

out-of-order /
stuttering

stacks, queues,
priority queues,.. /
CAS, shared counter

of relaxation
instances

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Enough introduction

☺

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The big picture

S ⊆ Σ*

Σ - methods with arguments

semantics
 sequential specification

legal sequences

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The big picture

S ⊆ Σ*

semantics
 sequential specification

legal sequences

relaxed semantics

Sk ⊆ Σ*

Σ - methods with arguments

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The big picture

S ⊆ Σ*

semantics
 sequential specification

legal sequences

Sk ⊆ Σ* .
. k

Σ - methods with arguments

Ana Sokolova University of Salzburg

relaxed semantics

University of Tokyo 30.10.2012

The big picture

S ⊆ Σ*

semantics
 sequential specification

legal sequences

Sk ⊆ Σ* .
. k

Σ - methods with arguments

Ana Sokolova University of Salzburg

leads to relaxed
linearizability

relaxed semantics

University of Tokyo 30.10.2012

Theoretical challenge
There are natural concrete relaxations...

Stack

Each pop pops one of the k-youngest elements
 Each push pushes

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Theoretical challenge

Stack

Each pop pops one of the k-youngest elements
 Each push pushes k-out-of-order

relaxation

There are natural concrete relaxations...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Theoretical challenge

Stack

Each pop pops one of the k-youngest elements
 Each push pushes k-out-of-order

relaxation

makes sense also for queues,
priority queues,

There are natural concrete relaxations...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Theoretical challenge

Stack

Each pop pops one of the k-youngest elements
 Each push pushes k-out-of-order

relaxation

makes sense also for queues,
priority queues,

There are natural concrete relaxations...

How is it reflected by a distance between sequences?
one distance for all?

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Syntactic distances do
not help

push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Syntactic distances do
not help

push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

is a 1-out-of-order stack sequence

top

a

top

a

b

top

a

b

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Syntactic distances do
not help

push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

is a 1-out-of-order stack sequence

top

a

top

a

b

top

a

b

its permutation distance is min(n,m)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantic distances
need a notion of state

States are equivalence classes of sequences
in S

Two sequences in S are equivalent
if they have an indistinguishable future

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantic distances
need a notion of state

States are equivalence classes of sequences
in S

Two sequences in S are equivalent
if they have an indistinguishable future

x ≡ y ⇔ ∀u ∈ Σ*. (xu ∈ S ⇔ yu ∈ S)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantic distances
need a notion of state

States are equivalence classes of sequences
in S

Two sequences in S are equivalent
if they have an indistinguishable future

x ≡ y ⇔ ∀u ∈ Σ*. (xu ∈ S ⇔ yu ∈ S)

example: for stack
push(a)push(b)pop(b)push(c) ≡ push(a)push(c)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantic distances
need a notion of state

States are equivalence classes of sequences
in S

Two sequences in S are equivalent
if they have an indistinguishable future

x ≡ y ⇔ ∀u ∈ Σ*. (xu ∈ S ⇔ yu ∈ S)

example: for stack
push(a)push(b)pop(b)push(c) ≡ push(a)push(c)

state

top

a

c

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantics goes operational

S ⊆ Σ* is the sequential specification

LTS(S) = (S/≡, Σ, ➝, [ε]≡) with

 [s]≡ ➝ [sm]≡ ⇔ sm ∈ S
m

states labels

transition relation

initial state

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Semantics goes operational

S ⊆ Σ* is the sequential specification

LTS(S) = (S/≡, Σ, ➝, [ε]≡) with

 [s]≡ ➝ [sm]≡ ⇔ sm ∈ S
m

states labels

transition relation

initial state

Stack top

a

c
top

a ➝
push(c)

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

The framework

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with
transition costs

Fix a path cost function

University of Tokyo 30.10.2012

The framework

Σ - singleton

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with
transition costs

Fix a path cost function

University of Tokyo 30.10.2012

The framework

c

c

c

c’
c”

c’

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with
transition costs

Fix a path cost function

University of Tokyo 30.10.2012

The framework

c

c

c

c’
c”

c’

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with
transition costs

Fix a path cost function

University of Tokyo 30.10.2012

The framework

distance - minimal cost on all paths
labelled by the sequence

c

c

c

c’
c”

c’

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with
transition costs

Fix a path cost function

University of Tokyo 30.10.2012

For the user

Pick your favorite data structure S

Add desired incorrect transitions and assign
them transition costs

Choose a path cost function

distance and relaxation follow

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

For the user

Pick your favorite data structure S

Add desired incorrect transitions and assign
them transition costs

Choose a path cost function

distance and relaxation follow

The framework clears the head,
direct concrete relaxations are also possible

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

cTotal
cost Cost 2

Cost 1 } max = 2
sum = 3

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example

Canonical representative of a state

 Add incorrect transitions with costs

 Possible path cost functions max, sum,...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example

Canonical representative of a state

 Add incorrect transitions with costs

 Possible path cost functions max, sum,...

Sequence of push’s with no matching pop

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Stack example

Canonical representative of a state

 Add incorrect transitions with costs

 Possible path cost functions max, sum,...

Sequence of push’s with no matching pop

top

a

b

c pop(a)
top

b

c2

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

It’s more general...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Generic out-of-order
segment_cost(q ➝ q’) = |v| m

where v is a sequence of minimal length s.t.
 (1) [uvw]≡ = q , uvw is minimal, uw is minimal
 (1.1) [uw]≡ ➝ [u’w]≡ , [u’vw]≡ = q’
 (1.2) [uw]≡ ➝ [uw’]≡ , [uvw’]≡ = q’

 (2) [uw]≡ = q , uw is minimal, uvw is minimal
 (1.1) [uvw]≡ ➝ [u’vw]≡ , [u’w]≡ = q’
 (1.2) [uvw]≡ ➝ [uvw’]≡ , [uw’]≡ = q’

m

m

m

m

transition cost

removing v enables a transition

inserting v enables a transition

goes with different path costs
Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Generic out-of-order
segment_cost(q ➝ q’) = |v| m

where v is a sequence of minimal length s.t.
 (1) [uvw]≡ = q , uvw is minimal, uw is minimal
 (1.1) [uw]≡ ➝ [u’w]≡ , [u’vw]≡ = q’
 (1.2) [uw]≡ ➝ [uw’]≡ , [uvw’]≡ = q’

 (2) [uw]≡ = q , uw is minimal, uvw is minimal
 (1.1) [uvw]≡ ➝ [u’vw]≡ , [u’w]≡ = q’
 (1.2) [uvw]≡ ➝ [uvw’]≡ , [uw’]≡ = q’

m

m

m

m

transition cost

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Generic out-of-order
segment_cost(q ➝ q’) = |v| m

where v is a sequence of minimal length s.t.
 (1) [uvw]≡ = q , uvw is minimal, uw is minimal
 (1.1) [uw]≡ ➝ [u’w]≡ , [u’vw]≡ = q’
 (1.2) [uw]≡ ➝ [uw’]≡ , [uvw’]≡ = q’

 (2) [uw]≡ = q , uw is minimal, uvw is minimal
 (1.1) [uvw]≡ ➝ [u’vw]≡ , [u’w]≡ = q’
 (1.2) [uvw]≡ ➝ [uvw’]≡ , [uw’]≡ = q’

m

m

m

m

transition cost

removing v enables a transition

inserting v enables a transition

goes with different path costs
Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Out-of-order stack

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Sequence of push’s with no matching pop

top

a

b

c pop(a)
top

b

c2

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Out-of-order stack

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Sequence of push’s with no matching pop

top

a

b

c pop(a)
top

b

c2

Ana Sokolova University of Salzburg

also ``shrinking window’’
restricted out-of-order

University of Tokyo 30.10.2012

Out-of-order queue

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Out-of-order queue

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Sequence of enq’s with no matching deq

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Out-of-order queue

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Sequence of enq’s with no matching deq

Ana Sokolova University of Salzburg

deq(c)

2

head

a b c

tail head

a b

tail

University of Tokyo 30.10.2012

Out-of-order queue

Canonical representative of a state

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,...

Sequence of enq’s with no matching deq

Ana Sokolova University of Salzburg

also ``shrinking window’’
restricted out-of-order

deq(c)

2

head

a b c

tail head

a b

tail

University of Tokyo 30.10.2012

Out-of-order variants
Queue

Ana Sokolova University of Salzburg

head

a b z

tail

c d e ...

University of Tokyo 30.10.2012

Out-of-order variants
Queue

head

a b z

tail

c d e ...

Ana Sokolova University of Salzburg

lateness k=3

out-of-order k=3

restricted
out-of-order k=3

University of Tokyo 30.10.2012

How about
implementations?
Performance?

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

(almost) all implement
restricted out-of-order

University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

(almost) all implement
restricted out-of-order

University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

syntactic, does not
work for stacks

(almost) all implement
restricted out-of-order

University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

syntactic, does not
work for stacks

not too well
performing

(almost) all implement
restricted out-of-order

University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

syntactic, does not
work for stacks

not too well
performing

not too well
performing

(almost) all implement
restricted out-of-order

University of Tokyo 30.10.2012

Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and
implementations [AKY’10]

Some straightforward implementations
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

syntactic, does not
work for stacks

not too well
performing

not too well
performing

(almost) all implement
restricted out-of-order

performs very well

University of Tokyo 30.10.2012

Lessons learned

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

Lessons learned

Ana Sokolova University of Salzburg

The way from sequential specification
to concurrent implementation is hard

University of Tokyo 30.10.2012

Lessons learned

Ana Sokolova University of Salzburg

The way from sequential specification
to concurrent implementation is hard

Being relaxed not necessarily means
better performance

University of Tokyo 30.10.2012

Lessons learned

Ana Sokolova University of Salzburg

Well-performing implementations of
relaxed specifications do exist!

The way from sequential specification
to concurrent implementation is hard

Being relaxed not necessarily means
better performance

University of Tokyo 30.10.2012

Lessons learned

Ana Sokolova University of Salzburg

Well-performing implementations of
relaxed specifications do exist!

The way from sequential specification
to concurrent implementation is hard

Being relaxed not necessarily means
better performance

Let’s see them!

University of Tokyo 30.10.2012

Restricted-out-of-order
k-Stack

Ana Sokolova University of Salzburg

k-segment

..

top

...

.

lock-free = non-blocking

University of Tokyo 30.10.2012

...

...

...

Restricted-out-of-order
k-Stack

Ana Sokolova University of Salzburg

k-segment

..

top

...

.

lock-free = non-blocking

University of Tokyo 30.10.2012

 1: loop:
 2: read consistent state
 3: try to add/remove an item (*)
 4: if successful:
 5: return
 6: else:
 7: try to repair the stack
 8: goto loop (retry)

...

...

...

Restricted-out-of-order
k-Stack

Ana Sokolova University of Salzburg

k-segment

..

top

...

.

lock-free = non-blocking

University of Tokyo 30.10.2012

 1: loop:
 2: read consistent state
 3: try to add/remove an item (*)
 4: if successful:
 5: return
 6: else:
 7: try to repair the stack
 8: goto loop (retry)

add/remove
segment

...

...

...

Restricted-out-of-order
k-Stack

Ana Sokolova University of Salzburg

k-segment

..

top

...

.

lock-free = non-blocking

University of Tokyo 30.10.2012

 1: loop:
 2: read consistent state
 3: try to add/remove an item (*)
 4: if successful:
 5: return
 6: else:
 7: try to repair the stack
 8: goto loop (retry)

add/remove
segment

...

...

...

CAS - based

Stack

Ana Sokolova University of Salzburg

Scalability comparison

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 10 20 30 40 50 60 70 80

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LS
NS

BAG
ED

RP
k-stack (k=80)

Stack

Ana Sokolova University of Salzburg

Scalability comparison
“80”-core
machine

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 10 20 30 40 50 60 70 80

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LS
NS

BAG
ED

RP
k-stack (k=80)

k-Stack

Ana Sokolova University of Salzburg

The more relaxed, the better

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads

lock-free
segment stack

Queue

Ana Sokolova University of Salzburg

Scalability comparison

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC

RD (r=40)
SQ (s=40)

BAG

ED
RP

k-FIFO (k=40)

Queue

Ana Sokolova University of Salzburg

Scalability comparison
“80”-core
machine

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC

RD (r=40)
SQ (s=40)

BAG

ED
RP

k-FIFO (k=40)

k-Queue

Ana Sokolova University of Salzburg

The more relaxed, the better
lock-free

segment queue

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

o
p

e
ra

tio
n

s/
m

s
(m

o
re

 is
 b

e
tt

e
r)

k (logscale)

2 threads
20 threads

40 threads
60 threads

80 threads

Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

University of Tokyo 30.10.2012

Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

all kinds of

University of Tokyo 30.10.2012

Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

all kinds of

How to get from theory to practice?

Difficult open problem

University of Tokyo 30.10.2012

Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

all kinds of

How to get from theory to practice?

Difficult open problem THANK YOU

University of Tokyo 30.10.2012

For the future

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

For the future

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

For the future

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

towards
synthesis

lock-free universal
construction ?

For the future

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

towards
synthesis

lock-free universal
construction ?THANK YOU

