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linearizable 
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

we 
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The goal

Trading correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Stack - incorrect behavior
push(a)push(b)push(c)pop(a)pop(b)

correct in a relaxed stack
... 2-relaxed? 3-relaxed?
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state evolution
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state evolution
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cTotal 
cost? Cost 2
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Why relax?
It is theoretically interesting

Provides potential for better performing concurrent 
implementations

...
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Why relax?
It is theoretically interesting

Provides potential for better performing concurrent 
implementations

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack
top

a

b

c

thread 1
thread 2

thread n
...{ }k
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What we have

Framework

Generic examples 

Concrete relaxation examples

Efficient concurrent implementations

for semantic 
relaxations

out-of-order /
stuttering

stacks, queues, 
priority queues,.. /
CAS, shared counter

of relaxation
instances
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Enough introduction

☺
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The big picture
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Σ - methods with arguments

semantics
 sequential specification

legal sequences
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The big picture

S ⊆ Σ*

semantics
 sequential specification

legal sequences

Sk ⊆ Σ* .
. k

Σ - methods with arguments

Ana Sokolova University of Salzburg

leads to relaxed 
linearizability

relaxed semantics

University of Tokyo 30.10.2012



Theoretical challenge
There are natural concrete relaxations...

Stack

Each pop pops one of the k-youngest elements
  Each push pushes .....
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Theoretical challenge

Stack

Each pop pops one of the k-youngest elements
  Each push pushes ..... k-out-of-order

relaxation

makes sense also for queues,
priority queues, ....

There are natural concrete relaxations...

How is it reflected by a distance between sequences?
one distance for all?
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push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

is a 1-out-of-order stack sequence 

top

a ......

top

a

b

top

a

b

its permutation distance is min(n,m) 
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Semantic distances 
need a notion of state

States are equivalence classes of sequences 
in S

Two sequences in S are equivalent 
if they have an indistinguishable future
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Two sequences in S are equivalent 
if they have an indistinguishable future

x  ≡   y     ⇔     ∀u ∈ Σ*. (xu ∈ S  ⇔  yu ∈ S)     

example: for stack  
push(a)push(b)pop(b)push(c)  ≡    push(a)push(c)

state 

top

a

c
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Semantics goes operational

S ⊆ Σ*  is the sequential specification

LTS(S) = (S/≡, Σ, ➝, [ε]≡ )  with  

        [s]≡ ➝ [sm]≡    ⇔   sm ∈ S
m

states labels

transition relation

initial state
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LTS(S) = (S/≡, Σ, ➝, [ε]≡ )  with  

        [s]≡ ➝ [sm]≡    ⇔   sm ∈ S
m

states labels

transition relation

initial state

Stack top

a

c
top

a ➝
push(c)
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Add transitions with 
transition costs

Fix a path cost function
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The framework

distance - minimal cost on all paths 
labelled by the sequence

c

c

c

c’
c”

c’

Ana Sokolova University of Salzburg

Start from LTS(S)

Add transitions with 
transition costs
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For the user

Pick your favorite data structure S

Add desired incorrect transitions and assign 
them transition costs

Choose a path cost function

distance and relaxation follow
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For the user

Pick your favorite data structure S

Add desired incorrect transitions and assign 
them transition costs

Choose a path cost function

distance and relaxation follow

The framework clears the head, 
direct concrete relaxations are also possible
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Stack example
push(a)push(b)push(c)pop(a)pop(b)

state evolution

top

a

b

cTotal 
cost Cost 2

Cost 1 } max = 2
sum = 3
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Stack example

Canonical representative of a state 

 Add incorrect transitions with costs

 Possible path cost functions max, sum,... 
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It’s more general...
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Generic out-of-order
segment_cost( q ➝ q’ )   = |v| m

where v is a sequence of minimal length s.t.
    (1) [uvw]≡ = q , uvw  is minimal, uw is minimal    
           (1.1)  [uw]≡ ➝ [u’w]≡ ,  [u’vw]≡ = q’
           (1.2)  [uw]≡ ➝ [uw’]≡ ,  [uvw’]≡ = q’

    (2) [uw]≡ = q , uw  is minimal, uvw is minimal    
           (1.1)  [uvw]≡ ➝ [u’vw]≡ ,  [u’w]≡ = q’
           (1.2)  [uvw]≡ ➝ [uvw’]≡ ,  [uw’]≡ = q’

m

m

m

m

transition cost

removing v enables a transition

inserting v enables a transition

goes with different path costs
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Out-of-order stack

Canonical representative of a state 

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,... 

Sequence of push’s with no matching pop 

top

a

b

c pop(a)
top

b

c2
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Out-of-order queue

Canonical representative of a state 

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,... 
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Out-of-order queue

Canonical representative of a state 

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,... 

Sequence of enq’s with no matching deq 
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deq(c)

2

head

a b c

tail head

a b

tail
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Out-of-order queue

Canonical representative of a state 

 Add incorrect transitions with segment-costs

 Possible path cost functions max, sum,... 

Sequence of enq’s with no matching deq 
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Out-of-order variants
Queue
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a b z
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c d e ...
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Out-of-order variants
Queue

head

a b z

tail

c d e ...
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lateness k=3

out-of-order k=3

restricted 
out-of-order k=3
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How about 
implementations?
Performance?
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Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and 
implementations [AKY’10]

Some straightforward implementations 
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]
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(almost) all implement 
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Short-term history

SCAL queues [KPRS’11]

Quasi linearizability theory and 
implementations [AKY’10]

Some straightforward implementations 
[HKPSS’12]

Efficient lock-free segment queue [KLP’12]

Ana Sokolova University of Salzburg

distributed, one
k-queue

syntactic, does not
work for stacks

not too well
performing

not too well
performing

(almost) all implement 
restricted out-of-order  

performs very well

University of Tokyo 30.10.2012
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Lessons learned

Ana Sokolova University of Salzburg

Well-performing implementations of 
relaxed specifications do exist!

The way from sequential specification 
to concurrent implementation is hard

Being relaxed not necessarily means 
better performance

Let’s see them!

University of Tokyo 30.10.2012



Restricted-out-of-order
k-Stack
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k-segment

..

top

...

.

lock-free = non-blocking 
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 1: loop:
 2:   read consistent state
 3:   try to add/remove an item (*) 
 4:   if successful:
 5:     return
 6:   else:
 7:     try to repair the stack
 8:     goto loop (retry)

...

...

...
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 1: loop:
 2:   read consistent state
 3:   try to add/remove an item (*) 
 4:   if successful:
 5:     return
 6:   else:
 7:     try to repair the stack
 8:     goto loop (retry)

add/remove
segment
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k-Stack
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k-segment

..

top

...
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lock-free = non-blocking 
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 1: loop:
 2:   read consistent state
 3:   try to add/remove an item (*) 
 4:   if successful:
 5:     return
 6:   else:
 7:     try to repair the stack
 8:     goto loop (retry)

add/remove
segment

...

...

...

CAS - based
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Scalability comparison
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k-Stack
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The more relaxed, the better
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Scalability comparison
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Scalability comparison
“80”-core
machine

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s/
m

s 
(m

o
re

 is
 b

e
tt

e
r)

number of threads

LB
MS
FC

RD (r=40)
SQ (s=40)

BAG

ED
RP

k-FIFO (k=40)



k-Queue

Ana Sokolova University of Salzburg

The more relaxed, the better
lock-free

segment queue

University of Tokyo 30.10.2012

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

o
p

e
ra

tio
n

s/
m

s 
(m

o
re

 is
 b

e
tt

e
r)

k (logscale)

2 threads
20 threads

40 threads
60 threads

80 threads



Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples, 
efficient implementations exist

University of Tokyo 30.10.2012



Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples, 
efficient implementations exist

all kinds of

University of Tokyo 30.10.2012



Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples, 
efficient implementations exist

all kinds of

How to get from theory to practice? 

Difficult open problem

University of Tokyo 30.10.2012



Conclusions

Ana Sokolova University of Salzburg

Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples, 
efficient implementations exist

all kinds of

How to get from theory to practice? 

Difficult open problem THANK YOU 

University of Tokyo 30.10.2012



For the future

Study applicability

 

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012



For the future

Study applicability

 

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!



For the future

Study applicability

 

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

towards
synthesis

lock-free universal 
construction ?



For the future

Study applicability

 

Learn from efficient implementations

Ana Sokolova University of Salzburg University of Tokyo 30.10.2012

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

towards
synthesis

lock-free universal 
construction ?THANK YOU 


