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Introduction

This thesis connects and contributes to two areas of research in theoretical
computer science. The first area is that of probabilistic verification, in partic-
ular probabilistic modelling and behavioral relations on probabilistic systems
[GSST90, Han91, SL94, Bai98, Sto02a]. The second one is the theory of coal-
gebras, in particular coalgebraic modelling [Rut96, JR96, Gum99, Rut00].

These two areas of theoretical computer science are linked by the notion of
a transition system. A transition system is an abstract object consisting of
states and transitions between the states. In the area of probabilistic modelling
various transition systems decorated with probabilistic information are present
and are used for modelling purposes. The theory of coalgebras, closely related
to category theory, provides a general approach of modelling transition systems
and data structures as coalgebras of a behavior functor. When changing the
behavior functor, one obtains various concrete types of systems like labelled
transition systems, lists, but also most of the probabilistic system types that
appear in the literature on probabilistic modelling [VR99, Mos99, BSV04].

The treated research questions in the thesis are of three kinds:

1. Questions that origin in the area of probabilistic modelling.

2. Correspondence questions: How do general coalgebraic notions instantiate
in concrete systems? How do concrete notions generalize to coalgebras ?

3. Open problems in the theory of coalgebras.

The work related to the questions of type 1 started as an overview study of
probabilistic models, initiated by the organizers of the VOSS Dagstuhl Semi-
nar on Validation of Stochastic Systems [BHH+04]. We address the following
questions of type 1:

• What type of probabilistic models exist?

• How expressive are these models?

• Which notions of bisimulation exist for the models ?

1



2 Chapter 1 Introduction

• How do they compare in expressive power?

• How can they be composed in parallel, do they satisfy closure properties?

For these questions we conduct a detailed comparative study of the various
probabilistic transition systems. The comparison of the expressive power of
probabilistic systems is a central topic in the thesis. For the comparison we
apply the theory of coalgebras. We use coalgebras as a unified framework that
allows more abstract treatment and more general and elegant results and proofs.

Our comparison criterion is expressed in terms of maps that preserve and reflect
bisimilarity. Hence, bisimulations and bisimilarity are central notions in the the-
sis. On the one hand, most of the probabilistic models come equipped with a
notion of probabilistic bisimulation [LS91]. On the other hand, a great contri-
bution of the theory of coalgebras is a generic notion of bisimulation [AM89].
In order to be able to interchangeably use probabilistic and coalgebraic bisim-
ulation we address the following correspondence question.

• What is the relation between the coalgebraic bisimulation and the concrete
probabilistic notions of bisimulation ?

This question is a typical question of type 2. The answer is that the coalgebraic
notion always coincides with the concrete notion, when instantiated to a given
type of systems. This allows us to also define bisimulations (by instantiating
the coalgebraic definition) for some types of systems for which concrete notion
of bisimulation was not given. Some other questions of type 2 that we discuss
are:

• How do the coalgebraic and the concrete notions of simulation relate?

• How can one generalize the notion of weak bisimulation known for some
concrete systems to coalgebras?

Actually, the last question is also of type 3. Defining weak bisimulation is an
open problem in the theory of coalgebras. Questions of type 3 that we focus on
are:

• How to define weak bisimulation for coalgebras?

• How to compose coalgebras and define paths (or other notions of linear
behavior) in coalgebras?

We attack these questions using intuition and knowledge from concrete systems,
in particular from probabilistic systems, as important leading examples. Having
provided a (partial) solution to the problem of weak bisimulation for coalgebras,
it induces a new correspondence question:
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• What is the relation between the coalgebraic weak bisimulation and the
concrete (probabilistic) notions of weak bisimulation?

In the remainder of the present chapter we introduce in more detail the process
of modelling using transition systems and the addition of probabilities, leading
to probabilistic models. Moreover, we make the step to coalgebras and coal-
gebraic modelling as higher-level representation of transition systems. Having
introduced the framework, we discuss in more detail the research objectives and
the contributions of the thesis. We end the introduction with a brief overview
of related work.

Let us point out that an important goal of this thesis is connecting coalgebras
and probabilistic systems. Therefore, we do not assume deep knowledge in
any of the mentioned areas. Notions used from category theory, coalgebra and
probabilistic systems will be introduced when required.

1.1 Modelling

The aim of formal methods is to develop theories, techniques and tools for formal
and preferably automatic verification of real systems. The real system can be,
for example, a nuclear plant, a complicated machine, a communication protocol,
or a piece of code. In any case the goal is to verify that the system has a certain
property, for example, not all of the airplane motors will stop working at the
same time, the traffic light will eventually turn green, or the coffee-machine
returns change and delivers coffee. Actually, it is not the case that the real
system is verified, except via testing. More commonly a formal model of the
real system is designed and then the model is verified with respect to a given
property. The model is a representation of the system in some formalism, an
abstraction of the real system. The level of abstraction of the model with respect
to the real system depends on the expressive power of the formalism and the
opinion of the model designer regarding the features of the real system that are
relevant for the property that is to be verified.

Hence, the model is verified with respect to some property and not the real
system itself. However, having verified a property of the model brings confidence
in the design of the real system. More importantly, if a property is not verified,
i.e. an erroneous behavior is found in the model, then this suggests an error in
the real system itself or in the process of modelling.

Therefore the models, the modelling formalisms and their expressive power are
important issues in formal methods. There are various formalisms in which
a model of a concurrent system can be expressed such as transition systems
(automata, state based models) [Mil89, BK85, Rut00], process algebra [Mil89,
Hoa85, BK85, BW90], Markov chains [KS76, How71] and others.

In this thesis, we focus on models of systems that are transition systems. We
use the terms model, (transition) system, state machine and automaton inter-
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changeably as synonyms.

Transition systems

Transition systems consist of a set of states and some type of a transition relation
or function. In general, we consider the system as a black box and the states as
not observable for an outside observer.

For example, a simple type of transition systems are the fully deterministic
labelled transition systems, which are pairs 〈S,→〉 where→ is a transition func-
tion from the set of states S to the set A×S for a set of action labels A. The set
S contains the states of the system, and the function → describes the unique
transition out of a state. The transitions are labelled by elements of the set A.
We write s

a
−→ t for → (s) = 〈a, t〉, representing the transition in the system

from the state s to the state t with a label a. The labels are observable from
the outside. They stand for the execution of an action.

Consider the transition system (M1) in the left diagram below.

(M1) red

switch

��
green

switch

DD (M2) red

GFED
red

BC
oo

switch

��
green

switch

CC

BC@A
green

GF //

It is a model of a simple traffic light, with two states, S = {red, green}, only
one observable action switch and two transitions. Since the states are not ob-
servable, although we have given them names, there is not much to be observed
in this model.

A more sophisticated type of transition systems, and the most commonly used
one is the labelled transition system. A labelled transition system, or LTS, is a
pair 〈S,→〉 where S is a set of states and→⊆ S×A×S is the labelled transition

relation for a set of labels A. A transition 〈s, a, t〉 ∈→ is denoted by s
a
−→ t and

is interpreted as: a transition labelled by a can be made from the state s to the
state t.

We may now refine our traffic light model, so that it contains action labels as
(M2) in the right diagram above. We are aware that neither the initial model
(M1) nor the refined (M2) are desired models of traffic lights. For example,
the traffic light from (M2) may go on performing the action red forever; it
may also change from the state red to the state red (via two switch actions)
without performing a single green action. These issues are not our concern at
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the moment.

A useful feature of the labelled transition systems is the possibility to express
non-determinism since → is a transition relation. So, there may be more tran-
sitions (perhaps labelled with the same label) going out from a state.

Modelling probabilistic behavior

Non-determinism is valuable for expressing incomplete knowledge about the
system that is modelled, or about the behavior of the environment. However,
it is often known that certain choices in a system are governed by probability
distributions, or are consequences of random events. Hence, there is quanti-
fied information about the actual probability that should find its way into the
models. There are various ways to enrich the labelled transition systems with
probabilistic choices (e.g. [GSST90, Han91, SL94]) and these models are one
of our main topics of interest. Let us look at an example of how probabilistic
information can be incorporated in the model of the traffic light.

Assume first that we have a traffic light behaving as the model in our LTS version
(M2), for which we moreover know that the choice in the red state between
the actions red and switch is not unknown but is governed by a probability
distribution that assigns probability 2/3 to the action red and 1/3 to the action
switch. Hence, in state red, action red will be executed (observed) in two thirds
of the cases, and action switch in the remaining one third. Similarly, a uniform
probabilistic distribution determines the choice between the actions green and
switch in the state green, and we obtain the model as in the left diagram below,
referred to as (M3).

It could also be the case that we have no information at all of any probabilistic
pattern in the choices in the green state. Hence we obtain a model that contains
both probabilistic and non-deterministic choices, as shown in the right diagram
below, called (M4).

(M3) red

GFED
red[ 23 ]

BC
oo

switch[ 13 ]

��
green

switch[ 12 ]

CC

BC@A
green[ 12 ]

GF //

(M4) red

GFED
red[ 23 ]

BC
oo

switch[ 13 ]

��
green

switch

CC

BC@A
green

GF //

Various modelling choices lead to various types of systems. In the literature
there are many types of transition systems with or without action labels, prob-
abilities and non-determinism.
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The type of systems corresponding to the model (M3) in the diagram above is
known as generative probabilistic systems [GSST90, GSS95]. They are defined as
pairs 〈S, P : S×A×S → [0, 1]〉 of a set of states S and a probabilistic transition

relation P . We write s
a[p]
−→ t if P (s, a, t) = p and say that a transition from s

to t with label a happens with probability p. There is an extra requirement
that the sum of the outgoing probabilities, if any, of every state in a generative
system equals one.

Coalgebraic modelling

As we have seen, the labelled transition systems are pairs 〈S,→⊆ S × A × S〉
and the generative probabilistic systems are pairs 〈S, P : S × A × S → [0, 1]〉.
However, usually when working with these systems we do not treat the incoming
and the outgoing transitions with the same interest, we rather think of a state
together with its outgoing transitions. We may equivalently represent these
systems via a transition function, instead of transition relation, as is already
the case for the deterministic systems. The labelled transition systems are pairs

〈S, α : S → P(A× S)〉

using P(A×S) to denote the power set of the set A×S and s
a
−→ t ⇐⇒ 〈a, t〉 ∈

α(s). The generative probabilistic systems can also be defined via a transition
function, as pairs

〈S, α : S → D(A× S)〉

where α(s)(〈a, t〉) = P (s, a, t) and D(X), for a set X, denotes the set of all dis-
crete probability distributions on X. This way of presenting transition systems
generalizes to the notion of a coalgebra of a functor .

A coalgebra of a functor (or type) F is a pair

〈S, α : S → FS〉

where FS denotes a set, constructed in a systematic way from the set S. The set-
theoretic construction F is described by the notion of a functor from category
theory [Mac71, Bor94]. In a coalgebra 〈S, α〉 of type F , the set S is the carrier,
or the set of states, and the map α is the transition function, or the structure
map. This approach led to a general study of universal coalgebra [Rut00] as an
abstract theory of transition systems and data structures. For every functor,
the coalgebra approach also provides a natural notion of homomorphism, i.e.
behavior preserving function between systems, as well as an induced notion of
coalgebraic bisimilarity and behavior equivalence.

1.2 Behavior relations

The behavior of a system, or more precisely the behavior that a state in a
system exhibits, is a relative notion depending on a given semantic or behavior
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relation, often a semantic equivalence. Assume we have a notion of a semantic
equivalence ∼ and we can show that the states s and t in some system are
related, i.e. s ∼ t. Then we say that s and t have the same behavior, with
respect to the ∼ behavior relation. In the study of concurrent systems several
semantic relations have been established (c.f. [Gla90, Gla93, Gla01]). Strong
bisimilarity and weak bisimilarity are examples of branching-time semantics;
trace equivalence is an example of a linear-time semantics.

Bisimulation

Bisimulation and bisimilarity are central notions in this thesis. Bisimulation
[Par81, Mil89] is a relation on the state set of a system that relates states with
the same stepwise behavior. This is to say that whenever two states are related
by a bisimulation relation, each step of any of them can be mimicked by a
matching step of the other one. Consider the labelled transition system (M5)
from the next diagram.

(M5) red1

red

))

switch

��

red2

GF ED
red

BC
oo

switchvv
green

switch

SS

BC@A
green

GF //

The equivalence relation that puts the states red1 and red2 in one class, and
the state green in another is a bisimulation relation since all the steps from red1

can be mimicked by matching steps from red2, and vice versa. For example, the
transition labelled by red from the state red1 can be mimicked by the transi-
tion labelled by red from the state red2, and they lead to related states. Two
states are bisimilar if they are related by some bisimulation. Bisimilarity is an
equivalence for LTSs.

For the various probabilistic transition systems there are also notions of bisimu-
lation and bisimilarity [LS91]. Only now, the notion of a “step” or a “transition”
is different. A bisimulation relation should compare the probability to reach an
equivalence class and not the probability to reach a single state. The probability
of reaching a set of states is the sum of the probabilities of reaching its elements.
For example, the states red1 and red2 in the following generative probabilistic
system (M6) are bisimilar.
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(M6) red1

red[ 23 ]

))

switch[ 13 ]

��

red2

GF ED
red[ 13 ]

BC
oo

red[ 13 ]

nn

switch[ 13 ]
xx

green

switch[ 12 ]

RR

BC@A
green[ 12 ]

GF //

The probability of reaching the class of red states from any of the red states via
the label red is 2/3, and the probability of reaching the class of the green state
from any of the red states via the label switch is 1/3.

For coalgebras of a functor there is also the notion of coalgebraic bisimulation
and bisimilarity [AM89]. This notion is expressed in general terms of coalgebra
homomorphisms. Bisimilarity is an equivalence for a rich class of well-behaved
functors. Moreover, for coalgebras there exists another notion of behavioral
equivalence based on cocongruences [Kur00, Wor00]. For the well behaved func-
tors these two notions coincide, and for the functors that are not well behaved
the behavioral equivalence is the preferred notion. For example, behavioral
equivalence is always an equivalence. We use cocongruences and behavioral
equivalence for our comparison result.

Weak bisimulation

Weak bisimulation abstracts away from invisible behavior. It leads to weak
bisimilarity which is a weaker equivalence than strong bisimilarity. Assume
that in the set of labels A there is a label τ that can not be observed. Such
labels may occur, for example, as a result of communication between systems
[Mil89]. A relation is a weak bisimulation if whenever two states are related,
then any step from each of them can be mimicked by a weak step from the other
one. A weak step for a label a, in an LTS, is obtained by a sequence of steps
whose labels form a word with visible content a, notation

a
⇒ . Consider, for

example, the labelled transition systems (M7) in the following diagram.

The states red1 and red2 are indistinguishable in a weak bisimulation seman-

tics. The step red2
red
−→ red2 is mimicked by the weak step red1

red
=⇒ red2, i.e.

red1
τ
−→ red2

red
−→ red2. Similar observations hold for the step with label switch

from red2. The step with label τ from red1 is mimicked by an empty step from
red2.
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(M7) red1

τ

))
red2

GF ED
red

BC
oo

switchttgreenswitch

SS

BC@A
green

GF //

Interestingly, there is a simple way to transform an LTS 〈S,→〉 to an LTS 〈S,⇒〉
such that weak bisimilarity on the original system 〈S,→〉 corresponds to strong
bisimilarity on the transformed system 〈S,⇒〉.

Notions of weak bisimulation and weak bisimilarity exist for several types of
probabilistic systems [Seg95b, BH97, PLS00]. Their definitions are rather in-
volved. Still, they reflect an analogy to the weak bisimulation definition for
LTSs.

On the other hand, it is not easy to define weak bisimulation for coalgebras
[Rut99, Rot02, RM02]. The problem breaks down into several issues: the no-
tion of visible vs. invisible behavior for general coalgebras is not obvious, the
definition of weak steps should include composition of steps which is difficult
in general. From the approach that works for LTSs, borrowing some aspects of
the definition of weak bisimulation for probabilistic systems, we obtain a partial
solution of the weak bisimulation problem for coalgebras. The aim is to trans-
form a coalgebra 〈S, α〉 to a coalgebra 〈S, α′〉 and define weak bisimulation on
〈S, α〉 as strong bisimulation on 〈S, α′〉. Our solution produces the same weak
bisimulation notions as the concrete ones, when instantiated to some concrete
systems (LTS and generative probabilistic systems).

Another weak branching-time semantic relation that has some attractive fea-
tures is branching bisimulation [Gla93, GW96]. There are also several pro-
posals for branching bisimulation for probabilistic systems in the literature
[Seg95b, BH97, AW05]. However, we do not touch upon the topic of branching
bisimulation in this thesis.

1.3 Comparing expressiveness of system types

One of the main objectives in the thesis is to develop a method for formal com-
parison of different types of (probabilistic) systems. If we look at the fully deter-
ministic labelled transition systems and the non-deterministic labelled transition
systems, especially in their diagram representation, it is intuitively clear that
the former are at most as expressive as the latter, i.e. the LTS can express any
fully deterministic LTS and moreover they have the possibility of expressing
non-determinism.
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In particular, given a fully deterministic LTS 〈S,→〉, for → a function from S
to A×S, we can transform it to an LTS 〈S,→′⊆ S×A×S〉 with the following
definition of a transition relation →′:

〈s, a, t〉 ∈→′ ⇐⇒→ (s) = 〈a, t〉

or equivalently, in terms of transition notation we have s
a
−→ ′t ⇐⇒ s

a
−→ t

which means that if we identify the systems with their diagrams, then the trans-
formation is the identity. Still, the question is: does this make the LTS more
expressive? What should be the formal notion of expressiveness?

Furthermore, consider the two types of probabilistic systems that allow for tran-
sitions as shown in the next diagram.

(PT1) •

a

��

1/2

}}{{
{{

{{
{{ 1/2

��9
99

99
9

• •

(PT2) •

��

b[1/3]

}}{{
{{

{{
{{ c[2/3]

��9
99

99
9

• •

Hence, the systems with transitions of shape (PT1) allow for a label followed by a
probabilistic choice between the next states, where the systems with transitions
of shape (PT2) allow for a probabilistic choice that is distributed over both
the action labels and the next states. The first type of systems are known as
simple Segala probabilistic automata [SL94, Seg95b, Sto02a]; the second type of
systems are the general Segala probabilistic automata with a generative behavior
[GSST90, Seg95b].

It is intuitively clear that every transition of a simple Segala automaton of
shape (PT1), can be transformed to a transition of a general Segala automaton
of shape (PT2) by pushing the label into the probabilistic choice as shown in
the next diagram.

•

a

��

1/2

����
��

�� 1/2

��9
99

99
9

• •

=⇒

•

��

a[1/2]

����
��

�� a[1/2]

��9
99

99
9

• •

Hence, we are intuitively convinced that indeed the general Segala systems are
at least as general as the simple ones. However, the question of a formal proof
of this fact remains open. In order to answer this question, we first of all need a
criterion according to which we can compare the expressive power of two types
of systems.
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In accordance with the mentioned examples reflecting our intuition, we choose
for the following expressiveness criterion: Let C1 and C2 denote two classes of
systems. Each system of class C1 is defined as a pair of a set of states and a
transition function, and the same holds for the systems in the class C2. We
consider the class C2 at least as expressive as the class C1 if and only if there
exists a translation map T : C1 → C2 such that:

• T leaves the state set unchanged;

• T is injective, i.e. different C1 systems are translated to different C2 sys-
tems;

• T preserves and reflects the corresponding notions of bisimilarity.

The last requirement imposed to the translation map corresponds to the require-
ment that the translations should be faithful copies of the originals that have
the same behavior. To be more precise, assume ∼1 and ∼2 are the bisimilarity
equivalences for the classes of systems C1 and C2, respectively. Then we want
that for any two states s and t, s ∼1 t in the original C1 system, if and only if
s ∼2 t in the translated system in C2.

Considering the various types of systems as coalgebras, we show that categorial
translations defined in terms of injective natural transformations satisfy the
criteria imposed on the translation maps. Using this results we are able to
build a hierarchy of the relevant probabilistic system types.

1.4 Results and overview

The main contributions of the thesis can be summarized as follows:

• We provide a comparative study of various existing types of probabilistic
automata based models, their bisimulations, and their parallel composition
operators (Chapter 2).

• We give a representation of many probabilistic system types as coalgebras
of a functor, by specifying a set of inductively defined functors (Chapter 3
and Chapter 4).

• We prove, in a modular way, that for a broad class of functors coalgebraic
bisimilarity coincides with the concrete one (Chapter 3 and Chapter 4).

• We prove that injective natural transformations lead to translations be-
tween coalgebras that preserve and reflect bisimilarity (Chapter 4).

• We build an expressiveness hierarchy of probabilistic models (informally
presented in Chapter 2, full results and proofs in Chapter 4).
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• We define a (parameterized) notion of weak bisimulation for action-type
coalgebras (Chapter 5).

• We show that the concrete notions of weak bisimulation for LTS [Mil89]
and for generative probabilistic systems [BH97] are covered by the coal-
gebraic definition (Chapter 5).

• We briefly consider two more semantic relations (simulation and colored
transition equivalence) for coalgebras and probabilistic systems (Chap-
ter 6).

• We study possible ways of composing coalgebras and defining paths in
coalgebras (Chapter 6).

Summary

Chapter 2 presents a comparative overview of probabilistic systems that ex-
ist in the literature. It introduces the various types of probabilistic transition
systems together with their concrete definitions of bisimulations. This chap-
ter also presents a detailed study of parallel composition between the various
probabilistic systems motivating the existence of some classes of probabilistic
automata. The intuitive translations between the probabilistic models that lead
to the expressiveness hierarchy are also discussed in this chapter.

Chapter 3 introduces the notions needed from category theory and coalgebras.
Moreover, in this chapter we gather some small results of coalgebraic nature that
are not exclusively connected to one of the following chapters. We introduce
the class of functors that we work with throughout the thesis and we present
a characterization of coalgebraic bisimilarity in terms of transfer conditions for
our inductively defined functors. We note that, in contrast to what is common
in the literature, when working with the probability distribution functor we do
not impose the restriction of finite support. This is often required since there are
proofs that the finitely supported distribution functor is well-behaved [VR99,
Mos99], i.e. preserves weak pullbacks, and hence bisimilarity is an equivalence.
We show that also the unrestricted probability distribution functor preserves
weak pullbacks.

Chapter 4 presents the probabilistic systems as coalgebras of a functor from
our class of functors and shows a direct correspondence between the concrete
bisimulation definitions from Chapter 2 and the coalgebraic bisimulations in-
duced by the functors. The main topic of this chapter is proving comparison
results i.e. the hierarchy of the probabilistic system types. In order to establish
the hierarchy we first prove the result that injective natural transformations be-
tween well-behaved functors lead to translations from one class of coalgebras to
another that obey our comparison criterion. Then the hierarchy result follows
by providing appropriate injective natural transformations. As far as we know,
this form of application of the theory of coalgebras is not reported before in the
literature.
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Chapter 5 presents a study of a definition of weak bisimulation for coalgebras.
We consider action-type coalgebras. These are coalgebras whose visible behav-
ior includes performing actions. Any coalgebra can trivially be considered an
action-type coalgebra. Since weak bisimulation abstracts from invisible behav-
ior, we focus on abstracting away from invisible actions. If the coalgebras consid-
ered are not action-type or there are no invisible actions, then weak bisimulation
amounts to strong bisimulation. Given an action-type system S with action set
A, we adopt a two-phase approach in defining weak bisimulation: First, we
define a “∗-extension” of a given system which is a system that captures the
behavior of S on finite words of actions. Next, we fix a set of invisible actions
τ ⊆ A and transform the ∗-extension into a “weak-τ -extension” which is insen-
sitive to τ steps. Then we define weak bisimilarity on S as strong bisimilarity
on the weak-τ -extension. We justify this generalized approach by two impor-
tant examples, the LTS and the generative probabilistic systems. A technical
effort in this chapter is spent on showing that the coalgebraic and the concrete
definition of weak bisimulation coincide for the case of generative probabilistic
systems. This coincidence result also justifies the existing concrete definition of
weak bisimulation for the generative probabilistic systems. Finally, it is worth
mentioning that the concrete definition [BH97, BH99] restricts to finite systems,
whereas our coalgebraic definition does not, and therefore our results extend the
results of [BH97, BH99] to systems with an arbitrary number of states.

Chapter 6 is an open chapter presenting some questions and preliminary inves-
tigations for future work. We address several topics related to other semantic
relations, such as: simulations, colored transition semantics, composition of
coalgebras and ways to define paths in coalgebras. For simulations, there is
a satisfactory coalgebraic and concrete treatment. Intrigued by [GW96] and
[AW05], we look at the notions of consistent coloring and colored trace equiva-
lence from a coalgebraic point of view, just to conclude that they coincide with
the notion of homomorphism and behavioral equivalence. We also present a way
of composing coalgebras, an operation that seems to be of use for obtaining trace
semantics. Finally, we discuss possibilities for defining paths for coalgebras.

Origin of the chapters

Most of the material presented in this thesis was published before in several
papers:

• Chapter 2 is a revised version of [SV04].

• Chapter 3 is mainly of introductory nature. Partial results on characteriz-
ing coalgebraic bisimilarity in terms of transfer conditions were previously
published in [BSV03] and in [BSV04]. The result on weak pullback preser-
vation of the unrestricted probability distribution functor was previously
published in [SVW04]. The notions of action-type coalgebras and total
weak pullbacks are also from [SVW05, SVW04].
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• Chapter 4 is a revised version of the papers [BSV03] and [BSV04]. The
revision mainly consists of providing full and modular proof of bisimulation
correspondence that builds upon the material presented in Chapter 3.

• Chapter 5 is a revised version of [SVW05] and [SVW04], except for the
parts of the mentioned papers that already found their way into Chapter 3.

• The last three sections of Chapter 6 with complete proofs were published
as [Sok05].

1.5 Related work

Throughout the thesis we extensively refer to the literature and related work.
In this section we briefly mention the work of other authors that has been most
influential for this thesis.

Various probabilistic transition systems have been introduced and studied by
many authors in many papers, among which are [Var85, PZ86, GSST90, Han91,
Seg95b]. Bisimulation and bisimilarity for labelled transition systems [Par81,
Mil89] were generalized to the probabilistic setting by Larsen and Skou [LS91].
Most of the concrete probabilistic transition systems come equipped with a no-
tion of bisimulation that is based on the definition of Larsen and Skou. Parallel
composition of various probabilistic systems was also studied by many authors.
For a broad overview the reader is referred to [DHK98, Bai98]. Some comparison
results for the expressive power of some probabilistic models are also reported
in the literature: Van Glabbeek et al. compare the expressiveness power of
the generative, the reactive and the stratified models [GSST90, GSS95]; the al-
ternating model [Han91] and the non-alternating model i.e. the simple Segala
probabilistic automata [Seg95b] are compared in [Sto02a, BS01, ST05].

The theory of universal coalgebras was systematically treated for the first time
by Rutten [Rut96, Rut00]. Further introductory texts on the subject can
be found in the articles by Jacobs and Rutten [JR96], Jacobs [Jac02] and
Gumm [Gum99]. Probabilistic systems, in particular Markov chains, were rep-
resented as coalgebras by Rutten and de Vink [VR99], and by Moss [Mos99].
In these papers also correspondence of coalgebraic bisimulation [AM89] (for the
distribution functor) and the Larsen and Skou bisimulation for Markov chains
was independently established.

A notion of (parameterized) coalgebraic simulation was introduced by Jacobs
and Hughes [JH03]. Various definitions of concrete (probabilistic) simulation
also exist in the literature: for labelled transition systems by Milner [Mil89], for
generative systems by Baier [Bai98], for simple Segala systems by Segala [Seg95b].

For labelled transition systems weak bisimulation is an established notion [Mil89].
For some types of probabilistic systems there also exist notions of weak bisim-
ulation. Segala [SL94, Seg95b] proposed four notions of weak relations for his
model of simple probabilistic automata. Baier and Hermanns [BH97, Bai98,
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BH99] have given a rather appealing definition of weak bisimulation for gener-
ative probabilistic systems. Philippou, Lee and Sokolsky [PLS00] studied weak
bisimulation in the setting of the alternating model [Han91]. This work was
extended to infinite systems by Desharnais, Gupta, Jagadeesan and Panan-
gaden [DGJP02b]. The same authors also provided a metric analogue of weak
bisimulation [DGJP02a].

There has been early work on weak bisimulation for while programs in a coal-
gebraic setting by Rutten [Rut99], succeeded by a syntactic approach to weak
bisimulation by Rothe [Rot02]. In the latter paper, weak bisimulation for a
particular class of coalgebras was obtained by transforming a coalgebra into an
LTS and making use of Milner’s weak bisimulation there. This approach also
enabled a definition of weak homomorphisms and weak simulation relations.
Later, in the work of Rothe and Mašulović [RM02] a complex, but interesting
coalgebraic theory was developed leading to weak bisimulation for functors that
weakly preserve pullbacks. However, in the case of probabilistic and similar sys-
tems, it does not lead to intuitive results and can not be related to the concrete
notions of weak bisimulation mentioned above. Our approach to weak bisim-
ulation provides a (parameterized) notion of weak bisimulation for coalgebras
that coincides with the concrete notions for labelled transition systems [Mil89]
and for generative probabilistic systems [BH97, Bai98, BH99].

Our ways of composing coalgebras and defining paths are related to the work on
trace-style semantics by Jacobs [Jac04] and Hasuo and Jacobs [HJ05b, HJ05a].





2

Probabilistic automata: system
types, parallel composition and

comparison

In this chapter we survey various notions of probabilistic automata
and probabilistic bisimulation. The chapter provides an overview of
existing models of probabilistic systems and explains the relationship
between them. In addition, we discuss parallel composition for the
presented types of systems.

The notion of a state machine has proved useful in many modelling situations,
amongst others, the area of validation of probabilistic systems. In the liter-
ature up to now, many types of probabilistic automata have been proposed
and many of these have been actually used for verification purposes. In this
chapter we discuss a number of probabilistic automata with discrete probability
distributions. For continuous-time probabilistic systems the interested reader
is referred to [BDEP97, DEP98, D’A99, BHHK00, Hil94, Alf98]. Models of
stochastic systems that are not represented by transition systems can also be
found in [BLFG95] and [PA91]. Other models of stochastic concurrent systems
are based on Petri nets (stochastic Petri nets, SPN, and generalized stochastic
Petri nets, GSPN). The reader is referred to [Bal01] for an overview of Petri net
based models.

Due to the variety of proposed models, it is often the case that results have
to be interpreted from one type of systems to another. Therefore we compare
the considered types of probabilistic automata in terms of their expressiveness.
The comparison is achieved by placing a partial order on the classes of such
automata, where one class is less than another if each automaton in the first
class can be translated to an automaton of the other class such that transla-
tions both reflect and preserve the respective notions of bisimilarity. Hence,
bisimulation and bisimilarity are central notions in this overview. Other com-
parison criteria are important as well, e.g. logical properties, logical characteri-
zation of bisimulation [LS91], complexity of algorithms for deciding bisimulation

17
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[Bai98, BEMC99, CY95, Sto02a] and so on. We choose the comparison criterion
formulated in terms of strong bisimulation because of its simplicity and because
we work with labelled transition systems, for which bisimulation semantics arises
naturally from the step-by-step behavior.

A major distinction of probabilistic automata is that between fully probabilistic
vs. non-deterministic ones. In a fully probabilistic automaton every choice is
governed by a probability distribution (over set of states or states combined with
actions). The probability distribution captures the uncertainty about the next
state. If we abstract away from the actions in a fully probabilistic automaton,
we are left with a discrete time Markov chain. Subsequently, standard tech-
niques can be applied to analyze the resulting Markov chains. Sometimes, the
incomplete knowledge about the system behavior can not be represented prob-
abilistically. We speak in this case of a non-deterministic probabilistic automa-
ton. Most of the models that we consider include some form of non-determinism
and hence fall in the category of non-deterministic probabilistic automata. As
pointed out by various authors, e.g. [Hoa85, Seg95b, Alf97, Sto02b, AB02]
non-determinism is essential for modelling scheduling freedom, implementation
freedom, the external environment and incomplete information. Furthermore,
non-determinism is essential for the definition of an asynchronous parallel com-
position operator that allows interleaving. Often two kinds of non-deterministic
choices are mentioned in the literature (see e.g. [Sto02b, Har02]), external non-
deterministic choices influenced by the environment, specified by having several
transitions with different labels leaving from the same state, and internal non-
determinism, exhibited by having several transitions with the same label leaving
from a state. We use the term non-determinism for full non-determinism in-
cluding both internal and external non-deterministic choices.

We introduce several classes of automata, ranging from the simplest models to
more complex ones. The questions that we will address for each individual class
are:

• the definition of the type of automaton and the respective notion of strong
bisimulation;

• the relation of the model with other models;

• presence and form of non-determinism;

• the notion of a product or parallel composition in the model.

The set-up of the chapter is as follows: Section 2.1 presents the necessary notions
considering probability theory, automata (transition systems), and concurrency
theory, in particular compositional operators. In Section 2.2 we focus on the
various definitions of probabilistic automata in isolation with their correspond-
ing notions of bisimulation. In Section 2.3 the operators of parallel composition
are discussed. We address the interrelationship between the introduced types
of automata in Section 2.4. Some conclusions are briefly presented in Section 2.5.
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2.1 Basic notions

2.1.1 Probability distributions

In this subsection we collect the basic definitions from probability theory that
will be used throughout the thesis.

Definition 2.1.1. Let Ω be a set. A function µ : Ω → R
+
0 is a discrete prob-

ability distribution, or distribution for short, on Ω if
∑

x∈Ω µ(x) = 1. The set
{x ∈ Ω| µ(x)> 0} is the support of µ and is denoted by supp(µ). By D(Ω) we
denote the set of all discrete probability distributions on the set Ω.

We note here that the sum of an arbitrary family {xi | i ∈ I} of non-negative
real numbers is defined as

∑

i∈I xi = sup{
∑

i∈J xi | J ⊆ I, J finite }. The
following property will be used on several occasions throughout the thesis, and
it justifies the name discrete probability distributions.

Proposition 2.1.2. Let µ be a discrete probability distribution. Then the set
supp(µ) is at most countable.

Proof Let x ∈ supp(µ) for a distribution µ. Then µ(x) > 0 and therefore
there exists a natural number n such that x > 1/n. So we have, supp(µ) ⊆
∪n∈N suppn(µ) where suppn(µ) = {x ∈ supp(µ) | x > 1/n}. Now, since
∑

x∈supp(µ) µ(x) = 1, the set suppn(µ) has less than n elements, for all n ∈ N,

i.e., it is finite. Therefore the set supp(µ) is at most countable, being a count-
able union of finite sets. �

Hence the discrete probability distributions are indeed discrete, i.e. at most
countably many elements of Ω are assigned non-zero probability. In the same
way one obtains: if the sum of the values of a non-negative real valued function is
finite, then the function has non-zero values at at most countably many elements
of the domain.

For µ ∈ D(Ω) and X ⊆ Ω we denote µ[X] =
∑

x∈X µ(x). If x ∈ Ω, then µ1
x

denotes the unique probability distribution with µ1
x(x) = 1, also known as the

Dirac distribution for x. If µ is a distribution with finite support {s1, . . . , sn},
we sometimes write {s1 7→ µ(s1), . . . , sn 7→ µ(sn)}. With this notation, µ1

x =
{x 7→ 1}.

Definition 2.1.3. Let µ1 ∈ D(S) and µ2 ∈ D(T ). The product µ1 × µ2 of µ1

and µ2 is a distribution on S × T defined by (µ1 × µ2)(s, t) = µ1(s) · µ2(t), for
〈s, t〉 ∈ S × T .

If µ ∈ D(S × T ), we use the notation µ[s, T ] for µ[{s} × T ] and µ[S, t] for
µ[S ×{t}]. We adopt from [JL91] the lifting of a relation between two sets to a
relation between distributions on these sets.
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Definition 2.1.4. Let R ⊆ S × T be a relation between the sets S and T . Let
µ ∈ D(S) and µ′ ∈ D(T ) be distributions. Define µ ≡R µ′ if and only if there
exists a distribution ν ∈ D(S × T ) such that

1. ν[s, T ] = µ(s) for any s ∈ S

2. ν[S, t] = µ′(t) for any t ∈ T

3. ν(s, t) 6= 0 implies 〈s, t〉 ∈ R.

The lifting of a relation R preserves the characteristic properties of preorders
and equivalences (cf. [JLY01]). For the special case of an equivalence relation
there is a simpler way to define the lifting (cf. [JLY01, Sto02b, Bai98]).

Proposition 2.1.5. Let R be an equivalence relation on the set S and let µ, µ′ ∈
D(S). Then µ ≡R µ′ if and only if µ[C] = µ′[C] for all equivalence classes
C ∈ S/R. �

Lifting of a relation R ⊆ S×T to a relation ≡R,A ⊆ D(A×S)×D(A×T ), for
a fixed set A, will also be needed.

Definition 2.1.6. Let R be a relation between S and T . Let R̂ ⊆ (A × S) ×
(A× T ) be given by

〈〈a, s〉, 〈a, t〉〉 ∈ R̂ ⇐⇒ 〈s, t〉 ∈ R.

Then the lifted relation ≡R,A is defined as ≡R,A = ≡R̂.

From Proposition 2.1.5 we get the following corollary.

Corollary 2.1.7. Let R be an equivalence relation on a set S, A a set, and let
µ, µ′ ∈ D(A× S). Then

µ ≡R,A µ′ ⇐⇒ ∀C ∈ S/R,∀a ∈ A : µ[a,C] = µ′[a,C].

�

In later chapters we will use and treat liftings of relations in a general abstract
setting.

2.1.2 Non-probabilistic automata, Markov chains, bisimilarity

The terms automaton, transition system or just system will be used as syn-
onyms.
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Non-probabilistic automata

Definition 2.1.8. A transition system, TS for short, is a pair 〈S, α〉 where

1. S is a set of states

2. α : S → P(S) is a transition function.

Here P(S) denotes the powerset of S. If 〈S, α〉 is a transition system such that
s, s′ ∈ S and s′ ∈ α(s) we write s→ s′ and call it a transition.

Often in the literature a TS is given as a triple, including besides the set of states
and the transition function also a subset of initial states, or a single initial state.
Here we consider no initial states and therefore they are not present in the
definition. Instead of a transition function one could equivalently consider a
transition relation as a subset of S × S. Our choice here is to always present
the transitions via a transition function.

A common way of representing a TS is via its transition diagram. For example,
the system 〈S, α〉 where S = {s1, s2, s3, s4} and α(s1) = {s2, s3}, α(s2) =
{s4}, α(s3) = α(s4) = ∅, is represented as follows:

•s1

����
��

��

��=
==

==
=

•s2

��

•s3

•s4

The states s3 and s4 are terminating states, with no outgoing transitions.

It is often of use to model the phenomenon that a change of a state in a system
happens as a result of executing an action. Therefore, labelled transition sys-
tems evolve from transition systems. There are two ways to incorporate labels
in a TS: by labelling the states (usually with some values of variables, or a set of
propositions that hold in a state), or by explicitly labelling the transitions with
actions or action names. We focus on systems with labels on the transitions.

Definition 2.1.9. A labelled transition system (LTS), or a non-deterministic
automaton, is a triple 〈S,A, α〉 where

1. S is a set of states

2. A is a set of actions

3. α : S → P(A× S) is a transition function.

If 〈S,A, α〉 is an LTS, then the transition function α can equivalently be consid-
ered as a function from S to P(S)A, the collection of functions from A to P(S).
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As in the case of TSs, for any state s ∈ S of an LTS, every element 〈a, s′〉 ∈ α(s)

determines a transition which is denoted by s
a
→ s′.

The class of LTSs (non-deterministic automata) is denoted by LTS. Determin-
istic automata, given by the next definition, form a subclass of LTS.

Definition 2.1.10. A deterministic automaton is a triple 〈S,A, α〉 where

1. S is a set of states

2. A is a set of actions

3. α : S → (S + 1)A is a transition function.

Notation 2.1.11. We denote by + the disjoint union of two sets. More pre-
cisely, A + B = {〈a, 1〉 | a ∈ A} ∪ {〈b, 2〉 | b ∈ B}, but we simply consider that
A + B is the union of two disjoint copies of the sets A and B. The set 1 is a
singleton set containing the special element ∗, i.e. 1 = {∗}. We assume that
∗ /∈ S. The notation (S + 1)A stands for the collection of all functions from A
to S + 1.

The special set 1 and the disjoint union construction allow for writing partial
functions as functions. In a deterministic automaton each state s is assigned a
function α(s) : A→ S + 1, which can also be considered a partial function from
the set of actions to the set of states, meaning that whenever α(s)(a) = s′ for

some s′ ∈ S, hence α(s) 6= ∗, then the transition s
a
→ s′ is enabled in s. We

denote the class of all deterministic automata by DLTS.

We note that the class of automata DLTS exhibits external non-determinism,
while in LTS there is full non-determinism. Namely, in DLTS (see the left
diagram below) multiple transitions are possible in a state only if they have
different labels. Hence, the nondeterministic choice is made only between the
labels offered in a state and this choice is typically a choice of the environment.
On the other hand, in LTS (see the right diagram below) it is also possible to
have multiple outgoing transitions from a state labelled with the same label.
This characterizes full non-determinism. Beside the non-deterministic choice
of the environment on which label is offered, the automaton itself has a non-
deterministic choice of deciding a next state after a transition with a given
label.
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• • •
external non-determinism full non-determinism

In the introduction (Section 1.1) we also mentioned fully deterministic transition
systems in which only a single transition is possible in each state. These systems
do not allow for any type of non-determinism.
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Markov chains

The simplest class of fully probabilistic automata is the class of discrete time
Markov chains. The theory of Markov chains is rich and huge (see, e.g., [KS76,
How71, BH01, Hav01]) and we only provide a simple definition of a discrete
time Markov chain here.

Definition 2.1.12. A Markov chain is a pair 〈S, α 〉 where

1. S is a set of states

2. α : S → D(S) is a transition function.

where D(S) is defined in Definition 2.1.1.

Markov chains evolve from transition systems, when probability is added to each
transition such that for any state the sum of the probabilities of all outgoing
transitions equals 1. The class of all Markov chains is denoted by MC. If s ∈ S
and α(s) = µ with µ(s′) = p > 0 then the Markov chain 〈S, α 〉 is said to go

from a state s with probability p to a state s′. Notation: s ; µ and s
p
; s′.

Example 2.1.13. The following diagram represents an example Markov chain
〈S, α〉.
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•s2
1
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S = {s0, s1, s2}
α(s0) = {s0 7→ 0, s1 7→

1
2 , s2 7→

1
2}

α(s1) = µ1
s0

α(s2) = µ1
s1

Bisimulation and bisimilarity

Different semantics or notions of behavior can be given to labelled transi-
tion systems. We work with bisimulation semantics (Park [Par81], Milner
[Mil83, Mil89]): two states in a system represented by an LTS are equivalent
whenever there exists a bisimulation relation that relates them. A bisimulation
relation compares the one-step behavior of two states and has a nice extension
to the probabilistic case (as explored in [LS91]). In [JS90] probabilistic exten-
sions of a number of other well known process equivalences have been studied
like probability trace, completed trace, failure and ready equivalence. Other
probabilistic process equivalences are probabilistic simulation and bisimulation
introduced by Segala and Lynch [SL94, Seg95b], Yi and Larsen’s testing equiv-
alence [YL92], and CSP equivalences of Morgan et al. [MMSS96], Lowe [Low95]
and Seidel [Sei95]. An overview of several probabilistic process equivalences can
be found in [LN04].

Definition 2.1.14. Let A be a set of actions and 〈S,A, α〉 and 〈T,A, β〉 be two
LTSs. A relation R ⊆ S×T is a bisimulation relation if 〈s, t〉 ∈ R, implies for
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all a ∈ A that

if s
a
→ s′, then there exists t′ ∈ T such that t

a
→ t′ and 〈s′, t′〉 ∈ R, and

if t
a
→ t′, then there exists s′ ∈ S such that s

a
→ s′ and 〈s′, t′〉 ∈ R.

Let s ∈ S and t ∈ T . The states s and t are called bisimilar, denoted by s ∼ t
if there exists a bisimulation relation R with 〈s, t〉 ∈ R.

Example 2.1.15. For the following LTSs we have, for example, s0 ∼ t0 since
R = {〈s0, t0〉, 〈s0, t2〉, 〈s1, t1〉, 〈s1, t3〉} is a bisimulation.

•s0

EDGFa@A
//

b

��

•t0

b

��

a // •t2
GFED

a

BC
oo

b

��
•s1

•t1 •t3

Remark 2.1.16. Instead of comparing states in two systems 〈S,A, α〉 and
〈T,A, β〉 we can always consider one joined system 〈S+T,A, γ〉 with γ(s) = α(s)
for s ∈ S and γ(t) = β(t) for t ∈ T . We also write γ = α+β. Therefore, bisimu-
lation can be defined as a relation on the set of states of a system. Furthermore,
if R ⊆ S × S is a bisimulation, then the equivalence closure of R is also a
bisimulation. Hence, bisimilarity ∼ is not affected by the choice of defining
bisimulation as an equivalence.

Definition 2.1.17. An equivalence relation R on a set of states S of an LTS is
an equivalence bisimulation if it is an equivalence and a bisimulation. The states
s and t are called e-bisimilar, denoted by s ∼e t, if there exists an equivalence
bisimulation R with 〈s, t〉 ∈ R.

By Remark 2.1.16, the following proposition holds.

Proposition 2.1.18. Let 〈S,A, α〉 and 〈T,A, β〉 be two LTSs, and let s ∈ S, t ∈
T . Then s ∼ t if and only if s ∼e t in 〈S + T,A, α+ β〉.

�

Bisimulation on DLTS is defined exactly the same as for LTS i.e. with Defini-
tion 2.1.17.

The standard notion of probabilistic bisimulation is the one introduced by
Larsen and Skou [LS91] originally formulated for reactive systems (see Sec-
tion 2.2.1). An early reference to probabilistic bisimulation can be found in
[BM89]. In the case of Markov chains, bisimulation corresponds to ordinary
lumpability of Markov chains [KS76, Buc94, Her98].
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The idea behind probabilistic bisimulation is as follows. Since bisimilar states
are considered “the same”, it does not matter which element within a bisimula-
tion class is reached. Hence, a bisimulation relation should compare the prob-
ability to reach an equivalence class and not the probability to reach a single
state. In order to define bisimulation for Markov chains the lifting of a relation
on a state S to a relation on D(S), as defined in Definition 2.1.4 and explained
with Proposition 2.1.5, is used. Note that the comments of Remark 2.1.16 are
in place here as well.

Definition 2.1.19. An equivalence relation R on a set of states S of a Markov
chain 〈S, α〉 is a bisimulation if and only if 〈s, t〉 ∈ R implies

if s ; µ, then there is a distribution µ′ with t ; µ′ and µ ≡R µ′.

The states s and t are called bisimilar, denoted by s ∼ t, if there exists a
bisimulation R with 〈s, t〉 ∈ R.

Definition 2.1.19 will be used, with some variations, for defining bisimulation
relations for all types of probabilistic automata that we consider in this thesis.
However, note that in the case of Markov chains any two states of any two
Markov chains are bisimilar, according to the given definition, since ∇ = S×S is
a bisimulation on the state set of any Markov chain 〈S, α〉. Namely, let 〈S, α〉 be
a Markov chain and s, t ∈ S, such that α(s) = µ, α(t) = µ′, i.e., s ; µ, t ; µ′.
Then for the only equivalence class of ∇, S, we have µ[S] = 1 = µ′[S] i.e.
µ ≡R µ′ which makes s ∼ t. This phenomenon can be explained with the fact
that bisimilarity compares the observable behavior of two states in a system
and the Markov chains are very simple systems in which there is not much to
observe. Therefore there is an occasion to enrich Markov chains with actions or
at least termination.

Notational matters

In Section 2.2 we will introduce ten other types of probabilistic automata, with
corresponding notions of bisimulation. In order to avoid repetition of definitions
we collect the following.

• A type of automata will always be a triple 〈S,A, α〉 where S is a set of
states, A is a set of actions and α is a transition function. The difference
between the system types is expressed with the difference in the codomains
of the corresponding transition functions.

• A bisimulation relation will always be defined as an equivalence on the
set of states of a system. Depending on the type of systems the “transfer
conditions” in the definition of bisimulation vary.
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• For a particular type of system, the bisimilarity relation, denoted by ∼
is defined by: s ∼ t if and only if there exists a bisimulation R that
relates s and t, i.e. 〈s, t〉 ∈ R. Although we use the same notation ∼ for
bisimilarity in different types of systems, it should be clear that for each
type of systems, ∼ is a different relation.

2.1.3 Parallel composition of LTSs and MCs

Compositional operators serve the need of modular specification and verifica-
tion of systems. They arise from process calculi, such as CCS ([Mil89]), CSP
([Hoa85]) and ACP ([BK85]), where process terms are built from atomic process
terms with the use of compositional operators. Usually a model of a process
calculus is a suitable class of transition systems. Therefore it is often the case
that process terms are identified with their corresponding transition systems,
and the compositional operators of the process calculus can be considered as
operators for combining transition systems. Here we focus on the parallel com-
position operator. The definition of parallel composition varies a lot throughout
different process calculi. In this section we consider the non-probabilistic case
(LTSs) in order to explain variants of different parallel compositions, and the
parallel composition of Markov chains in order to present the basics of proba-
bilistic parallel composition.

Labelled transition systems

A major distinction between different parallel composition operators is whether
they are synchronous, where the components are forced to synchronize whenever
they can, or asynchronous where the components can either synchronize or
act independently. Furthermore, different approaches for synchronization exist.
The result of the parallel composition of two automata A1 = 〈S1, A, α1〉 and
A2 = 〈S2, A, α2〉 is an automaton A1‖A2 = 〈S1×S2, A, α〉 where the definition
of α varies. Instead of a pair 〈s, t〉 ∈ S1 × S2 we will write s‖t for a state in
the composed automaton. Throughout this subsection we will use as running
example, the parallel composition of the following two automata.

s0BC@A
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GF //

t0
a
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t1 t2 t3

a
��
t4

CCS style: The set of actions in this case contains compatible actions a, ā ∈ A
and a special idle or internal action τ ∈ A. If one of the automata in state s
can perform an action a changing to a state s′ and the other one in state t
can perform a’s compatible action ā moving to state t′ then the composite
automaton in state s‖t can perform the idle action τ and move to state s′‖t′.
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Furthermore, independent behavior of each of the automata is possible within
the composed automaton.

s‖t
a
→ s′‖t′ if and only if

1. s
b
→ s′, t

b̄
→ t′, a = τ , for

b and b̄ compatible actions,
or

2. s
a
→ s′ and t′ = t, or

3. t
a
→ t′ and s′ = s.
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GF ED
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a
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b
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s0‖t1BC@A
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GF // s0‖t2BC@A
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GF // s0‖t3

GF ED
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oo
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s0‖t4@A BC

a

EDoo

The presented CCS parallel composition is asynchronous. A synchronous
variant (SCCS [Mil83]) is defined by omitting clauses 2. and 3. in the definition
above (with a modified, total notion of compatibility).

CSP style: Communication or synchronization in a CSP style parallel compo-
sition occurs on a set of synchronizing actions. Thus actions that are intended
to synchronize are listed in a set L ⊆ A and the rest of the actions can be
performed independently.

s‖t
a
→ s′‖t′ if and only if

1. s
a
→ s′ and t

a
→ t′ and a ∈ L, or

2. s
a
→ s′, t = t′ and a /∈ L, or

3. t
a
→ t′, s = s′ and a /∈ L.

L = {a} s0‖t0

a

zzuuuuuuuuu

ā

��

b

##G
GGGGGGG

s0‖t1 s0‖t2 s0‖t3

a

��
s0‖t4

This type of parallel composition operator is synchronous for L = A, expresses
only interleaving (shuffling) composition if L = ∅ and is never fully asyn-
chronous with both independent behavior and communication allowed. An
asynchronous CSP style parallel composition can be defined by omitting the
clause “a /∈ L” in clauses 2. and 3. above. In case of different action sets A1

and A2, of the two component automata, L is taken to be a subset of A1 ∩A2.
If L = A1 ∩A2 then we say that synchronization on common actions occurs.

ACP style: In ACP, parallel composition is fully asynchronous, allowing both
interleaving (independent behavior) and synchronization via a communication
function. A communication function is a commutative and associative partial
function γ : A×A ↪→ A. Instead of γ(a, b) we will write ab.

For our running example in ACP style, let the communication function γ be the
smallest commutative and associative partial function such that γ(a, a) = aa = c
and γ(a, b) = ab = c. It is easy to see that such a partial function exists.
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s‖t
a
→ s′‖t′ if and only if

1. s
b
→ s′ and t

c
→ t′

with bc = a defined,
or

2. s
a
→ s′, t = t′, or

3. t
a
→ t′, s = s′.

aa = c; ab = a s0‖t0
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Note that if A contains compatible actions and an idle action τ , and if aā = τ
for any compatible a, ā ∈ A and undefined otherwise, then the ACP parallel
composition operator specializes to the CCS parallel composition operator. On
the other hand, for aa = a, (a ∈ L ⊆ A) we get the asynchronous variant of
the CSP parallel composition operator. If clauses 2. and 3. are dropped from
the definition, we get a synchronous variant of the ACP parallel composition
operator called communication merge.

Markov chains

LetM1 = 〈S1, α1〉,M2 = 〈S2, α2〉 be two Markov chains. Their parallel product
is the Markov chain M1‖M2 = 〈S1 × S2, α〉, where α(s‖t) = α1(s) × α2(t), ×
denoting the product of distributions. Hence s‖t ; µ if and only if s ; µ1, t ;

µ2 and µ = µ1 × µ2. A small example of parallel composition of Markov chains
is given in the next diagram.
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Note that the parallel composition of two Markov chains is synchronous, since
each step in the composed automaton consists of independent steps performed
by each of the components. The way of defining the product of two distribu-
tions goes in favor of the interpretation that when put in parallel, each of the
automata independently chooses its transition that contributes to a transition
in the composed automaton.

2.2 Probabilistic models

This section defines the advanced types of probabilistic automata. The au-
tomata types are grouped in several subsections reflecting their common prop-
erties. Basically, every type of probabilistic automata arises from the plain
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definition of a transition system with or without labels. Probabilities can then
be added either to every transition, or to transitions labelled with the same
action, or there can be a distinction between probabilistic and ordinary (non-
deterministic) states, where only the former ones include probabilistic informa-
tion, or the transition function can be equipped with structure that provides
both non-determinism and probability distributions.

Each kind of probabilistic automata comes equipped with a notion of bisimula-
tion, and all these notions, frequently only subtly different, will also find their
way in this section.

2.2.1 Reactive, generative and I/O probabilistic automata

Two classical extensions of LTSs with probabilities are the reactive and the
generative model. Throughout the years a large amount of research has been
devoted to reactive and generative probabilistic systems. It is hard to note
who introduced these systems first, but the reactive model was treated e.g. in
[LS91, LS92, GSST90, GSS95], the generative in e.g. [GSST90, GSS95, Har02,
HV02, CSZ92, Chr90, CC91], and the classification of these systems together
with a so-called stratified model was proposed in [GSS95, GSST90].

The way these models arise from LTSs, by changing the transition function, can
be explained with the following figure, where α denotes the transition function
of an LTS, αr and αg the transition function of a reactive and a generative
system, respectively.

αr : S → (D(S) + 1)A'& %$ ! "# α : S → P(S)Aks '& %$

 ! "#

P → D + 1

ww
P → D + 1

77

α : S → P(A× S) +3 αg : S → D(A× S) + 1
'& %$ ! "#

The figure points out that the LTS can be defined by two types of transition
functions (shown in the central box). In both of these types of transition func-
tions the powerset construct P is used. If we change the powerset construct to
the distribution construct with the termination possibility, D + 1, the one type
changes to reactive systems (shown in the left box) and the other type changes
to the type of generative systems (shown in the right box).

Definition 2.2.1. A reactive probabilistic automaton is a triple 〈S,A, α〉 where
the transition function is given by

α : S → (D(S) + 1)A.

If s ∈ S and α(s)(a) = µ then we write s
a
→; µ. More specifically, if

s′ ∈ supp(µ), µ(s′) = p we write s
a[p]
; s′.
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A generative probabilistic automaton is a triple 〈S,A, α〉 with a transition func-
tion

α : S → D(A× S) + 1.

When s ∈ S and α(s) = µ ∈ D(A× S) then we write s ; µ. More particularly,

if 〈a, s′〉 ∈ supp(µ) with µ(〈a, s′〉) = p we write s
a[p]
; s′. We use s 6; to denote

that α(s) = ∗.

Remark 2.2.2. In Definition 2.2.1 both uses of the special singleton set 1
appear. The first one, as in Definition 2.1.10 helps expressing partial functions.
The second one, in the definition of a generative transition function, expresses
the possibility of termination. If s is a state in a generative system with α(s) = ∗
then s is a terminating state allowing no transition. For LTSs, termination is
allowed by the fact that ∅ ∈ P(A× S). Hence, when changing from subsets to
distributions, ∗ is added to play the role of the ∅.
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In a reactive system probabilities are distributed over the outgoing transitions
labelled with the same action, while in a generative system probabilities are
distributed over all outgoing transitions from a state. A motivation for making
this distinction is the different treatment of actions. In a reactive system actions
are treated as input actions being provided by the environment. When a reac-
tive system receives input from the environment, then it acts probabilistically
by choosing the next state according to a probability distribution assigned to
this input. There are no probabilistic assumptions about the behavior of the
environment. On the other hand, in a generative system, as the name suggests,
actions are treated as output generated by the system. When a generative sys-
tem is in a state s it chooses the next transition according to the probability
distribution α(s) assigned to s. The transition being chosen, the system moves
to another state while generating the output action which labels this transition.
Note that in a generative system there is no non-determinism present, while
in a reactive system there is only external non-determinism, as in DLTS. We
denote by React and Gen the classes of reactive and generative probabilistic
automata, respectively.

Definition 2.2.3. An equivalence relation R on S is a bisimulation on the
reactive probabilistic automaton 〈S,A, α〉 if and only if 〈s, t〉 ∈ R implies, for
all actions a ∈ A, that

if s
a
→; µ, then there exists a distribution µ′ with t

a
→; µ′ and µ ≡R µ′.
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Above we have used the lifting from Definition 2.1.4. In order to state the
definition of bisimulation for generative systems, the lifting from Definition 2.1.6
is used.

Definition 2.2.4. An equivalence relation R on S is a bisimulation on the
generative probabilistic automaton 〈S,A, α〉 if and only if for all 〈s, t〉 ∈ R:

if s ; µ, then there exists a distribution µ′ with t ; µ′ and µ ≡R,A µ′.

Example 2.2.5. The equivalence relation R generated by the pairs 〈C,D〉,
〈H, 1〉, 〈H, 3〉, 〈H, 5〉, 〈T, 2〉, 〈T, 4〉, 〈T, 6〉 is a bisimulation for the probabilistic
automaton given below. Hence, C ∼ D. Note that this particular automaton
belongs to both React and Gen.
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An intuitive interpretation of this example is obtained by adding meaning “flip”
to the action a in the left sub-automaton and a meaning “roll” to the action a
in the right sub-automaton. Then the state C represents flipping of a fair coin,
and the state D represents rolling a fair dice. The bisimilarity of the states C
and D shows that it is the same whether one flips a fair coin or rolls a fair dice
being interested only in whether, e.g., the outcome is odd or even.

I/O probabilistic automata

The model of input/output probabilistic automata, introduced by Wu, Smolka
and Stark in [WSS97], exploiting the input/output automata by Lynch and
Tuttle (cf. [LT87]), presents a combination of the reactive and the generative
model.

Definition 2.2.6. An input/output probabilistic automaton is a triple 〈S,A, α〉
where

1. the set of actions A is divided into input and output actions, A = Ain +
Aout

2. α : S → D(S)Ain

× (D(Aout × S) + 1)× R
+
0 is the transition function.

The third component in the transition function assigns an output delay rate to
each state. If s ∈ S, then α(s) = 〈f in, µout, δs〉. We have that δs = 0 if and
only if µout = ∗ i.e. delay is assigned to the states that generate output.

In an I/O automaton for every input action there is a reactive transition. Note
that f in is always a function and not a partial function as in the reactive model.
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Hence each input action is enabled in each state of an I/O probabilistic au-
tomaton. The output actions are treated generatively. At most one generative
probabilistic transition gives the output behavior of each state. The delay rate
parameter δs is an aspect from continuous-time systems, and its meaning will
become clear in Section 2.3 when we discuss compositions of I/O automata.

Denote the class of I/O automata by IO. We use a similar notation for
transitions as in the reactive and the generative model. If s ∈ S with
α(s) = 〈f in, µout, δs〉 then

• if a ∈ Ain with f in(a) = µ we write s
a
→; µ, furthermore, if s′ ∈ supp(µ)

with µ(s′) = p we write s
a[p]
; s′.

• if µout 6= ∗ we write s ; µout and if µout(a, s′) = p > 0 we write s
a[p]
; s′.

•
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transitions from a state in an I/O probabilistic automaton
Ain = {a, b}, Aout = {c, d}

The I/O automata will not be compared and placed in the hierarchy of Sec-
tion 2.4 since they involve a continuous element. It is obvious that, when
ignoring the 0 delays, for Aout = ∅ one gets the reactive model (with all ac-
tions enabled) and for Ain = ∅ one gets the generative model with a delay rate
assigned to each state. A connection exists between I/O automata and some
models with structured transition relation (Section 2.2.3). Combined systems
similar to I/O automata appear as models of process terms in the process alge-
bra EMPA [Ber99, BG98]. In a recent work by Cheung and Hendriks a brand
new model of probabilistic systems with I/O distinction was proposed [CH05].

Since we do not compare I/O automata in Section 2.4, we do not need a notion
of bisimulation for them, although it can be defined by combining the transfer
conditions for reactive and generative bisimulation, and taking care of the delay
rate. In [WSS97] no notion of bisimulation is introduced. A different, rather
complex, notion of behavior of I/O automata is considered which is beyond the
scope of this thesis. A definition of bisimulation for I/O automata can be found
in [SCS03].

2.2.2 Automata with different types of states

So far, we have seen some types of automata that allow modelling of prob-
abilistic behavior, but none of those has the capability of also modelling full
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non-determinism. The types of systems introduced in a minute allow full non-
determinism while making a distinction between probabilistic states with out-
going probabilistic transitions, and non-deterministic states with action labelled
transitions.

Stratified probabilistic automata

The simplest system with a distinction on states appears under the name of
stratified probabilistic automaton, and is discussed in [GSS95, GSST90, SS90,
HV98]. Stratified automata do not yet allow any form of non-determinism
although there is a distinction on states.

Definition 2.2.7. A stratified probabilistic automaton is a triple 〈S,A, α〉 where
the transition function α is given by

α : S → D(S) + (A× S) + 1

The class of all stratified automata we denote by Str. Due to the disjoint
union in the codomain of the transition function, there are three types of states
in a stratified automaton: probabilistic states consisting of s ∈ S such that
α(s) ∈ D(S), deterministic states s ∈ S for which α(s) = 〈a, s′〉 allowing a
single action labelled transition, and terminating states s ∈ S with α(s) = ∗.

Definition 2.2.8. An equivalence relation R on S is a bisimulation on the
stratified probabilistic automaton 〈S,A, α〉 if and only if 〈s, t〉 ∈ R implies that

1. if s ; µ, then there exists a distribution µ′ with t ; µ′ and µ ≡R µ′

2. if s
a
→ s′, then there exists t′ such that t

a
→ t′ and 〈s′, t′〉 ∈ R.

As a consequence of the definition, if s ∼ t in a stratified automaton and if
α(s) = ∗, then also α(t) = ∗.

Vardi probabilistic automata

One of the earliest models of probabilistic automata was introduced by Vardi in
[Var85] under the name concurrent Markov chains. The original definition of a
concurrent Markov chain was given in terms of state labelled transition systems,
for purposes of verification of logical properties. Therefore we slightly modify
the definition, calling this class of automata Vardi probabilistic automata.

Definition 2.2.9. A Vardi probabilistic automaton is a triple 〈S,A, α〉 where
the transition function α is given by

α : S → D(A× S) ∪ P(A× S)
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Vardi probabilistic automaton

Remark 2.2.10. Note that ∪ is used in Definition 2.2.9 rather than +. One
could consider the union disjoint, but it is of more use to identify µ1

〈a,s′〉 with

the singleton {〈a, s′〉}, i.e. a state with a transition s
a[1]
; s′ can be identified

with a state allowing only one transition s
a
→ s′.

In Vardi automata, the probabilistic states are of a generative kind, while the
other states are non-deterministic with full non-determinism, as in an LTS.
Therefore, the definition of bisimulation is a combination of Definition 2.1.17
and Definition 2.2.4.

Definition 2.2.11. An equivalence relation R on S is a bisimulation on the
Vardi probabilistic automaton 〈S,A, α〉 if and only if 〈s, t〉 ∈ R implies that

1. if s ; µ, then there exists a distribution µ′ with t ; µ′ and µ ≡R,A µ′

2. if s
a
→ s′, then there exists t′ such that t

a
→ t′ and 〈s′, t′〉 ∈ R.

Remark 2.2.12. We note that in the literature, in particular in [Var85], there
is no definition of bisimulation. However, the current understanding of prob-
abilistic bisimulation, and the concept of a general coalgebraic definition of
bisimulation allow us to state the previous definition.

We denote the class of Vardi probabilistic automata by Var.

The alternating models of Hansson

Another model that treats separately (purely) probabilistic and non-
deterministic states is the alternating model introduced by Hansson, see for
example [Han91, HJ94]. We present the class of alternating probabilistic au-
tomata Alt, its subclass of strictly alternating probabilistic automata SA and,
in turn, two subclasses of SA, denoted by SAn and SAp.

Definition 2.2.13. An alternating probabilistic automaton is a triple 〈S,A, α〉
where

α : S → D(S) + P(A× S).
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The class of alternating automata is denoted by Alt. Denote by N and P the
subsets of S containing non-deterministic and probabilistic states, respectively.

A strictly alternating automaton is an alternating automaton where for all s ∈ S
the following holds:

1. if s ∈ P with α(s) = µ ∈ D(S) then supp(µ) ⊆ N ;

2. if s ∈ N then for all 〈a, s′〉 ∈ α(s), s′ ∈ P .

The class of all strictly alternating automata is denoted by SA.

An automaton of SA belongs to SAn if and only if

∀s ∈ S : (∀s′ ∈ S,∀a ∈ A,∀p ∈ [0, 1] : s′
p

6; s ∧ s′
a

6→ s)⇒ s ∈ N. (2.1)

An automaton of SA belongs to SAp if and only if

∀s ∈ S : (∀s′ ∈ S,∀a ∈ A,∀p ∈ [0, 1] : s′
p

6; s ∧ s′
a

6→ s)⇒ s ∈ P. (2.2)

The classes SA [Han91, HJ94] and SAn [And99, And02] are well-known, but
we have chosen to present all these classes structurally. The class Alt is a slight
generalization of the class SA and is similar to the stratified and Vardi models.
In an alternating automaton only a distinction on states is imposed. In the
strictly alternating model it is required that all successors of a non-deterministic
state are probabilistic states and vice versa. Furthermore, the two subclasses
SAn and SAp take care that any “initial state” is non-deterministic (2.1) and
probabilistic (2.2), respectively. We define the subclasses SAn and SAp in order
to make a precise comparison of the class SA with some of the other models
(see Section 2.4).
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alternating probabilistic automaton strictly alternating automaton (SAn)

For all the introduced classes of alternating automata, a single definition of
bisimulation can be given, where the transfer conditions are exactly the same
as for the stratified model, given in Definition 2.2.8.

2.2.3 Probabilistic automata with structured transitions

In this subsection we focus on three types of probabilistic automata that pro-
vide orthogonal coexistence of full non-determinism and probabilities without
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distinguishing between states.

Segala and simple Segala probabilistic automata

Two types of probabilistic automata were introduced by Segala and Lynch
in [SL94, Seg95b]. We call them Segala probabilistic automata and simple Segala
probabilistic automata. An extensive overview of the simple Segala model is
given in [Sto02a, Sto02b]. These types of probabilistic automata have been
used for verification purposes and several theoretical results have been obtained
as reported in [SV99, SV03, BS00, Bai96, BEMC99, BK00, BK97, JY02, KN98].

Definition 2.2.14. A Segala probabilistic automaton is a triple 〈S,A, α〉 where

α : S → P(D(A× S))

If s ∈ S and µ ∈ α(s) we write s →; µ, and, if 〈a, s′〉 ∈ supp(µ) with

µ(a, s′) = p we write s→
a[p]
; s′.

A simple Segala probabilistic automaton1 is a triple 〈S,A, α〉 for a transition
function

α : S → P(A×D(S))

If s ∈ S with 〈a, µ〉 ∈ α(s) then we write s
a
→; µ, and if s′ ∈ supp(µ) we write

s
a
→

p
; s′.

The simple Segala type of systems arise from LTS by changing the target state
with a distribution over possible target states. A transition in a simple Segala
automaton and in a Segala automaton is shown in the next figure.
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simple Segala transition Segala transition

There can be more then one transition available in a state and that is where non-
determinism occurs. Hence, non-deterministic choices exist between transitions,
while probabilities are specified within a transition. In the original definition by
Segala and Lynch distributions over an extended set A×S+1 (or over S+1 in the
simple case) were treated i.e. substochastic distributions, where the probability
assigned to the special symbol ∗ was interpreted as the deadlock probability.

1Segala and Lynch call these models probabilistic automata (PA) and simple PA, while
Stoelinga calls them general PA and PA, respectively.
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We choose not to include this in the definition for two reasons: it disturbs
the comparison (Section 2.4) since the other models do not cover substochastic
distributions, and deadlock probability can be expressed by adding an extra
deadlock state to a system.

We denote the class of Segala probabilistic automata by Seg and the class of
simple Segala automata by SSeg.

The simple Segala automaton is a generalization towards full non-determinism of
the reactive model and of the purely probabilistic automata of Rabin [Rab63]. A
deterministic version of the simple Segala automaton equivalent to the reactive
model is known as Markov decision process ([Der70]), while the name probabilis-
tic transition system is used for this model in [JLY01] and for a state labelled
version in [DJJL01, DJJL02]. A comparison of SAn and the simple Segala
model can be found in [BS01]. A very recent work provides another detailed
comparison between alternating and non-alternating (Segala) models [ST05].

Bisimulation for the simple Segala systems is defined with the same transfer
conditions as for reactive systems given in Definition 2.2.3, while for the Segala
systems the transfer conditions for bisimulation of Definition 2.2.4 for gener-
ative systems apply, when changing ; to →;. We state the definition for
completeness.

Definition 2.2.15. An equivalence relation R on S is a bisimulation on the
Segala probabilistic automaton 〈S,A, α〉 if and only if for all 〈s, t〉 ∈ R:

if s→; µ, then there exists a distribution µ′ with t→; µ′ and µ ≡R,A µ′.

A great novelty introduced with both types of Segala systems was the definition
of a stronger probabilistic bisimulation relation that identifies states that have
matching “combined transitions”. For more information on this topic we refer
to [SL94, Seg95b, Sto02a, Sto02b, BS00].

Bundle probabilistic automata

Another way to include both non-determinism and probability is to consider dis-
tributions over sets of transitions as in the bundle model, introduced in [DHK98].
(Recall that Segala systems have sets of distributions over transitions.)

Definition 2.2.16. A bundle probabilistic automaton is a triple 〈S,A, α〉 where

α : S → D(P(A× S))

When s ∈ S and α(s) = µ we write s ; µ. Furthermore, if T ⊆ A×S, µ(T ) =

p > 0 we write s
p
; T and if 〈a, t〉 ∈ T then s

p
;

a
→ t.

Although not explicitly, a bundle automaton can also express termination. A
terminating state s ∈ S of a bundle automaton is characterized by a Dirac
distribution transition α(s) = µ1

∅.
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The bundle model can be considered as generative, since probabilities are also
distributed over actions. Therefore, the bundle model offers a solution to the
absence of non-determinism in the generative setting. Note that the original
definition is even slightly more general, namely the codomain of the transition
function is D(M(A× S)) whereM(X) denotes the collection of all the (finite)
multi-subsets of a set X. Hence it is possible to have multiple transitions from
one state to another with the same action within one bundle. Since it is not
essential for the material presented here, we will not add multi-sets in the bundle
model. The class of bundle probabilistic automata is denoted by Bun. A typical
bundle probabilistic automaton is depicted below:
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bundle probabilistic automaton

In the literature, in particular in [DHK98], there is no definition of bisimulation
on bundle probabilistic automata, instead they are transformed to generative
systems and then compared with generative bisimulation. We give here a defini-
tion of bisimulation for the bundle probabilistic automata that is deduced from
the general coalgebraic definition of bisimulation (cf. Chapter 3 and Chapter 4).

Prior to stating the definition we need a way to lift a relation on a set S to a
relation on the set P(A× S).

Definition 2.2.17. Let R be a relation on S and let X, Y ∈ P(A×S). Define
X ≡R,P Y if and only if for all a ∈ A:

1. if 〈a, x〉 ∈ X, then there exists 〈a, y〉 ∈ Y with 〈x, y〉 ∈ R

2. if 〈a, y〉 ∈ Y , then there exists 〈a, x〉 ∈ X with 〈x, y〉 ∈ R.

It holds that, if R is an equivalence on S, then ≡R,P is an equivalence on
P(A× S).

Definition 2.2.18. An equivalence relation R is a bisimulation on the state set
of a bundle probabilistic automaton 〈S,A, α〉 if and only if for all 〈s, t〉 ∈ R it
holds

if s ; µ and t ; µ′, then µ ≡≡R,P
µ′

where ≡≡R,P
denotes the lifting of the relation ≡R,P to distributions on P(A×S)

as defined by Definition 2.1.4.

It might seem that this bisimulation definition is different than all the others
presented so far, but we shall see in later chapters (Chapter 3 and Chapter 4)
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that they are all instantiations of a general definition of bisimulations on sys-
tems. To this end we present an example of bundle bisimulation.

Example 2.2.19. Let R be the equivalence on the set S =
{s, t, s1, s2, s3, t1, t2, t3, t4} such that S/R = {{s, t}, {s1, s2, s3, t1, t2, t3, t4}}.
Consider the system:
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The equivalence R is a bisimulation on this bundle system since the states
s1, s2, s3, t1, t2, t3, t4 are all terminating, and the distributions from the states
s and t assign the same probability 1/2 to the ≡R,P -class containing the sets
{〈a, s1〉, 〈a, s2〉}, {〈a, t1〉} and {〈a, t2〉, 〈a, t3〉}, and the same probability 1/2 to
the ≡R,P -class containing the sets {〈b, s3〉} and {〈b, t4〉}.

2.2.4 Complex models - Pnueli-Zuck and general probabilistic au-
tomata

An early model including probabilities and a structured transition relation was
proposed by Pnueli and Zuck [PZ86, PZ93] under the name finite-state prob-
abilistic programs and later used in [BA95]. We call this type of automata
Pnueli-Zuck probabilistic automata2, and denote the class of all such by PZ.
The model of Pnueli and Zuck has the most complex transition function of the
models appearing in the literature, it adds one more power set to the bundle
model and so allows two types of non-determinism, both between the proba-
bilistic transitions and inside the transitions. However, in order to get a top
element for our hierarchy (Section 2.4) we expand the model a bit further and
define a most general type of probabilistic automata. The class of such will be
denoted by MG.

Definition 2.2.20. A Pnueli-Zuck automaton is a triple 〈S,A, α〉 where

α : S → P(D(P(A× S)))

When s ∈ S and µ ∈ α(s) we write s →; µ. Furthermore, if T ⊆ A ×

S, µ(T ) = p > 0 we write s→
p
; T and if 〈a, t〉 ∈ T then s→

p
;

a
→ t. A general

probabilistic automaton is a triple 〈S,A, α〉 where

α : S → P(D(P(A× S + S)))

2Like Vardi’s model, these automata appear in the literature in a state labelled version for
model checking purposes. Therefore, we change the definition towards transition labels.
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The notation for Pnueli-Zuck automata is also used for general automata. Fur-
thermore, if s ∈ S, µ ∈ α(s), T ⊆ A × S + S with µ(T ) = p > 0 and t ∈ T ∩ S,

then we write s→
p
;→ t.
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Pnueli-Zuck system most general system

The unlabelled transitions which appear in the right figure (most general sys-
tem) correspond to pure probabilistic transitions in Markov chains or alternating
systems, where a change of state can happen with certain probability without
performing an action.

As for bundle systems, there is no notion of bisimulation for Pnueli-Zuck sys-
tems in the literature. A bisimulation definition can be formulated out of the
general coalgebraic definition, and it leads the same transfer conditions as in
Definition 2.2.18 when changing ; to →;. A small modification is needed for
the general probabilistic automata. Namely, the transfer condition from Defini-
tion 2.2.18 is still valid, but the definition of ≡R,P (Definition 2.2.17) has to be
modified, such that besides the conditions 1. and 2. it also contains:

3. if x ∈ X, then there exists y ∈ Y with 〈x, y〉 ∈ R

4. if y ∈ Y , then there exists x ∈ X with 〈x, y〉 ∈ R.

2.3 Composing probabilistic systems in parallel

Having introduced the probabilistic models, we consider possible definitions of
the parallel composition operator for these extended systems. In Section 2.1.3 we
have discussed the importance and the different styles of parallel composition for
LTS and for Markov chains. Now we focus on parallel composition of the various
probabilistic automata. Lots of results on this topic exist in the literature. For
a broad overview the reader is referred to [DHK98, Bai98]. An overview of
probabilistic process algebras covering other probabilistic operators as well is
presented in [LN04].

At this point we wish to emphasize the importance of the study of definability
of parallel composition and its closure properties. A large part of the thesis is
devoted to the study and evaluation of the various probabilistic systems. These
systems are to be used as models of real systems for verification purposes. It
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is often the case that models are constructed in a modular fashion, i.e. by
building models of subsystems and composing them we get a model of the
system. A rather important way of composing models of concurrent systems
is via a parallel composition operator. We are interested in classes for which
certain types of parallel composition operator can be defined. Moreover, if a
class of automata is to be used for compositional modelling, then we want that
the class is closed under the given parallel composition operator, so that when
two automata of this type are composed in parallel the resulting automaton is
still of the same type. In the next section and in Chapter 4 we discuss and build
an expressiveness hierarchy of the types of probabilistic automata. We will see
that more expressive and more complex models satisfy closure properties of the
parallel composition operator.

For the classes MC and IO there is a unique parallel composition defined. In
MC this operation is purely synchronous given by the product of distributions
(cf. Section 2.1.3), whereas in IO the definition of the parallel composition op-
eration strongly relies on the specific structure of the systems (cf. Section 2.3.3
below). For all other classes it is meaningful to consider various definitions of
parallel composition. Such operations might be synchronous or asynchronous
in nature and moreover might be based upon the styles CCS, CSP and ACP
described in Section 2.1. The style CSP plays a special role in this respect since
it is by its definition partly synchronous and partly asynchronous and hence
gives rise to a somehow mixed variant of parallel composition.

The classes of (probabilistic) systems can be divided into three groups dependent
on whether they show reactive, generative or alternating behavior. Classes
belonging to the same of these groups allow in essence similar definition and
investigation of parallel composition.

Before going through the, obviously quite numerous, variants of parallel com-
position, for each single class of systems in the subsequent Sections 2.3.1, 2.3.2
and 2.3.4, let us give a complete scheme of possible (and/or already studied)
definitions of parallel composition operator by means of a comprehensive table.
In the table each column is dedicated to one class of probabilistic automata, and
each row to one of the introduced styles of parallel composition. In the inter-
secting cells a symbol representing the definability status of the corresponding
parallel composition operator in the corresponding class is placed. Neighboring
cells containing the same symbol within one column are merged. We use the
following symbols:

∗∗∗ : defined in the literature or straightforward
+: definition possible but not carried out (here and/or in the literature)
−: not definable
P: defined in the literature with parameters
p: parameterized version possible, but not carried out (here and/or lit.)
n: normalized version possible, but not carried out (here and/or lit.)
s1/s2: “s1” for total communication function, “s2” otherwise
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- - - - - generative - - - - -

- - - reactive - - - - - - alternating - - -

DLTS LTS React SSeg Gen Seg Bun PZ MG Var Alt,SA, .. Str

sy
n
c CCS −

∗∗∗
−

∗∗∗
n n

∗∗∗ + +
n

∗∗∗ ∗∗∗CSP ∗∗∗ ∗∗∗ n n n
ACP − − ∗∗∗/n +/n +/n

CSP − ∗∗∗ − ∗∗∗ P p ∗∗∗ + + p ∗∗∗ −
as

y
n
c CCS

− ∗∗∗ − ∗∗∗ P p ∗∗∗ + + p ∗∗∗ −CSP
ACP

Table 2.1: Definability of ‖

In the above explanation of symbols s1 and s2 may be any of the previously
introduced symbols. Table 2.1 presents the overall situation concerning defin-
ability of parallel composition on probabilistic automata.

Hence, for example, from the table we see that for generative systems a syn-
chronous ACP parallel composition operator can be defined provided that the
communication function is a total function. Otherwise, a normalized version of
parallel composition can be defined (symbol “∗/n”).

A brief analysis of these summary results shows that allowing full non-
determinism enables definition of any type of parallel composition. In the re-
mainder of this section we discuss the definitions of parallel composition for all
of the mentioned systems and we point out to the relevant literature.

2.3.1 Parallel composition in the reactive setting

Systems with reactive behavior are systems in the classes React and SSeg,
as well as LTS and DLTS in the non-probabilistic case. Any parallel compo-
sition operator on LTS (Section 2.1.3) nicely extends to the class SSeg. Let
A1 = 〈S1, A, α1〉,A2 = 〈S2, A, α2〉 be in SSeg. Then A1‖A2 = 〈S1 × S2, A, α〉
where α is defined as follows:

[CCS style]: s‖t
a
→; µ if and only if

1. a = τ , s
b
→; µ1, t

b̄
→; µ2 and µ = µ1 × µ2, or

2. s
a
→; µ1 and µ = µ1 × µ

1
t , or
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3. t
a
→; µ2 and µ = µ1

s × µ2.

[CSP style]: s‖t
a
→; µ if and only if

1. a ∈ L, s
a
→; µ1, t

a
→; µ2 and µ = µ1 × µ2, or

2. a /∈ L, s
a
→; µ1 and µ = µ1 × µ

1
t , or

3. a /∈ L, t
a
→; µ2 and µ = µ1

s × µ2.

[ACP style]: s‖t
a
→; µ if and only if

1. a = bc defined, s
b
→; µ1, t

c
→; µ2 and µ = µ1 × µ2, or

2. s
a
→; µ1 and µ = µ1 × µ

1
t , or

3. t
a
→; µ2 and µ = µ1

s × µ2.

The definition of any of these operators is problematic for the class React.
For A1,A2 ∈ React it might happen that A1‖A2 /∈ React in any variant of
parallel composition. Even in the synchronous CCS style, multiple transitions
labelled with τ may appear. In the CSP style, 2. and 3. may introduce internal
non-determinism. However, if L contains all the common actions of A1 and
A2, then this problem disappears. In case of ACP all of 1., 2. and 3. introduce
internal non-determinism, hence React is not closed under this operator for
an arbitrary communication function γ. The same problems arise in the class
DLTS, namely parallel composition introduces internal non-determinism, and
therefore DLTS is not closed under ‖. For example, let γ be the smallest
commutative and associative partial function on the set of actions A = {a, b, c}
such that γ(a, b) = ab = a and γ(a, c) = ac = a. It is easy to see that such a
partial function exists. Then the ACP parallel product of the following two
automata

s0

a[1]
��
�O
�O

s1

t0
b[1]

~~ ~>
~>
~>
~>

a[1]
��
�O
�O c[1]

   `
 `

 `
 `

t1 t2 t3

is not defined in React, since the definition yields: s0‖t0
a
→; µ1

x for x ∈
{s1‖t0, s0‖t2, s1‖t1, s1‖t3} i.e. more than one transition corresponds to the ac-
tion a, which is prohibited in React.

An asynchronous parallel composition in CCS style on simple Segala systems
was defined in [BK00], a synchronous parallel composition in CCS/ACP3 style

3The authors refer to this synchronous parallel composition as (S)CCS-style. With the
notation introduced so far, it is in fact an ACP style parallel composition where the set of
labels is a free semigroup A∗ and for u, v ∈ A∗ the communication function is defined as
γ(u, v) = uv.
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on reactive systems was defined in [GSST90, GSS95, JLY01], the last reference
working with simple Segala systems. A synchronous CSP style parallel compo-
sition is defined for reactive systems in [JY02, Nor97], while an asynchronous
CSP style parallel composition with synchronization on common actions is used
in [SL94, Seg95b, Sto02a] for simple Segala systems.

2.3.2 Parallel composition in the generative setting

Systems with generative behavior belong to the classes Gen, Var, Seg, Bun,
PZ and MG. The Vardi systems express also alternating behavior and they
will be discussed with the alternating systems. A common property of the gen-
erative systems is that always probability distributions over actions and states
appear. This leads to difficulties in defining parallel composition operators (see
[Han91, CSZ92, Seg95b, DHK98]), especially in the asynchronous case. Namely,
a generative type system defines in each state a probability distribution over a
set of enabled actions, offered by the environment. When two such systems
are composed in parallel it is not clear how the common set of enabled actions
should be defined, nor how the two probability distributions should be com-
posed into one (cf. [JLY01]). In this section we explain several approaches for
solving this problem.

Let A1 = 〈S1, A, α1〉,A2 = 〈S2, A, α2〉 be two generative systems. Their parallel
composition in all cases will be denoted by A1‖A2 = 〈S1 × S2, A, α〉, possibly
with parameters.

Synchronous CCS, CSP, ACP style parallel composition can be defined on gen-
erative systems, as done in [GSST90, GSS95, DHK98] by

s
a[p]
; s′, t

b[q]
; t′ ⇐⇒ s‖t

ab[pq]
; s′‖t′

where the set of actions is assumed to form a commutative semigroup (PCCS,
[GJS90]) and ab stands for the product of a and b in A(·).

The following figure presents an example of synchronous parallel composition
of two generative systems.

s0
a[ 12 ]

}} }=
}= b[ 12 ]

!!!a
!a

s1 s2

t0
a[ 13 ]

�� �?
�? c[ 23 ]

���_
�_

t1 t2

s1‖t1 s0‖t0
aa[ 16 ]
oo o/

ba[ 16 ]zz z:
z:
z:

ac[ 13 ] $$$d
$d

$d

bc[ 13 ]
///o s2‖t2

s2‖t1 s1‖t2
A1 A2 A1‖A2

In order to capture possible asynchronous behavior, several parallel composi-
tion operators were defined in the literature that use bias factors. In most
of the cases the composition is not symmetric. Namely, the main problem
in defining asynchronous parallel composition is that any definition introduces
non-determinism. In the proposed solutions, these non-deterministic choices are
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changed to probabilistic ones, by specifying parameters of the parallel compo-
sition.

An ACP style parallel composition operator for generative systems was defined
in [BBS95]. The definition follows the non-probabilistic definition of the ACP
parallel operator, while changing the non-deterministic choices introduced by in-
terleaving and/or communication into corresponding probabilistic choices. The
operator is parameterized with two parameters σ and θ, 0 ≤ σ, θ ≤ 1, denoted
by A1‖σ,θA2. In the product state s‖σ,θt, synchronization between s and t can
occur with probability 1−θ and an autonomous action of either s or t with prob-
ability θ. Furthermore, given that an autonomous move occurs, then it comes
from s with probability σ and from t with probability 1− σ. For definability of
A1‖σ,θA2 it is necessary that the communication function is a total function.

We define s‖σ,θt
a[P ]
; s′‖σ,θt

′ if and only if

1. s
b[p]
; s′ and t

c[q]
; t′, bc = a and P = (1− θ)pq, or

2. s
a[p]
; s′, t = t′, and P = pθσ, or

3. t
a[q]
; t′, s = s′ and P = qθ(1− σ), or

4. s
a[p]
; s′, t 6; , t = t′ and P = p, or

5. s 6; , t
a[q]
; t′, s = s′ and P = q.

Note that by this definition we might get two transitions s‖σ,θt
a[p1]
; s′‖σ,θt

′

and s‖σ,θt
a[p2]
; s′‖σ,θt

′, which then are replaced by one transition s‖σ,θt
a[p1+p2]

;

s′‖σ,θt
′.

For A1 and A2 as in the previous figure, we get A1‖σ,θA2 which looks like:

s1‖σ,θt0

s1‖σ,θt1 s1‖σ,θt2

s0‖σ,θt1 s0‖σ,θt0

a[ 12 θσ]
O�
O�

OO
O�
O�

b[ 12 θσ]

�O
�O

��
�O
�O

a[ 13 θ(1−σ)] o/oo o/ c[ 23 θ(1−σ)]/o ///o
aa[ 16 (1−θ)]

ff
f& f& f&

ba[ 16 (1−θ)]

xx x8
x8 x8

ac[ 13 (1−θ)]

88
8x8x8x

bc[ 13 (1−θ)]

&&&f
&f&f

s0‖σ,θt2

s2‖σ,θt1 s2‖σ,θt2

s2‖σ,θt0

Two other biased, parameterized, parallel composition operators are defined
in [DHK98], one asynchronous CCS style operator, denoted by Aθ

1‖
σA2 and
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one CSP-style operator, for a set of synchronizing labels L ⊆ A, denoted by

A1‖
σA2. Denote by s

a[p]
; the clause (∃s′)s

a[p]
; s′. We present the definition of

A1‖
σA2 first:

s‖σt
a[P ]
; s′‖σt′ if and only if one of the following is satisfied:

1. s
a[p]
; s′, t

b[q]
; , a, b /∈ L, t′ = t and P = pqσ

ν(s,t,L)

2. s
b[p]
; , t

a[q]
; t′, a, b /∈ L, s′ = s and P = pq(1−σ)

ν(s,t,L)

3. s
a[p]
; s′, t

b[q]
; , a /∈ L, b ∈ L, t′ = t and P = pq

ν(s,t,L)

4. s
b[p]
; , t

a[q]
; t′, a /∈ L, b ∈ L, s′ = s and P = pq

ν(s,t,L)

5. s
a[p]
; s′, t 6;, a /∈ L, t′ = t and P = p

ν′(s,L)

6. s 6;, t
a[q]
; t′, a /∈ L, s′ = s and P = q

ν′(t,L)

7. s
a[p]
; s′, t

a[q]
; t′, a ∈ L and P = pq

ν(s,t,L) .

Where the normalization factors are calculated by

ν′(s, L) = 1−
∑

s
a[p]
; , a∈L

p, ν(s, t, L) = 1−
∑

s
a[p]
; , t

b[q]
; , a,b∈L, a6=b

pq.

For this CSP style operator only one parameter is needed since the only non-
determinism occurs if both systems autonomously decide to perform actions not
in the synchronizing set L. In s‖σt, the parameter σ denotes the probability
that s performs an autonomous action, given that both s and t have decided not
to synchronize. Furthermore, normalization factors are used to determine the
actual probability of every transition. These normalization factors redistribute
the probability mass that is due to autonomous decisions of both processes that
would otherwise lead to deadlock.

For the asynchronous CCS parallel composition A1
θ‖σA2 the interpretation of

the probabilistic parameters θ, σ ∈ (0, 1) is similar to the ACP approach. They
provide the relevant information that an adversary needs in order to resolve
non-determinism that arises when composing two systems. In s θ‖σ t, σ denotes
the probability that s performs an autonomous action given that both s and t do
not want to synchronize, and θ denotes the probability that some autonomous
action occurs, given that synchronization is possible. Hence, if synchronization
is possible, it will take place with probability 1− θ.

The earliest biased parallel composition operator for generative systems was
defined in [CSZ92] and discussed in detail in [LN04]. There the parallel compo-
sition A1‖ρ A2 = 〈S1×S2, A, α〉 uses one bias parameter ρ. A state s‖ρ t in the
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composed automaton can either do an action a with a certain probability if both
s and t in their components can do an action a (CSP style), or can do a τ action
if either s or t can do a τ action. However, whether a τ action from s or from
t is chosen is biased with the bias factor ρ. The probability of the synchronous
execution of a is calculated via a normalization function ν : S1 × S2 → [0, 1].
Basically, ν(s, t) sums up the probabilities of the possible outgoing transitions
of the new state which would be obtained if asynchronous behavior introduced
non-determinism. Then ν(s, t) is used to calculate the actual (conditional) prob-
abilities of the distribution assigned to s‖ρ t.

Finally, a completely different solution of the problem of defining a parallel
composition operator in the generative setting is provided in [DHK98], the in-
troduction of the class of bundle systems Bun. The bundle systems possess non-
determinism, which allows for an elegant definition of an asynchronous parallel
composition operator, as follows.

Let A1 = 〈S1, A, α1 〉,A2 = 〈S2, A, α2 〉 ∈ Bun. Then A1‖A2 = 〈S1×S2, A, α 〉
where, for s ∈ S1, t ∈ S2,

s‖t ; µ = P (µ1, µ2) ⇐⇒ s ; µ1, t ; µ2

and P (µ1, µ2) denotes a specific product of distributions, defined as follows: For
µ1 ∈ D(P(A× S1)), µ2 ∈ D(P(A× S2)), µ = P (µ1, µ2) ∈ D(P(A× (S1 × S2)))
where for all Bs ∈ supp(µ1), Bt ∈ supp(µ2), µ(Bs ⊗Bt) = µ1(Bs) · µ2(Bt) and

Bs ⊗Bt =

{〈 a, 〈 s′, t 〉 〉 | 〈 a, s′ 〉 ∈ Bs} ∪

{〈 b, 〈 s, t′ 〉 〉 | 〈 b, t′ 〉 ∈ Bt} ∪

{〈 ab, 〈 s′, t′ 〉 〉 | 〈 a, s′ 〉 ∈ Bs, 〈 b, t
′ 〉 ∈ Bt}.

Note that the defined parallel composition for bundle systems is ACP style.
By a slight modification of the definition of ⊗, all the other variants can be
obtained. In a similar manner asynchronous parallel composition can be defined
on the classes PZ and MG. In the literature there is no definition of a parallel
composition operator for the class Seg.

2.3.3 Parallel composition in the I/O setting

A rather clean solution to the problems in the generative setting is given for
the class of I/O automata in [WSS97]. The view taken there is that the actions
are divided into input and output, and while there can be synchronization on
input actions, as in the reactive setting, the sets of output actions in each of the
components must be disjoint. This style of parallel composition is also found in
the process algebra EMPA [BG98, Ber99].

Let A1 = 〈S1, A1, α1〉,A2 = 〈S2, A2, α2〉 be two I/O automata. The automata
A1 and A2 are compatible if and only if Aout

1 ∩Aout
2 = ∅. Parallel composition is
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only defined on compatible automata. Let A = A1 ∪ A2. We use the following
convention: if s is a state in A1 (A2) and a ∈ A \ Aout

1 (A \ Aout
2 ) is such

that there is no transition from s involving a, then we consider that s
a[1]
; s.

This convention will enforce the “input always enabled” requirement for the
composite automaton.

The parallel composition of A1 and A2 is the I/O automaton A1‖A2 = 〈S1 ×
S2, A, α〉 where:

1. Aout = Aout
1 ∪Aout

2

2. Ain = A \Aout = (Ain
1 ∪A

in
2 ) \Aout

3. the transition function α is defined by the following:

s‖t
a[P ]
; s′‖t′ if and only if one of the following holds

a. a ∈ Ain, s
a[p]
; s′, t

a[q]
; t′ and P = pq

b. a ∈ Aout
1 , s

a[p]
; s′, t

a[q]
; t′ and P = δ1(s)

δ1(s)+δ2(t)
pq

c. a ∈ Aout
2 , s

a[p]
; s′, t

a[q]
; t′ and P = δ2(t)

δ1(s)+δ2(t)
pq

Hence, α(s‖t) = 〈f in, µout, δ〉 where δ(s‖t) = δ1(s) + δ2(t), f
in(a) = µa is

determined by clause 3a., for a ∈ Ain, and µout is determined by 3b. and
3c., for a ∈ Aout.

Example 2.3.1. Let A1 = 〈S1, A1, α1〉,A2 = 〈S2, A2, α2〉 be two I/O au-
tomata, with s ∈ S1, t ∈ S2 and their corresponding transitions as in the follow-
ing diagram.

s
a[ 12 ]

xx x8
x8 x8

x8 x8
x8 x8

x8

a[ 12 ]
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b[1]
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t1 t2

Take Ain
1 ⊇ {a, b}, A

out
1 ⊇ {c, d}, Ain

2 any set, Aout
2 ⊇ {b}. Assume the two

automata are compatible i.e. Aout
1 ∩ Aout

2 = ∅ (clearly the states s and t are
compatible). Then Aout ⊇ {b, c, d} and Ain ⊇ {a}. Due to the convention we

consider that t
a[1]
; t, t

c[1]
; t and t

d[1]
; t. The transitions from s‖t are then given

with the following diagram.
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For P ′
b = P ′′

b = δ2(t)
δ1(s)+δ2(t)

· 1
2 , Pc = δ1(s)

δ1(s)+δ2(t)
· 1

3 and Pd = δ1(s)
δ1(s)+δ2(t)

· 2
3 . Note

that indeed P ′
b + P ′′

b + Pc + Pd = 1.

The proof that A1‖A2 is well defined in the class IO can be found in [WSS97].
Let us now informally explain the definition of parallel composition, and the role
of the functions δ1, δ2 and δ. If s is a state of A1, then δ1(s) is a positive real
number corresponding to the delay rate in state s. It is a rate of an exponential
distribution, determining the time that the automaton waits in state s until it
generates one of its output actions. If no output actions are enabled in this
state then δ1(s) = 0. When determining the distribution on output actions for
s‖t, denoted by µout

s‖t , the components’ distributions µout
s and µout

t are joined

in one such that any probability of µout
s is multiplied with normalization factor

δ1(s)
δ1(s)+δ2(t)

and any probability of µout
t is multiplied with δ2(t)

δ1(s)+δ2(t)
. Note that

by the compatibility assumption, no action appears both in the support of µout
s

and in the support of µout
t . The normalization factor models a racing policy

between the states s and t for generating their own output actions. The value
δ1(s)

δ1(s)+δ2(t)
is the probability that the state s has less waiting time left than the

state t and therefore wins the race and generates one of its own output actions.
On the other hand, synchronization occurs on all input actions, no autonomous
behavior is allowed by the components on input actions, corresponding to the
assumption that the input is provided by the environment and must be enabled
in any state.

A new model with I/O distinction has been proposed recently [CH05] in order to
achieve compositionality of trace-style semantics for I/O automata. The model
is designed so that it is closed with respect to a meaningful parallel composition
operator in the I/O style. This shows that indeed the need of compositionality
and closure properties motivates investigating new models.

2.3.4 Parallel composition in the alternating setting

In this section we focus on the classes Str, Alt, SA ( SAn, SAp) and Var that
exhibit alternating behavior i.e. make a distinction between probabilistic and
non-deterministic states. In [GSST90, GSS95] and in [Han91] a rather elegant
parallel composition for the classes Str and SA, respectively, is defined.

We present the definition for the class Alt and discuss that the same definition
can be restricted to the classes Str, Alt, SA ( SAn, SAp). Let A1 = 〈S1, A, α1〉
and A2 = 〈S2, A, α2〉 be two alternating automata, with S1 = N1 + P1 and
S2 = N2+P2. Their parallel composition is the alternating automaton A1‖A2 =
〈S,A, α〉 where S = S1 × S2 = N + P for N = N1 × N2 and P = P1 ×
P2 + N1 × P2 + P1 × N2 and the transition function is defined as follows. Let
p1 ∈ P1, p2 ∈ P2, n1 ∈ N1, n2 ∈ N2 and s1 ∈ S1, s2 ∈ S2. For the probabilistic
states in the composed automaton, we have:
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p1‖p2 ; µ ⇐⇒ p1 ; µ1, p2 ; µ2, µ = µ1 × µ2

p1‖n2 ; µ ⇐⇒ p1 ; µ1, µ = µ1 × µ
1
n2

n1‖p2 ; µ ⇐⇒ p2 ; µ2, µ = µ1
n1
× µ2

where µ1
n2

denotes the Dirac distribution for the state n2.

For the non-deterministic states in the composed automaton different variants
(CCS, CSP or ACP style) can be chosen. We choose for the ACP style:

n1‖n2
a
→ s1‖s2 if and only if

1. n1
b
→ s1, n2

c
→ s2 and bc = a defined, or

2. n1
a
→ s1, n2 = s2, or

3. n2
a
→ s2, n1 = s1.

Hence, when composing a probabilistic state with any other state the result
is a probabilistic state. If the other state is non-deterministic, then the com-
posed state basically behaves as the probabilistic state and leaves the second
component of the state unchanged, as in the following example.
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s1‖n s2‖n

On the other hand, the composition of non-deterministic states is exactly the
same as in the non-probabilistic case and therefore all probabilistic counterparts
of LTS parallel composition operators are definable here as in the case for LTSs.

By inspecting the definitions of the classes SA, SAn and SAp it is easy to see
that the following statement is valid.

Proposition 2.3.2. If A1,A2 ∈ SA (or SAn, or SAp), then A1‖A2 ∈ SA (or
SAn, or SAp, respectively). �

The definition of parallel composition for stratified systems is given in [GSST90,
GSS95] with synchronous behavior when composing two non-deterministic
states. This is necessary in order to stay in the class Str when composing
two such automata, since in the stratified model there is only a single action
transition possible from a (non-) deterministic state. A parallel composition
operator with no synchronization but only interleaving, for the stratified class
of systems, is defined in [HV98]. In the original definition for strictly alternating
systems of [Han91], non-deterministic states are composed in the CCS fashion.

Complications arise in the case of Var models, due to their generative proba-
bilistic behavior. The behavior of the composite states n1‖n2, n1‖p2 and p1‖n2

can be defined in the same way as above. However, there is no convenient way to
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define p1‖p2, since this coincides with defining generative parallel composition.
Any of the approaches described in Section 2.3.2 can be used.

We mention that a different (asynchronous, ACP style) parallel composition
operator is defined on alternating models in a process algebraic setting by An-
dova [And02] leading to finite axiomatization of the parallel composition oper-
ator.

2.4 Comparing classes

In the previous sections we defined the probabilistic models and their bisim-
ulations, and we considered the definability of various parallel composition
operators on different types of probabilistic systems in the context of closure
properties. This section focuses on the inter-relationships between the various
probabilistic models. We start by stating a comparison criterion for relative
expressiveness of one class of automata with respect to another class, and then
we present a hierarchy of the classes. The main results from this section will
be proved in Chapter 4, using the unifying power of the theory of coalgebras
(Chapter 3). However, the results can be stated, motivated and explained with
the machinery introduced so far.

An expressiveness criterion

Let C1 and C2 be two classes of probabilistic automata. We say that the class
C1 is included or embedded in the class C2, i.e. the class C2 is at least as
expressive as the class C1 (notation C1 → C2) if and only if there exists an
injective function T that maps each automaton of the first class to an automaton
of the second class such that bisimilarity is both reflected and preserved. More
explicitly, the translation function T : C1 → C2 should satisfy:

1. for A = 〈S,A, α〉 in C1, T (A) = 〈S,A, α′〉 with the same set of states S

2. the translation function T is injective, and

3. if s, t ∈ S, then s ∼A t ⇔ s ∼T (A) t, i.e. two states are bisimilar in
the translated automaton (according to bisimilarity in the class C2) if
and only if they were bisimilar in the original automaton (according to
bisimilarity for the class C1).

The relation → between the classes of (probabilistic) automata is clearly a
preorder.

Basically, our expressiveness criterion states that the class C1 is really embed-
ded in the class C2, i.e. the translations are nothing else but “suitable copies”
of the automata of the first class existing in the second class. Note that only
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preservation of bisimulation is not enough. For example, we could define a trans-
lation from reactive systems to LTSs that preserves bisimulation, by forgetting
the probabilities, as in the following example.
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But we do not consider the class of LTSs more expressive than the class of
reactive probabilistic automata, and the translation is by no means injective.

A similar expressiveness criterion was used for expressiveness comparison of
timed languages by Cacciagrano and Corradini [CC04]. Another hierarchy re-
sult is the hierarchy of reactive, generative, stratified and non-deterministic
automata of [GSST90] and [GSS95]. The expressiveness criterion used by Van
Glabbeek et al. is different. They consider a class C2 at least as expressive as
a class C1 if there is an abstraction mapping that maps each automaton of the
class C2 to an automaton of the class C1, such that the state set remains the
same and bisimulation is preserved. The abstraction mappings are not injective
by nature. An example of such an abstraction mapping is the translation that
forgets the probabilities mentioned above. Therefore, in their setting the class
React is proved at least as expressive as the class LTS.

The hierarchy

Theorem 2.4.1. [BSV03] The class embeddings presented in Figure 2.1 hold
among the probabilistic system types. �

The proof of Theorem 2.4.1 (except for the strictly alternating classes) is a
subject of Chapter 4 below, using elements of the theory of coalgebras. The
coalgebraic framework proves to provide the necessary abstraction for an elegant
and interesting proof. Still, here we will explicitly state the translations for each
arrow in Figure 2.1, give some examples and illustrate how preservation and
reflection of bisimulation can be proved in one concrete case. We present the
translations for the arrows of Figure 2.1 in several groups: simple arrows based
on inclusion, arrows that show a change from external to full non-determinism,
arrows that change an element to a singleton, arrows that change an element to
a corresponding Dirac distribution and more specific arrows. The translations
are quite natural. It is the property of preservation and reflection of bisimilarity
that adds justification to the translations.
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Figure 2.1: Class Embeddings

Simple arrows

Let C1 and C2 be two classes of probabilistic automata. If C1 ⊆ C2 then
C1 → C2. Therefore, the embeddings SA→ Alt, SAn → SA and SAp → SA
hold. Furthermore, if C1 is defined with a transition function α1 : S → C1(S)
and C2 has a transition function of type α2 : S → C2(S) such that for all S,
C1(S) ⊆ C2(S) then every automaton of the class C1 can be considered an
automaton of the class C2, by only extending the codomain of the transition
function. In this case also C1 → C2. The following arrows of Figure 2.1 hold due
to extending the codomain of the transition function: MC→ Str, Gen→ Var,
LTS→ Var, PZ→MG. In each of these cases the translation of the automata
is basically the identity mapping. For example, every generative automaton is a
Vardi automaton without non-deterministic states, or every Markov chain is a
stratified automaton that has no action-transitions, i.e. no deterministic states.

From external to full non-determinism

Two of the embedding arrows of Figure 2.1, DLTS→ LTS and React→ SSeg,
show that every system with only external non-determinism can be considered
as a system with full non-determinism that never uses the full-nondeterminism
option. Let A = 〈S,A, α〉 ∈ DLTS. Then T (A) = 〈S,A, α′〉 ∈ LTS is given by

α′(s) = {〈a, s′〉 | α(s)(a) = s′ ∈ S} ∈ P(A× S).

If we consider automata as diagrams, i.e. transition graphs, then this translation
does not change the transition graph of a DLTS system.

For React → SSeg a similar translation is used, changing a partial function
to its graph. Due to the notation used for reactive systems in Section 2.2, the
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diagram of a reactive system when considered a simple Segala system has to be
re-drawn, as in the next example.
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a reactive system as a simple Segala system

Singleton arrows

In several cases the translation only changes an element (state, or pair of state
and action, or distribution) into a singleton set containing this element.

Bun → PZ: Let A = 〈S,A, α〉 be a bundle probabilistic automaton, i.e. α :
S → D(P(A×S)), then the translation to a Pnueli-Zuck automaton is achieved
by putting T (A) = 〈S,A, α′〉 for α′(s) = {α(s)}.
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a bundle transition as a Pnueli-Zuck transition

Str→ Alt: In this case T (〈S,A, α〉) = 〈S,A, α′〉 where α : S → D(S)+A×S+1
and α′ : S → D(S) + P(A× S) and

α′(s) =







{α(s)} if α(s) ∈ A× S
∅ if α(s) = ∗
α(s) otherwise

The diagram of a stratified automaton when translated to alternating automaton
stays the same.

Seg → PZ: Let A = 〈S,A, α〉 be a Segala automaton, α : S → P(D(A × S)).
Then T (A) = 〈S,A, α′〉 where α′ is determined from α in the following way:

α′(s) = {µ′ | µ ∈ α(s)}
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where µ′ is constructed from µ by changing a distribution over pairs to distri-
bution over singletons of pairs, i.e.

µ′ = {{〈a, s′〉} 7→ µ(a, s′)}.
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a Segala transition as a Pnueli-Zuck transition

Dirac arrows

Sometimes a transformation from an element to a Dirac distribution for this ele-
ment is needed. This kind of translation embeds the non-probabilistic automata,
DLTS and LTS, into the reactive and simple Segala automata, respectively.

DLTS → React: In this case every transition has to be changed to a proba-
bilistic transition with probability 1.

•
a // • T

⇒ •
a[1] ///o/o •

a DLTS transition as a reactive transition

For 〈S,A, α〉 ∈ DLTS, the translation is T (〈S,A, α〉) = 〈S,A, α′〉, if α(s) ∈ (S+
1)A, we put α′(s) ∈ (D(S)+1)A such that α(s)(a) = t ∈ S ⇐⇒ α′(s)(a) = µ1

t .

LTS → SSeg: For obtaining a simple Segala automaton out of an LTS, we
change the next state of every transition to a Dirac distribution for this state.

•
a // • T

⇒ •
a // 1 ///o/o •

a LTS transition as a simple Segala transition

Formally, T (〈S,A, α〉) = 〈S,A, α′〉 such that α′(s) = {〈a, µ1
s′〉 | 〈a, s′〉 ∈ α(s)}.

Specific arrows

Var → Seg: Let A = 〈S,A, α〉 be a Vardi automaton, with α(s) : S → D(A×
S) ∪ P(A × S). The translation to a Segala automaton is given by T (A) =
〈S,A, α′〉 for

α′(s) =

{

{α(s)} if α(s) ∈ D(A× S)
{µ1

〈a,s′〉 | 〈a, s
′〉 ∈ α(s)} if α(s) ∈ P(A× S)



56 Chapter 2 Probabilistic automata
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a Vardi system as a Segala system

Var→ Bun: This translation is orthogonal to the one that gives us Var→ Seg.
For a Vardi automaton A = 〈S,A, α〉 we put T (A) = 〈S,A, α′〉 where

α′(s) =

{

{{〈a, s′〉} 7→ µ(a, s′)} if α(s) = µ ∈ D(A× S)
µ1

α(s) if α(s) ∈ P(A× S)
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a Vardi system as a bundle system

Remark 2.4.2. Both in Var → Seg and in Var → Bun the translated tran-
sition function α′ is well defined when we consider D(A × S) ∩ P(A × S) 6= ∅,
i.e. we identify µ1

〈a,s〉 with {〈a, s〉}. Furthermore, this identification is needed
to obtain injectivity of the translations.

Alt → MG: Similarly as when translating Vardi systems, with an extra
singleton construction, an alternating automaton A = 〈S,A, α〉, α : S →
D(S) + P(A × S) is translated into a general probabilistic automaton. We
put T (A) = 〈S,A, α′〉 where

α′(s) =

{

{{{s′} 7→ µ(s′)}} if α(s) = µ ∈ D(S)
{µ1

α(s)} if α(s) ∈ P(A× S)

SSeg → Seg: In order to change a transition of a simple Segala automaton to
a transition of a Segala automaton it is enough to push the action label into the
distribution.
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a simple Segala transition as a Segala transition

Formally, if A = 〈S,A, α〉, α : S → P(A×D(S)) then T (A) = 〈S,A, α′〉 where

〈a, µ〉 ∈ α(s) ⇐⇒ µa ∈ α
′(s) ∈ P(D(A× S))

and

µa(b, s′) =

{

µ(s′) if a = b
0 otherwise.

(2.3)

For this last translation, as an illustration, we give the proof of preservation
and reflection of bisimilarity. Let µ be a distribution on S and a an action in
A. Denote by µa the distribution on A× S obtained from µ by Equation (2.3),
µa(a, s) = µ(s). Clearly, for any subset X ⊆ S we have µ[X] = µa[a,X], which
yields

µ ≡R µ′ ⇐⇒ µa ≡R,A µ′
a. (2.4)

By the translation, the following holds:

1. If s
a
→;A µ, then s→;T (A) µa.

2. If s →;T (A) µ then there exists a ∈ A such that µ = νa for some

distribution ν on S and s
a
→;A ν.

Now assume s ∼A t, i.e. there exists a bisimulation R (Definition 2.2.3) with
〈s, t〉 ∈ R. We prove that R is a bisimulation (Definition 2.2.4) for T (A). Let
s →;T (A) µ. By 2. we have that µ = νa for some a ∈ A and some ν ∈ D(S),

and s
a
→;A ν. Since R is a bisimulation for A, we have that there exists a

distribution ν′ such that t
a
→;A ν′ and ν ≡R ν′. Now it follows by 1. that

s →;T (A) ν
′
a, and furthermore µ = νa ≡A,R ν′a by Equation (2.4). So, R is a

bisimulation for T (A).

The opposite is analogous. If R is a bisimulation (Definition 2.2.4) with 〈s, t〉 ∈
R for T (A), we prove that R is a bisimulation (Definition 2.2.3) for A. Assume

s
a
→;A µ. Then by 1., s→;T (A) µa. Since R is a bisimulation and 〈s, t〉 ∈ R

we get that there exists ν ∈ D(A × S) such that t →;T (A) ν and µa ≡R,A ν.
Now, by 2., we get that there exists a′ ∈ A and a distribution µ′ on S such

that ν = µ′
a′ , t

a′

→;A µ′ and µ ≡R µ′. However, since µa ≡A,R ν = µ′
a′ by

Equation (2.3) and Equation (2.4) it follows that a′ = a and hence t
a
→;A µ′,

which completes the proof.
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Strict alternation vs. complex transition function

A translation between simple Segala automata and automata of the class SAn

has been known for a long time, and has recently been justified in [BS01].
Similarly, the class SAp can be compared with the class of bundle probabilistic
automata. In order to carry out these comparisons in our framework we slightly
change the comparison criterion itself so that it allows for translations that do
not keep the same state set.

Relaxed expressiveness criteria

Let C1 and C2 be two classes of probabilistic automata and let T : C1 → C2

be a translation mapping, such that if A = 〈S,A, α〉 then T (A) = 〈S ′, A, α′〉

We say that the class C1 is relaxed embedded in the class C2, by the translation
T , notation C1 � C2 if the following conditions hold:

1. for any automaton of C1, S ⊆ S
′ or for any automaton of C1, S

′ ⊆ S

2. bisimilarity is preserved and reflected for common states, i.e.,
∀s, t ∈ S ∩ S′ : s ∼A t ⇐⇒ s ∼T (A) t, and

3. the translation T is injective.

Furthermore, we say that the class C1 is embedded up to irrelevant bisimilarity
in the class C2, by the translation T , notation C1 −→/∼ C2 if the following
conditions hold:

1. S′ ⊆ S

2. for any two common states s, t ∈ S ′, s ∼A t ⇐⇒ s ∼T (A) t, and

3. the translation T is injective up to bisimilarity of irrelevant states, i.e., if
A1 = 〈S1, A, α1〉 and A2 = 〈S2, A, α2〉 are two automata of the first class
such that T (A1) = T (A2) = 〈S,A, α〉, then

s1 ∈ S1 \ S ⇒ ∃s2 ∈ S2 \ S : s1 ∼ s2 and
s2 ∈ S2 \ S ⇒ ∃s1 ∈ S1 \ S : s1 ∼ s2.

The second relaxed expressiveness criterion relaxes the injectivity assumption.
It might be that different systems are translated to the same one, but the
difference is only due to presence of some bisimilar states. It allows us to show
that the class SAn can be embedded in the class SSeg which is intuitively
expected, a translation is given by removing the non-deterministic states.

Theorem 2.4.3. The embeddings from Figure 2.2 explain the relationships be-
tween the classes of strictly alternating, bundle and simple Segala probabilistic
automata.
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SSeg
// //
SAn

/∼
oo SAp

// //
Bunoooo

Figure 2.2: Strictly alternating models as models with a structured transition
relation

We give the translations needed for each of the embeddings.

SSeg � SAn:
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a simple Segala automaton as a SAn automaton

Let A = 〈S,A, α〉 be a simple Segala automaton. The translation function
translates it to T (A) = 〈S′, A, α′〉 by inserting a new probabilistic state for each

transition, i.e., by changing s
a
→; µ to s

a
→ ss,a,µ ; µ. Formally, S′ = S + Sp

where Sp is a set of fresh probabilistic states, such that Sp = {ss,a,µ | s ∈ S, a ∈
A,µ ∈ D(S), 〈a, µ〉 ∈ α(s)}. So, for every outgoing transition of a state there
is a corresponding new state added to Sp. The transition function is defined
as follows: if s ∈ S, such that 〈a, µ〉 ∈ α(s) and the corresponding new state
is ss,a,µ then and only then 〈a, ss,a,µ〉 ∈ α

′(s); if ss,a,µ ∈ Sp corresponds to a
transition 〈a, µ〉 ∈ α(s) then α′(ss,a,µ) = µ. The translation is injective and it
preserves and reflects bisimilarity on S.

SAn −→/∼ SSeg: The translation for this embedding, is the “inverse” of the
case SSeg � SAn. If A = 〈S,A, α〉 ∈ SAn with a set of probabilistic states
P and a set of non-deterministic states N , then T (A) = 〈N,A, α′〉 where for
every s ∈ N , α′(s) = {〈a, µ〉 | 〈a, s′〉 ∈ α(s) and α(s′) = µ}. Hence this
translation forgets the probabilistic states, and turns two strictly alternating
steps of the SAn automaton into one transition of the corresponding Segala
automaton. This translation is only injective up to bisimilarity of the disap-
pearing probabilistic states. In fact it is even stricter than that, it is injective
up to indistinguishable probabilistic states. The only cases of non-injectivity
come as a consequence of having two probabilistic states sp1 and sp2 such that

α(sp1) = α(sp2) = µ. Then if s is a non-deterministic state with s
a
→ sp1 and

s
a
→ sp2, the two “copies” s

a
→ sp1 ; µ and s

a
→ sp2 ; µ will be mapped to

one single transition s
a
→; µ. For example, the following two different SAn

automata translate to one SSeg automaton.
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a bundle automaton as a SAp automaton

The translation is as follows: T (〈S,A, α〉) = 〈S ′, A, α′〉 where S′ = S + Sn,
Sn containing the fresh non-deterministic states Sn = {ss,T | s ∈ S, T ∈
supp(α(s))}. The transition function is defined by: for s ∈ S with α(s) = µ,
we put α′(s) = µs ∈ D(Sn) where µs(ss,T ) = µ(T ), and for ss,T ∈ Sn we put
α′(ss,T ) = T .

SAp � Bun: The inverse of the translation Bun � SAp gives us the transla-
tion in this case. We forget all the non-deterministic states in a SAp automaton,
being left with a bundle automaton. For a SAp automaton A = 〈S,A, α〉
with a set of probabilistic states P and non-deterministic states N we put
T (A) = 〈P,A, α′〉 where for s ∈ P with α(s) = µ ∈ D(N) we define
α′(s) = µs ∈ D(P(A × S)) such that µs(α(s′)) = µ(s′). Note that the phe-
nomenon of losing “copies” as in SAn −→/∼ SSeg does not appear here. Even
though states are lost, no transitions are identified, i.e. no arrow is lost.

Remark 2.4.4. Restricting to subclasses of the class SA, i.e. considering
the classes SAn and SAp, is necessary to obtain injectivity (up to bisimilar
irrelevant states) of the embedding mappings.

We note that recently a very detailed and interesting comparative analysis of
bisimulation relations on alternating and non-alternating (Segala) models has
been carried out by Segala and Turrini [ST05].

2.5 Summary of the chapter

In this chapter we have presented various types of probabilistic automata, in-
cluding generative, reactive and stratified ones, strictly alternating and alter-
nating ones, the simple Segala, Segala and Vardi type of probabilistic automata
and the bundle, Pnueli-Zuck and general ones.
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A major part of our work has been devoted to the comparison of the various
classes of probabilistic automata, taking strong bisimilarity for these automata
as a starting point, resulting in a hierarchy of probabilistic system types. In
addition, we have discussed to which extent non-determinism can be modelled
in the various types of automata and the operator of parallel composition for
them. Classes positioned higher in the map of Figure 2.1 can be characterized
as closures of the simpler classes under parallel composition, which clarifies the
need for the more complex models.

The results obtained are briefly presented in Figure 2.1, Figure 2.2 and Ta-
ble 2.1. From there various conclusions on probabilistic system modelling can
be drawn. For instance, if presence of non-determinism and being closed under
all variants of parallel composition are desired properties on the one hand, and
having as simple a model as possible is needed on the other hand, then whether
the choice is for input (reactive) or output (generative) type of systems, the
best choice appears to be the simple Segala model and the bundle model, re-
spectively. Different requirements lead to different choices, but we hope the
map of probabilistic automata based models will prove to be useful in making
a right modelling decision.
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Categories and coalgebras

In this chapter we present some notions and results from category
theory and the theory of coalgebras that will be used in the sequel.
In the first two sections we present standard notions and fix the
notation. This sets the preliminaries for the chapters that follow.
The last section is devoted to the characterization of coalgebraic
bisimulation in terms of concrete transfer conditions.

In the sequel we will adopt an abstract point of view in which we treat the
probabilistic systems and their equivalences. An abstract theory that provides
a uniform framework for various kinds of transition systems is the theory of coal-
gebras [Rut96, JR96, Rut00, Gum99], arising as a rather recent theory within,
or closely connected to category theory [Mac71, Bor94]. In this chapter we in-
troduce the basics of category theory and coalgebras, and set up the notation for
the sequel. Furthermore, we also present a couple of new results of coalgebraic
nature that are to be used in the remaining chapters and are collected here.

The chapter is organized as follows: In Section 3.1 we provide basic definitions
from category theory, such as category and functor. Section 3.2 introduces the
central notion of this thesis, coalgebras, and presents basic examples. There we
also define the notion of action-type coalgebras. We proceed by presenting more
basic notions from category theory, namely natural transformations, limits and
colimits in Section 3.3. In the study of dynamic systems one is often interested
in the states of the system up to some kind of behavioral equivalence: states
that exhibit the same behavior can be considered “the same”. One of these
behavioral equivalences is bisimilarity, arising from the notion of a bisimulation
relation. Bisimulations are treated in Section 3.4. Section 3.5 focuses on more
examples of coalgebras: we view transition systems as coalgebras and we specify
the functors whose coalgebras we will focus on. As a new technical result we
note the proof of the weak pullback preservation for the probabilistic functor.
In Section 3.6, we present a method for characterizing coalgebraic bisimilarity
in terms of transfer conditions. We provide transfer conditions for the basic
functors and we show how transfer conditions can be derived for composed
functors, in an inductive way.

63
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3.1 Basic notions of category theory

In this section we mention the most basic notions from category theory. For
more detail, the interested reader is referred to, for example, the textbooks by
MacLane and Borceux [Mac71, Bor94], respectively. In many cases we adopt
the formulation of the definitions from [Gum99].

Categories

A category C consists of a class of objects, Co and a class of arrows or mor-
phisms, Cm between the objects together with the following operations:

• dom : Cm → Co

• codom : Cm → Co

• id : Co → Cm.

The operation dom associates to each arrow its domain (source object), codom
associates to each arrow its codomain (target object). If f is an arrow with
dom(f) = A and codom(f) = B one writes, f : A → B. The operation id
assigns to an object its identity arrow, usually denoted by idA : A → A (or
1A) for an object A. Moreover, there is a partial operation of composition
of arrows. The composition of the arrows f and g is defined if and only if
codom(f) = dom(g), i.e. if f : A → B, g : B → C. The result is an arrow
g ◦f : A→ C. The following laws have to be satisfied whenever the composition
is defined

• (h ◦ g) ◦ f = h ◦ (g ◦ f)

• idB ◦ f = f and g ◦ idB = g.

It is common to represent objects and arrows via diagrams. In a diagram the
objects are drawn as points and the morphisms as arrows. Composition of
arrows is often not explicitly drawn, but its presence is implied. A path of arrows
represents the composition of the involved arrows. If there are two different
paths from an object to another object that enclose an area, it is implied that
the corresponding compositions are equal. One says that the diagram (or parts
of it) commutes. The above laws that the composition of arrows has to satisfy
can be expressed by the commutativity of the following two diagrams.

A
f //

g◦f ��=
==

==
= B

g

��

h◦g

��>
>>

>>
>

C
h

// D

A
f //

f ��=
==

==
= B

idB

��

g

��=
==

==
=

B g
// C
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Example 3.1.1. Some examples of categories are:

1. The category Set whose objects are sets and arrows are functions.

2. The category Set×Set is a product category whose objects are pairs of sets,
and arrows are pairs of functions 〈f, g〉 : 〈A,B〉 → 〈C,D〉 for f : A → C
and g : B → D. The composition of arrows is done component wise. This
way one defines also products of arbitrary categories.

3. We write Rel for the category of binary relations. Its objects are arbitrary
relations A ⊆ X × Y and a morphism between A1 ⊆ X1 × Y1 and A2 ⊆
X2 × Y2 is a pair of functions 〈f, g〉 as above for f : X1 → X2 and
g : Y1 → Y2 which preserve the relation, in the sense that 〈x1, y1〉 ∈
A1 =⇒ 〈f(x1), g(y1)〉 ∈ A2.

Throughout the thesis we will mainly deal with the category Set.

A morphism f in a category is called mono if it is left cancellable i.e. if for all g1

and g2, f ◦ g1 = f ◦ g2 =⇒ g1 = g2, and it is called epi if it is right cancellable,
g1 ◦ f = g2 ◦ f =⇒ g1 = g2. In order to emphasize that f : A→ B is mono, we
will sometimes write f : A ↪→ B. Similarly, for an epi morphism f : A→ B we
write f : A � B. A morphism is an isomorphism if it is invertible. In Set monos
are the injective functions, epis are the surjective functions and isomorphisms
are the bijective functions.

Functors

A functor F between two categories C and D consists of two maps

• Fo : Co → Do, between the objects and

• Fm : Cm → Dm, between the morphisms

where for a morphism f : A → B from Cm, Fm(f) : Fo(A) → Fo(B) is a
morphism in Dm such that composition and identity are respected, i.e.,

• Fm(g ◦ f) = Fm(g) ◦ Fm(f)

• Fm(idA) = idFo(A).

Usually the indices m and o of a functor F are dropped. Moreover, often the
brackets are also dropped and one writes FA and Ff instead of F(A) and F(f),
respectively. We will often consider endofunctors, functors from a category to
itself.

Example 3.1.2. The following are examples of Set endofunctors.

1. The identity functor Id maps every set and every function to itself.
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2. Let A be a fixed set. The constant functor A maps every set to A and
every function to the identity on A, idA.

3. The powerset functor P maps any set to the set of its subsets,

PX = {Z | Z ⊆ X}

and on functions f : X → Y it is given by

(Pf)Z = f(Z) = {f(z) | z ∈ Z}.

4. Let A be a fixed set. The constant exponent functor IdA maps any set to
the set of all functions from A to itself, i.e.

IdA(X) = XA = {f : A→ X},

and it maps a function f : X → Y to the function IdA(f) : XA → Y A

defined by
IdA(f)(ξ) = f ◦ ξ for ξ : A→ X.

It is important to note that all Set endofunctors preserve epis and also preserve
monos with non-empty domain. That is, if f is epi or mono with non-empty
domain, then Ff is also epi or mono, respectively. Namely, let f : A � B be
an epi in Set and let F be a Set endofunctor. Then f is a surjective function
and therefore it has a right inverse f ′ : B → A such that f ◦ f ′ = idB . From the
functorial properties of F we have that Ff ◦Ff ′ = F(f ◦ f ′) = F(idB) = idFB

i.e. Ff also has a right inverse and is therefore a surjective function, i.e. an
epi in Set. Similarly, every injective function with non-empty domain has a left
inverse and is therefore preserved by a Set endofunctor.

A bifunctor on Set is any functor from Set × Set to Set1. If F is a bifunctor,
and A is a fixed set, then a Set endofunctor FA is defined by

FAS = F〈A,S〉, FAf = F〈idA, f〉, f : S → T. (3.1)

Another way to get a Set endofunctor from a bifunctor is by applying it to
two copies of the same set. Namely, let F be a bifunctor. Then F∆ is a Set
endofunctor, by putting

F∆S = F〈S, S〉, F∆f = F〈f, f〉, f : S → T. (3.2)

Note that any set endofunctor can be considered as a bifunctor that does not de-
pend on one of its arguments. Namely, for a Set endofunctor F , a corresponding
bifunctor F̂ can be defined by

F̂〈S, T 〉 = FT, F̂〈f, g〉 = Fg, f : S → S′, g : T → T ′. (3.3)

1In general, a bifunctor is a functor from a product category into a category, but we restrict
our attention to bifunctors on Set only.
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Then clearly,

F̂A = F . (3.4)

An example of a bifunctor is the product × : Set×Set→ Set. It maps sets A and
B to their Cartesian product A×B. A pair of functions f : A→ A′, g : B → B′

is mapped to f × g : A×B → A′ ×B′ where (f × g)(〈a, b〉) = 〈f(a), g(b)〉.

3.2 Coalgebras

In this section we define the central notion of the thesis, coalgebra of a functor,
and we present several examples. Coalgebras of a functor are structures dual to
algebras of a signature. They are a perfect abstract tool for modelling dynamic
systems and infinite data structures. Moreover, once a system is identified as a
coalgebra of a functor, many notions and results from the theory of universal
coalgebra can be used for its analysis. Such notion is for example the notion of
a bisimulation relation between coalgebras.

The theory of universal coalgebras was systematically treated for the first time
by Rutten [Rut96, Rut00]. Further introductory texts on the subject can
be found in the articles by Jacobs and Rutten [JR96], Jacobs [Jac02] and
Gumm [Gum99].

Consider a signature Σ = {∗} consisting of a single operation symbol ∗ which is
binary. A concrete algebra of the signature Σ is a groupoid, i.e. a pair 〈A, ∗A〉
consisting of a set A and a binary operation ∗A : A × A → A. Since the
signature only determines the arity of the operation, we can say that an algebra
of signature (type) Σ is a pair 〈A,α : ×∆A → A〉. Here ×∆ is the functor
obtained from the bifunctor × as in Equation (3.2). In general, an algebra of
type F is a pair 〈A,α〉 for α : FA → A. Dually, the notion of coalgebra of a
type, i.e. coalgebra for a functor, arises.

Definition 3.2.1. Let F be a Set-functor. A coalgebra for F , or an F-
coalgebra, for short, is a pair 〈S, α〉 where S is a carrier set, or a set of
states, and α : S → FS is a transition function, a structure map.

A homomorphism between two F-coalgebras 〈S, α〉 and 〈T, β〉 is a function h :
S → T satisfying Fh ◦ α = β ◦ h, i.e. making the following diagram commute.

S
h //

α

��

T

β

��
FS

Fh // FT

The F-coalgebras together with their homomorphisms form a category, which we
denote by CoalgF .
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Example 3.2.2. Consider the transition systems of Definition 2.1.8. They are
coalgebras of the powerset functor, i.e. pairs 〈S, α : S → PS〉. If we instantiate
the definition of a coalgebra homomorphisms for the particular case of the func-
tor P, we easily get that a function h : S → T is a homomorphism between the
transition systems 〈S, α〉 and 〈T, β〉 if and only if for any state s ∈ S, whenever
s→ s′ then h(s)→ h(s′), and the other way around, i.e., if h(s)→ t then there
exists a state s′ ∈ S such that h(s′) = t and s→ s′.

Example 3.2.3. Let A be a fixed set (of actions). Let B be defined by

BS = P(A× S)

and for f : S → T, V ⊆ A× S,

Bf(V ) = {〈a, f(s)〉 | 〈a, s〉 ∈ V }.

Then B is a functor and the B-coalgebras are the labelled transition systems
(Definition 2.1.9). A function h : S → T is a homomorphism between the

LTSs 〈S, α〉 and 〈T, β〉 if and only if for any state s ∈ S, whenever s
a
−→ s′

then h(s)
a
−→h(s′), and if h(s)

a
−→ t then there exists a state s′ ∈ S such that

h(s′) = t and s
a
−→ s′.

In the definition of LTSs and in other cases the action set A plays an important
role. When we wish to emphasize the role of the actions, as will be the case in
Chapter 5, we speak of action-type coalgebras.

Definition 3.2.4. An action-type coalgebra, with action set A, is a triple
〈S,A, α〉 such that 〈S, α〉 is an FA-coalgebra, where FA is the functor induced
by a bifunctor F , as in Equation (3.1).

Example 3.2.5. Consider the product bifunctor × defined in the previous
section. Let A be a fixed set of actions. A triple 〈S,A, α〉 where α : S → A× S
is an action-type coalgebra of the functor ×A. The ×A-coalgebras are the fully
deterministic systems, in which from any state a single transition with label
from A leads to the next state.

Note that Equation (3.4), together with Equations (3.3) and (3.1), shows that
“action-type” coalgebras only emphasize the action set and do not restrict the
class of all coalgebras, i.e., any coalgebra can trivially be considered an action-
type coalgebra.

We will consider coalgebraic bisimulations and present more examples of coal-
gebras in Section 3.4 and Section 3.5 below. First, we need to introduce some
more notions from category theory.

3.3 More basic notions from category theory

In this section we focus on natural transformations, limits and colimits.
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Natural transformations

Let F and G be functors from a category C to a category D. A natural
transformation τ from F to G, notation τ : F =⇒G, is a family of arrows
τ = {τA : FA → GA} indexed by objects A of C, such that for any arrow
f : A→ B in C, the following naturality diagram commutes.

FA
Ff //

τA

��

FB

τB

��
GA

Gf // GB

Hence natural transformations transform the structure constructed by F to the
structure constructed by G. The requirement that the above diagram commutes,
the “naturality condition”, expresses that the transformation is defined in a
uniform way that works the same for any object of the category C.

Let C and D be categories. Then the collection of functors from C to D form
a category with morphisms natural transformations.

Example 3.3.1. Examples of natural transformations are the following.

1. Let F be any functor from a category C. The identity natural transforma-
tion id : F =⇒F is the family of identity arrows, i.e. id = {iX = idFX}
indexed by objects of C. It is obvious that the naturality condition is
satisfied in this case.

2. Let σX : X → PX be given by σX(x) = {x}. Then σ = {σX} indexed by
sets is a natural transformation from the Set endofunctor Id to the Set
endofunctor P, σ : Id=⇒P. Namely, for any element x ∈ FA we have
σB ◦ Idf(x) = {f(x)} and Pf ◦ σA(x) = Pf({x}) = f({x}) = {f(x)},
showing that the naturality condition is satisfied.

3. Let A be a fixed set. For any set X, let ηX : AX → PX denote the
function defined by ηX(a) = ∅ for all a ∈ A. Then one easily verifies that
η = {ηX} is a natural transformation, η : A=⇒P.

We formulate the next simple lemma taken from [Bor94] for further reference.

Lemma 3.3.2. Let F be a bifunctor. Let A1 and A2 be two fixed sets,
and f : A1 → A2 a mapping. Then f induces a natural transformation
τf : FA1

=⇒FA2
defined by τ f

S = F〈f, idS〉.

To compare the expressiveness of coalgebras for different functors, say F and G,
we will study translations of F-coalgebras into G-coalgebras. Such a translation
can easily be obtained from a natural transformation between the two functors
under consideration (cf. [Rut00]).
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Definition 3.3.3. A natural transformation τ : F ⇒ G gives rise to a
functor Tτ : CoalgF → CoalgG defined for an F-coalgebra 〈S, α〉 and an F-
homomorphism h as

Tτ 〈S, α〉 = 〈S, τS ◦ α〉 and Tτh = h.

To see that the above definition really defines a functor, we need to check that
a homomorphism h between two F-coalgebras 〈S, α〉 and 〈T, β〉 is also a homo-
morphism between the G-coalgebras Tτ 〈S, α〉 and Tτ 〈T, β〉. This follows easily
from the naturality of τ :

S
h //

α �� assumption h

T
β��

FS Fh //

τS �� naturality τ

FT
τT��

GS
Gh

// GT

Limits, colimits and their preservation

Let D be a diagram, that is, a collection of objects (Di)i∈I and a collection of
arrows (fk)k∈K between the objects in (Di)i∈I .

A cone over D is a single object S together with morphisms si : S → Di for
each i ∈ I, such that for every arrow of the diagram fk : Di → Dj we have
fk ◦ si = sj .

A cone 〈S, (si)i∈I〉 is a weak limit of D if for any other cone over D, 〈S ′, (s′i)i∈I〉,
there is a morphism s : S′ → S (also called mediating morphism) such that
s′i = si ◦ s for all i ∈ I.

A cone 〈S, (si)i∈I〉 is the limit of D if it is a weak limit and the mediating
morphism s is unique. The si are then called canonical morphisms.

Colimits are dual notions to limits. More precisely, a co-cone over D,
〈C, (ci)i∈I〉, is an object C together with a collection of arrows ci : Di → C
such that for every arrow of the diagram fk : Di → Dj we have cj ◦ fk = ci.
A co-cone is a weak colimit if for every competing co-cone 〈C ′, (c′i)i∈I〉 over D,
there exists a mediating morphism c : C → C ′ with c ◦ ci = c′i. A co-cone is the
colimit of D if the mediating morphism is unique.

Limits and colimits, if they exist, are unique up to isomorphism. In Set all
limits and colimits exist. Since limits over specific kinds of diagrams will play
an important role, we will discuss them in the remainder of the section.

A span and a cospan between two objects X and Y are triples 〈S, s1, s2〉 and
〈C, c1, c2〉 of objects S and C and arrows as pictured below.

X S
s1oo s2 // Y X

c1 // C Y
c2oo
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Hence, on the one hand a span (cospan) is a cone (co-cone) over a diagram with
two objects X and Y , and no arrows, and, on the other hand it is a diagram
with three objects (X, Y and S or C, respectively) and two arrows between
them.

The limit and the colimit of a diagram with two objects and no arrows are
called the product and coproduct , respectively. By X × Y , with projections
as canonical morphisms π1 : X × Y → X and π2 : X × Y → Y we denote
the categorical product of two objects X and Y . By X + Y , with injections
ι1 : X → X + Y and ι2 : Y → X + Y we denote the categorical coproduct of
the two objects X and Y . This means that, for any span 〈S, s1, s2〉 and cospan
〈C, c1, c2〉 between X and Y , there exist unique functions (s1, s2) : S → X × Y
and [c1, c2] : X + Y → C making both parts of the respective diagram below
commute.

S
s1

{{xxxxxxxxx

(s1,s2)

��

s2

##F
FFFFFFFF X

ι1 //

c1

##G
GGGGGGGG X + Y

[c1,c2]

��

Y
ι2oo

c2

{{xxxxxxxxx

X X × Yπ1

oo
π2

// Y C

The categorical products and coproducts in Set are simply Cartesian products,
with projections, and disjoint unions, with injections. More precisely, let X and
Y be two sets. The product is then X × Y = {〈x, y〉 | x ∈ X, y ∈ Y } and
the projections are defined as usual, by π1(x, y) = x and π2(x, y) = y. The
coproduct is X + Y = {〈x, 1〉 | x ∈ X} ∪ {〈y, 2〉 | y ∈ Y } and the injections are
defined by ι1(x) = 〈x, 1〉 and ι2(y) = 〈y, 2〉.

We say that a span in Set, 〈S, s1, s2〉, between sets X and Y is jointly injective if
(s1, s2) : S → X×Y is injective. Dually, a cospan 〈C, c1, c2〉 is jointly surjective
if [c1, c2] : X + Y → C is surjective. A relation R ⊆ X × Y gives rise to the
jointly injective span 〈R, π1, π2〉 between X and Y .

Next we view spans and cospans as diagrams. The limit of a cospan 〈C, c1, c2〉 is
called the pullback . Hence, a pullback is a span 〈P, p1, p2〉 as in the left diagram
below satisfying c1 ◦ p1 = c2 ◦ p2 and such that for every span 〈S, s1, s2〉 with
c1 ◦ s1 = c2 ◦ s2 there exists a unique mediating arrow m : S → P satisfying
s1 = p1 ◦ m and s2 = p2 ◦ m. The colimit of a span 〈S, s1, s2〉 is called the
pushout . Hence, the pushout is a cospan 〈P, p1, p2〉 as in the right diagram
below, such that for every cospan 〈C, c1, c2〉 with c1 ◦ s1 = c2 ◦ s2 there exists a
unique mediating arrow m : P → C satisfying c1 = m ◦ p1 and c2 = m ◦ p2.

S

s1

��

s2



m���
� S

s1

~~}}
}} s2

  @
@@

@

Pp1

~~}}
}}

p2

  @
@@

@
��

X

p1
  A

AA
A

c1

&&

Y

p2
~~~~

~~

c2

xx

X

c1   A
AA

A Y

c2~~~~
~~

P
m���

�

��

C C
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Extra wedges, as in the above diagrams, are used to emphasize that a certain
diagram is a pullback or a pushout diagram, respectively.

According to the general definition, a weak pullback is a pullback for which the
mediating arrow m need not be unique.

A pullback of a cospan 〈C, c1, c2〉 between sets X and Y is the span arising from
the relation

Q := {〈x, y〉 ∈ X × Y | c1(x) = c2(y)}.

A pushout of a span 〈S, s1, s2〉 between sets X and Y is the cospan 〈P, pX , pY 〉
with P = (X+Y )/θ for θ the smallest equivalence relation on X+Y containing
the pairs 〈ι1(s1(s)), ι2(s2(s))〉 for s ∈ S. The canonical morphism pX : X →
(X + Y )/θ maps x ∈ X to the θ-equivalence class of ι1(x), and pY is defined
analogously.

A weak pullback based on a relation R ⊆ X × Y is also an ordinary pullback,
as one can derive from the joint injectivity of the two projections. Moreover, in
Set pullbacks are jointly injective and pushouts are jointly surjective.

An object 0 of a category is called initial if for every other object X there exists
precisely one arrow ! : 0→ X. Dually, an object 1 of a category is called final if
for every object X there exists precisely one arrow ! : X → 1. Hence, the final
object is the limit of the empty diagram, and the initial object is the colimit of
the empty diagram. In Set the only initial object is the empty set and the final
objects are the singleton sets. When we talk about an arbitrary final set, we
denote its single element by a star, i.e. 1 = {∗}.

A functor F is said to preserve a (weak) (co)limit 〈S, (si)i∈I〉 of a diagram D
with objects (Di)i∈I and arrows (fk)k∈K , if 〈FS, (Fsi)i∈I〉 is again a (weak)
(co)limit of the diagram with objects (FDi)i∈I and arrows (Ffk)k∈K , i.e. if
it transforms a (weak) (co)limit of the diagram into a (weak) (co)limit of the
transformed diagram. The functor F weakly preserves a (co)limit of a diagram,
if it transforms it into a weak (co)limit of the transformed diagram.

For the sequel, the preservation of (weak) pullbacks will be of significant impor-
tance. We note the following two properties taken from [Gum99, Gum01].

Lemma 3.3.4. In Set, a functor F preserves weak pullbacks if and only if it
weakly preserves pullbacks.

Lemma 3.3.5. A Set endofunctor F preserves weak pullbacks if and only if for
any cospan 〈C, c1 : X → C, c2 : Y → C〉 we have: Given u and v with Fc1(u) =
Fc2(v) then there exists a w ∈ F{〈x, y〉 | c1(x) = c2(y)} with Fπ1(w) = u and
Fπ2(w) = v.

We end this section by mentioning a special type of pullback. A (weak) pullback
is said to be total if its canonical morphisms are epi. In Set a pullback of a cospan
〈C, c1, c2〉 where c1 : X → C and c2 : Y → C are surjective, is a total pullback.
Moreover, it is easy to see the following.
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Lemma 3.3.6. In Set, the pullback of a cospan 〈C, c1 : X → C, c2 : Y → C〉
is total if and only if the images of X and Y under c1 and c2, respectively, are
equal, i.e. c1(X) = c2(Y ).

We say that a functor weakly preserves total pullbacks if it transforms any total
pullback into a weak pullback. According to Lemma 3.3.6 weakly preserving
total pullbacks is the same as weakly preserving pullbacks of cospans 〈C, c1, c2〉
with c1(X) = c2(Y ). Clearly, if a functor preserves weak pullbacks then it
weakly preserves total pullbacks. We shall see in Chapter 5 that weak preserva-
tion of total pullbacks is a strictly weaker notion, i.e., an example of a functor
will be given that weakly preserves total pullbacks but does not preserve weak
pullbacks.

We note several facts of limits and colimits in CoalgF (cf. [Rut00]). All colimits
exist in CoalgF . They are constructed in the same way as in Set and then
provided with a transition structure in a unique way. Limits in CoalgF exist
provided the functor F preserves that type of limit. In that case, the limit is
constructed the same way as in Set and provided with a transition structure in
a unique way.

3.4 Coalgebraic bisimulations

One is often interested in the states of a coalgebra, i.e. the elements of its
carrier set, only up to some sort of behavioral equivalence. The most com-
mon behavioral equivalence is bisimilarity. The definition is due to Aczel and
Mendler [AM89].

Definition 3.4.1. A bisimulation between two F-coalgebras 〈S, α〉 and 〈T, β〉
is a relation R ⊆ S×T such that there exists a coalgebra structure γ : R→ FR
making the projections π1 : R → S and π2 : R → T coalgebra homomorphisms
between the respective coalgebras, i.e. the two squares in the following diagram
commute:

S

α

��

R
π1oo π2 //

∃γ

���
�
� T

β

��
FS FR

Fπ1

oo
Fπ2

// FT

Occasionally we refer to γ as the mediating coalgebra structure. We say that
two states s ∈ S and t ∈ T are bisimilar, and write s ∼ t, if they are related by
some bisimulation between 〈S, α〉 and 〈T, β〉.

Example 3.4.2. Consider the transition systems, i.e. the P-coalgebras. One
can show, following the proof for LTSs ([RT93, Rut00]), that R is a bisimulation
between two transition systems 〈S, α〉 and 〈T, β〉 if and only if

〈s, t〉 ∈ R =⇒
1. s→ s′ =⇒ (∃t′)t→ t′ and 〈s′, t′〉 ∈ R
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2. t→ t′ =⇒ (∃s′)s→ s′ and 〈s′, t′〉 ∈ R.

The conditions 1. and 2. from Example 3.4.2 are called transfer conditions. As
we have seen, all the concrete definitions of bisimulation in Chapter 2 are ex-
pressed in terms of transfer conditions. In the case of transition systems (functor
P), it is not difficult to obtain transfer conditions for coalgebraic bisimulation.
However, for more complex systems, it might be difficult to find, or just prove,
the right transfer conditions for bisimulation. The next two sections of this
chapter will be devoted to a method for characterizing bisimilarity in terms of
transfer conditions.

A bisimulation relation on a coalgebra 〈S, α〉 is any bisimulation between 〈S, α〉
and itself. A bisimulation equivalence is a bisimulation on a coalgebra that is
also an equivalence.

We next list some properties of bisimulation relations and bisimilarity. The
proofs and more details can be found in [Rut00]. We group the properties in
two lemmas, general properties and properties conditioned by weak pullback
preservation.

Lemma 3.4.3. The following properties hold:

(i) The diagonal ∆S = {〈s, s〉 | s ∈ S} is a bisimulation equivalence on any
coalgebra with state set S.

(ii) If R is a bisimulation between 〈S, α〉 and 〈T, β〉, then R−1 is a bisimulation
between 〈T, β〉 and 〈S, α〉.

(iii) Union of bisimulation relations is a bisimulation relation.

(iv) Bisimilarity is the largest bisimulation between two coalgebras.

(v) For any F-coalgebras 〈S, α〉, 〈T, β〉 and 〈U, γ〉, and any coalgebra homo-
morphisms f : T → S, g : T → U , the image (f, g)T = {〈f(t), g(t)〉 | t ∈
T} is a bisimulation.

Lemma 3.4.4. Assume that the functor F preserves weak pullbacks. Then:

(i) For any F-coalgebras 〈S, α〉, 〈T, β〉 and 〈U, γ〉, and any coalgebra homo-
morphisms f : S → T , g : U → T , the Set pullback 〈P, π1, π2〉 of the
cospan 〈T, f, g〉 is a bisimulation.

(ii) The relational composition of two bisimulations is again a bisimulation.

(iii) Bisimilarity on a coalgebra is an equivalence.

As a consequence of Lemma 3.4.3 and Lemma 3.4.4, we get that for weak pull-
back preserving functors, bisimilarity on a coalgebra is a union of all equivalence
bisimulations on that coalgebra.
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We will show that the statement of Lemma 3.4.4(iii) holds even if the as-
sumption on the functor is relaxed to weakly preserving total pullbacks. For
that purpose we formulate weaker properties corresponding to the properties of
Lemma 3.4.4(i) and (ii), in the next two lemmas.

Lemma 3.4.5. Let 〈S, α〉, 〈T, β〉 and 〈U, γ〉 be F-coalgebras, and f : S → T ,
g : U → T coalgebra homomorphisms. If F weakly preserves total pullbacks
and f(S) = g(U), then the Set pullback 〈P, π1, π2〉 of the cospan 〈T, f, g〉 is a
bisimulation.

Proof In the proof of Lemma 3.4.4(i) (see [Rut00, Theorem 4.3]) in order to
obtain that the pullback is a bisimulation, it is only used that F weakly preserves
the pullback of the cospan 〈T, f, g〉. Now, by Lemma 3.3.6, if F weakly preserves
total pullbacks, then it will weakly preserve this pullback, since additionally
f(S) = g(U). Hence the property holds. �

Lemma 3.4.6. If the functor weakly preserves total pullbacks, then the re-
lational composition of two reflexive bisimulations on one system is again a
bisimulation.

Proof The proof follows the same lines as the proof of Lemma 3.4.4(ii) ([Rut00,
Theorem 5.4]). It is easy to see that given two relations R and Q on S, R ◦Q =
(r1 ◦x1, q2 ◦x2)(X) where X is the pullback of 〈S, r2, q1〉 as in the next diagram

X
x1

��~~
~~ x2

��@
@@

@

R
r1

����
�� r2

��@
@@

@ Q
q1

��~~
~~

q2

��>
>>

>

S S S

and xi, ri, qi denote the corresponding projections. The cospan 〈S, r2, q1〉 has
the property r2(R) = S = q1(Q) since R and Q are reflexive relations. Since F
weakly preserves total pullbacks, by Lemma 3.4.5, we get that X is a bisimu-
lation, i.e., the projections x1 and x2 are homomorphisms. Hence, r1 ◦ x1 and
q2 ◦ x2 are also homomorphisms. Now, by Lemma 3.4.3(v), R ◦Q is a bisimula-
tion on 〈S, α〉. �

We can now prove the analogue of Lemma 3.4.4(iii) in case of weak preservation
of total pullbacks.

Lemma 3.4.7. If the functor weakly preserves total pullbacks, then the bisimi-
larity relation on a coalgebra is an equivalence.

Proof By Lemma 3.4.3(i-iv) the bisimilarity relation is reflexive and symmetric.
Let s1 ∼ s2 and s2 ∼ s3 in an F-coalgebra 〈S, α〉. Let R and Q be two bisimu-
lation relations such that 〈s1, s2〉 ∈ R and 〈s2, s3〉 ∈ Q. By Lemma 3.4.3(i) and
(iii) we can assume that R and Q are reflexive. Then, by Lemma 3.4.6, R ◦Q is
a bisimulation, and 〈s1, s3〉 ∈ R ◦Q, from which we get s1 ∼ s3. �
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Hence, by Lemma 3.4.3, Lemma 3.4.6 and Lemma 3.4.7, also for functors that
weakly preserve total pullbacks, the bisimilarity on a coalgebra is a union of all
equivalence bisimulations on that coalgebra. A motivation for generalizing to
functors that weakly preserve total pullbacks is that in Chapter 5 we will deal
with a functor that weakly preserves total pullbacks but does not preserve weak
pullbacks.

Recall that in Definition 3.3.3 by Tτ we denoted the functor from F-coalgebras
to G-coalgebras, induced by a natural transformation τ : F =⇒G. Since Tτ

preserves homomorphisms, it also preserves bisimulations. This implies that if
two states s ∈ S and t ∈ T are bisimilar in the F-coalgebras 〈S, α〉 and 〈T, β〉
then they are also bisimilar in the G-coalgebras Tτ 〈S, α〉 and Tτ 〈T, β〉.

3.5 Examples of coalgebras

In this section we present some more examples of coalgebras. In fact, we define
almost all the functors whose coalgebras we will work with in later chapters in
terms of basic and derived, or composed, functors. Furthermore, we show that
both the basic and the composed functors preserve weak pullbacks. Hence, the
bisimilarity for the coalgebras that we will consider is an equivalence.

Basic and composed functors

The basic functors in our consideration are the identity functor Id, the constant
functor A for a given set A, the powerset functor P, the constant exponent
functor IdA (all of them defined in Example 3.1.2), as well as the probability
distribution (cf. Definition 2.1.1) functor D defined below.

A coalgebra for the functor Id is a pair 〈S, α : S → S〉. Hence these are
(unlabelled) fully deterministic systems, for which from any state there is a
single next state. We will sometimes denote s→ s′ whenever α(s) = s′.

An A-coalgebra is a pair 〈S, α : S → A〉. It is not really a dynamic system, in
fact it is a static labelling (or coloring) of a set of states.

As we already saw in Example 3.2.2, the P coalgebras 〈S, α : S → PS〉 are the
transition systems.

The IdA - coalgebras are the deterministic labelled transition systems 〈S, α :
S → SA〉. For any state s ∈ S in such a coalgebra, α(s) is a function from A to
S. We can say that for any a ∈ A there is a transition outgoing from s labelled
by a to the unique next state α(s)(a). We use the transition notation s

a
−→ s′ to

denote that α(s)(a) = s′. These systems are deterministic since for any label a
and any state s the next state is uniquely determined.

Definition 3.5.1. The probability distribution functor

D : Set→ Set
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maps a set S to

DS = {µ : S → R
+
0 | µ[S] = 1}

and a function f : S → T to

(Df)(µ) = y 7→ µ[f−1(y)]

where for a function µ : S → R
+
0 and a subset S′ ⊆ S we write

µ[S′] =
∑

s∈S′

µ(s).

The D-coalgebras are exactly the Markov chains (see Definition 2.1.12). Let
〈S, α : S → DS〉 be a D-coalgebra. We introduce a transition notation as for
Markov chains. We write s ; µ whenever α(s) = µ ∈ DS.

In the literature, the definition of the probability distribution functor is often
restricted to probability distributions with finite support. These are functions
µ : S → R

+
0 such that µ[S] = 1 and additionally, the support set

supp(µ) = {s ∈ S | µ(s)> 0}

is required to be finite. However, for our purposes, there is no need of restricting
to finite support distributions.

Remark 3.5.2. Let us recall that the sum of an arbitrary family {xi | i ∈ I}
of non-negative real numbers is defined as

∑

i∈I

xi = sup{
∑

i∈J

xi | J ⊆ I, J finite }.

Note that if
∑

i∈I xi is finite, then the support set { xi | xi > 0 } is at most
countable (Proposition 2.1.2). Hence, the probability distributions have at most
countable support set. Therefore they are sometimes also called discrete prob-
ability distributions.

From the basic functors we build composed functors, by the following three
constructs: composition F ◦G, product F ×G and coproduct F +G. Let F and
G be Set endofunctors.

• The functor F ◦G acts as applying first the functor G and then the functor
F . It maps a set S to the set F(GS) and a function f : S → T to the
function F(Gf).

• The functor F×G maps a set S to the product FS×GS and a function f :
S → T to the function Ff ×Gf . Recall that the product of two functions
f ′ : S → S′ and g′ : T → T ′ is the function f ′× g′ : S×T → S′×T ′ given
by (f ′ × g′)〈s, t〉 = 〈f ′(s), g′(t)〉.



78 Chapter 3 Categories and coalgebras

• The functor F+G maps a set S to the coproduct FS+GS and a function
f : S → T to the function Ff + Gf = [ι1 ◦ Ff, ι2 ◦ Gf ]. Recall that
the case analysis of two functions f : S → U, g : T → U is the function
[f, g] : S + T → U defined by [f, g](ι1(s)) = f(s) and [f, g](ι2(t)) = g(t)
for s ∈ S and t ∈ T .

We will use the notation FA for the composition of IdA with a functor F , i.e
FA = IdA

◦ F .

Example 3.5.3. The fully deterministic systems from Example 3.2.5 were in-
troduced as coalgebras of a functor ×A arising from the bifunctor ×. We can
write ×A as a composed functor in the following way

×A = A× Id.

We have seen in Example 3.2.3 that the labelled transition systems are coalge-
bras of the functor B. Having defined the compositions of functors it is obvious
that

B = P ◦ (A× Id) = P ◦×A.

The LTSs can equivalently be considered as coalgebras of the functor PA.

Furthermore, almost all of the probabilistic systems from Chapter 2, are also
coalgebras of composed functors. For example, the simple Segala systems are
coalgebras of the functor P ◦ (A×D) = B ◦D.

Weak pullback preservation

The following property is easy to show, for example by applying Lemma 3.3.5.

Lemma 3.5.4. The functors Id, A, P and IdA preserve weak pullbacks.

Next we establish the weak pullback preservation of D. For the distribution
functor with finite support, weak pullback preservation was proved by De Vink
and Rutten [VR99], using the graph theoretic min cut - max flow theorem, and
by Moss [Mos99], using an elementary matrix fill-in property. Following Moss
[Mos99] we show that the needed matrix fill-in property can be used and holds
for arbitrary, infinite, matrices as well. For the sake of completeness we give the
proof in full detail.

Lemma 3.5.5. Let A and B be sets and let φ : A → R
+
0 and ψ : B → R

+
0 be

such that
∑

x∈A

φ(x) =
∑

y∈B

ψ(y)<∞ (3.5)

Then there exists a function µ : A×B → R
+
0 such that for any x ∈ A and any

y ∈ B
∑

y∈B

µ(x, y) = φ(x),
∑

x∈A

µ(x, y) = ψ(y). (3.6)
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Before we present the rather technical proof, let us discuss the idea, also used
in [Mos99], on a finite example. Let A = {1, 2, 3}, B = {1, 2, 3, 4} and let φ and
ψ be given by φ1 = 2, φ2 = 1, φ3 = 3 and ψ1 = 1, ψ2 = 3, ψ3 = 0, ψ4 = 2. Since

φ1 + φ2 + φ3 = ψ1 + ψ2 + ψ3 + ψ4

the statement claims that there exists a matrix M , in this case of order 3 × 4,
such that φi is the sum of the i-th row and ψj the sum of the j-th column. The
matrix

M =





1 1 0 0
0 1 0 0
0 1 0 2





satisfies that property. We have constructed it in the following way. For
M(1, 1) we take the minimum min{φ1, ψ1}, hence M(1, 1) = ψ1 = 1. Since
the first column sum has already been achieved we fill-in M(2, 1) = M(3, 1) = 0
and the next element to be filled-in is M(1, 2). We fill it with the value
min{φ1 − M(1, 1), ψ2} = φ1 − M(1, 1) = 1. Since the first row-sum has
been achieved, we put M(1, 3) = M(1, 4) = 0, and continue with M(2, 2).
It gets the value min{φ2 −M(2, 1), ψ2 −M(1, 2)} = φ2 −M(2, 1) = 1. Hence,
M(2, 3) = M(2, 4) = 0 and the next element to be filled-in is M(3, 2). Its value
is then min{φ3−M(3, 1), ψ2−M(1, 2)−M(2, 2)} = ψ2−M(1, 2)−M(2, 2) = 1,
which completes the second column. Next is M(3, 3) = min{φ3 −M(3, 1) −
M(3, 2), ψ3 −M(1, 3) −M(2, 3)} = ψ3 −M(1, 3) −M(2, 3) = 0. We fill-in the
last element M(3, 4) with the remaining value φ3−M(3, 1)−M(3, 2)−M(3, 3) =
ψ4 −M(1, 4)−M(2, 4)−M(3, 4) = 2.

Proof [of Lemma 3.5.5] We first consider the case when both A and B are
countably infinite, i.e. we take A = B = N0. We recursively define a function

F : N→ N0 × N0 × (N0 × N0 → R
+
0 )

where F (n) = 〈i(n), j(n), µn〉.

The idea behind the definition of F is that F (n) represents the n-th iteration in
the filling of the countable matrix. The pair 〈i(n), j(n)〉 represents the indices
of the next entry that is to be filled in, and the function µn represents the n-th
filling.

The function F is defined as follows. Put F (1) = 〈0, 0, µ1〉 for µ1(i, j) = 0 for
all i, j ∈ N0. Assume F (n) has already been defined. Put

µn+1(i, j) =







µn(i, j) if 〈i, j〉 6= 〈i(n), j(n)〉
min{φ(i(n))−

∑

k<j(n) µn(i(n), k),

ψ(j(n))−
∑

k<i(n) µn(k, j(n))}
if 〈i, j〉 = 〈i(n), j(n)〉

and

i(n+ 1) =

{

i(n) + 1 µn+1(i(n), j(n)) = φ(i(n))−
∑

j<j(n) µn(i(n), j)

i(n) otherwise
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j(n+ 1) =

{

j(n) + 1 µn+1(i(n), j(n)) = ψ(j(n))−
∑

i<i(n) µn(i, j(n))

j(n) otherwise

Now, we define µ : N0 × N0 → R
+
0 by

µ(i, j) = lim
n→∞

µn(i, j).

We will show that µ satisfies the requirements of the lemma. For this we first
explore the properties of F .

It is obvious that F satisfies the following properties:

(a) i(n+ 1) + j(n+ 1)> i(n) + j(n)

(b) i(n+ 1) ≥ i(n)

(c) j(n+ 1) ≥ j(n)

(d) µn+1(i, j) = µn(i, j), 〈i, j〉 6= 〈i(n), j(n)〉

(e) µn+1(i, j) = 0, i > i(n) or j > j(n)

Hence, the indices of the next entry to be filled in, increase by one in at least one
coordinate. Furthermore, µn+1 differs from µn in at most one entry, the entry
〈i(n), j(n)〉 and µn(i, j) might be non-zero only in a finite initial rectangle.

We next show that F also satisfies the following properties:

∑

j∈N0

µn(i, j)

{

= φ(i) i < i(n)
≤ φ(i) i ≥ i(n)

(3.7)

∑

i∈N0

µn(i, j)

{

= ψ(j) j < j(n)
≤ ψ(j) j ≥ j(n)

(3.8)

The properties (3.7) and (3.8) indicate that µn is indeed an approximation of
the required function. We prove (3.7), by induction on n. The proof of (3.8) is
analogous. For n = 1 we have for all i, i ≥ i(1) = 0 and

∑

j∈N0

µ1(i, j) = 0 ≤ φ(i).

Assume (3.7) holds for n. By (b), if i< i(n) then i< i(n+1), and by (d) we get

∑

j∈N0

µn+1(i, j) =
∑

j∈N0

µn(i, j)
(IH)
= φ(i).

By the definition of F , if i > i(n), then i ≥ i(n+ 1) and

∑

j∈N0

µn+1(i, j) =
∑

j∈N0

µn(i, j)
(IH)

≤ φ(i).
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The remaining case is i = i(n). Then

∑

j∈N0

µn+1(i, j) =





∑

j<j(n)

µn+1(i, j)



 + µn+1(i(n), j(n)) +





∑

j>j(n)

µn+1(i, j)





(d)
=





∑

j<j(n)

µn(i, j)



 + µn+1(i(n), j(n)) +





∑

j>j(n)

µn(i, j)





(e)
=

∑

j<j(n)

µn(i, j) + µn+1(i(n), j(n))

By the definition of µn+1(i(n), j(n)) we have

µn+1(i(n), j(n)) ≤ φ(i(n))−
∑

j<j(n)

µn(i(n), j) (3.9)

Hence
∑

j∈N0
µn+1(i, j) ≤ φ(i). Moreover, if i < i(n+ 1) in (3.9) equality holds

and thus also
∑

j∈N0
µn+1(i, j) = φ(i). This completes the proof of (3.7).

Now, we can show that F is well defined, i.e. that µn(i, j) ≥ 0 for all n, i, j,
inductively on n. For n = 1 it is trivially satisfied. Assume that µn(i, j) ≥ 0,
for all i, j. Then also µn+1(i, j) ≥ 0 for 〈i, j〉 6= 〈i(n), j(n)〉. By (3.7) and (3.8)
we obtain

φ(i(n)) ≥
∑

j∈N0

µn(i(n), j)
(IH)

≥
∑

j<j(n)

µn(i(n), j),

ψ(j(n)) ≥
∑

i∈N0

µn(i, j(n))
(IH)

≥
∑

i<i(n)

µn(i, j(n))

and hence

µn+1(i(n), j(n)) =

min{φ(i(n))−
∑

j<j(n)

µn(i(n), j), ψ(j(n))−
∑

i<i(n)

µn(i, j(n))} ≥ 0.

We next focus on the properties of the function µ. First of all note that
the mapping n 7→ 〈i(n), j(n)〉 is injective. Therefore, for any fixed index-
pair 〈i, j〉, the sequence (µn(i, j))n∈N is either constantly 0, which happens if
〈i, j〉 6∈ {〈i(n), j(n)〉 | n ∈ N} or

µn(i, j) =

{

0 n ≤ n0

µn0+1(i, j) n > n0

in case 〈i, j〉 = 〈i(n0), j(n0)〉. In particular, we have established that the se-
quence (µn(i, j))n∈N is monotone, bounded, and it converges for any fixed (i, j),
which makes µ : N0 × N0 → R

+
0 well defined.



82 Chapter 3 Categories and coalgebras

Finally, we show that µ satisfies the properties required in the assertion of the
lemma. By (a) at least one of the sequences (i(n))n∈N, (j(n))n∈N must tend to
infinity, say i(n) does. Let i ∈ N0 and let n ∈ N be such that i < i(n). Then for
all m ≥ n and all j,

µm(i, j) = µn(i, j) = µ(i, j)

and thus, by (3.7)
∑

j∈N0

µ(i, j) =
∑

j∈N0

µn(i, j) = φ(i),

i.e. the first part of (3.6) holds true. It follows that

∑

j∈N0

ψ(j) =
∑

i∈N0

φ(i) =
∑

i∈N0

∑

j∈N0

µ(i, j) =
∑

j∈N0

∑

i∈N0

µ(i, j), (3.10)

where the change in the order of summation is justified by the fact that µn(i, j) ≥
0. Since, by (3.8), ψ(j) ≥

∑

i∈N0
µn(i, j) for all n we obtain that

∑

i∈N0

µ(i, j) = lim
n→∞

∑

i∈N0

µn(i, j) ≤ ψ(j). (3.11)

Here, the change of the limit and the sum is allowed since µn(i, j) is a
non-negative, monotone sequence. Now (3.10), (3.11), and the assumption
∑

j∈N0
ψ(j)<∞, imply that

∑

i∈N0

µ(i, j) = ψ(j), j ∈ N0.

This completes the proof in the case A = B = N0.

Assume now that A,B, φ, ψ are as in the formulation of the lemma. Consider
A′ = {x ∈ A | φ(x) 6= 0}, B′ = {x ∈ B | ψ(x) 6= 0}, φ′ = φ|A′ , ψ′ = ψ|B′ .
Then A′ and B′ are at most countable, for otherwise condition (3.5) would be
violated. If µ′ : A′ ×B′ → R

+
0 is such that for any x ∈ A′, y ∈ B′

∑

y∈B′

µ′(x, y) = φ(x),
∑

x∈A′

µ′(x, y) = ψ(y)

then the function µ : A×B → R
+
0 defined by

µ(x, y) =

{

µ′(x, y) if 〈x, y〉 ∈ A′ ×B′

0 otherwise

fulfills the requirements of the lemma. Hence, it is enough to consider the case
when A and B are at most countable. Write A = {ak | k ∈ N0, k < |A|} and
B = {bl | l ∈ N0, l < |B|} and define φ′, ψ′ : N0 → R

+
0 by

φ′(k) =

{

φ(ak) if k < |A|
0 otherwise

ψ′(l) =

{

ψ(bl) if l < |B|
0 otherwise
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We obtain µ′ : N0 ×N0 → R
+
0 with

∑

l∈N0
µ′(k, l) = φ′(k) and

∑

k∈N0
µ′(k, l) =

ψ′(l) for all k, l ∈ N0. If k ≥ |A| then φ′(k) = 0 and hence µ′(k, l) = 0 for
l ∈ N0. Similarly, for l ≥ |B|, µ′(k, l) = 0 for k ∈ N0. Thus

µ(ak, bl) = µ′(k, l), k < |A|, l < |B|

satisfies the requirements of the lemma. �

We are now ready to show the weak pullback preservation of the functor D.

Lemma 3.5.6. The functor D preserves weak pullbacks.

Proof It suffices to show that a pullback diagram

P
π1

~~}}
}} π2

  @
@@

@

X

f   A
AA

A Y

g~~~~
~~

Z

will be transformed to a weak pullback diagram.

Let P ′ be the pullback of the cospan DX
Df // DZ DY

Dgoo . Let 〈u, v〉 ∈ P ′.
Then (Df)(u) = (Dg)(v). By Lemma 3.3.5, we need to find µ ∈ DP such that

(Dπ1)(µ) = u, (Dπ2)(µ) = v. (3.12)

Since for x ∈ X and y ∈ Y ,

(Dπ1)(µ) = x 7→ µ[π−1
1 (x)], (Dπ2)(µ) = y 7→ µ[π−1

2 (y)]

condition (3.12) is equivalent to

µ[π−1
1 (x)] = u(x), µ[π−1

2 (y)] = v(y),

for x ∈ X, y ∈ Y , i.e.,

∑

y∈Y :〈x,y〉∈P

µ(x, y) = u(x),
∑

x∈X:〈x,y〉∈P

µ(x, y) = v(y). (3.13)

The set P can be written as the union

P =
⋃

z∈Z

f−1(z)× g−1(z)

of disjoint rectangles. In fact these rectangles have non-overlapping edges in
the following sense: Let Z1 = f−1(z1) × g

−1(z1), and Z2 = f−1(z2) × g
−1(z2),

for z1, z2 ∈ Z. Then, if 〈x, y〉 ∈ Z1, it follows that 〈x, y′〉, 〈x′, y〉 /∈ Z2 for all
x′ ∈ X, y′ ∈ Y , and vice-versa. Therefore, the existence of a map µ which
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satisfies condition (3.13) is equivalent to the condition that for all z ∈ Z there
exists a function µz : f−1(z) × g−1(z) → R

+
0 such that for all x ∈ f−1(z), and

all y ∈ g−1(z),
∑

y∈g−1(z)

µz(x, y) = u(x),
∑

x∈f−1(z)

µz(x, y) = v(y).

Since 〈u, v〉 ∈ P ′, we have
∑

x∈f−1(z)

u(x) = u[f−1(z)] = (Df)(u)(z) = (Dg)(v)(z) = v[g−1(z)] =
∑

y∈g−1(z)

v(y).

Hence, we may apply the matrix-fill-in property, Lemma 3.5.5. �

We finish this section by stating the weak pullback preservation for the composed
functors.

Lemma 3.5.7. If F and G preserve weak pullbacks, then so do F ◦ G, F × G
and F + G.

The proof of Lemma 3.5.7 can be derived directly from the definitions, or from
Lemma 3.3.5. Hence, any functor that can be built from our basic functors by
applying composition, product and coproduct preserves weak pullbacks.

3.6 From coalgebraic bisimulation to transfer conditions

In this section we present a way of characterizing coalgebraic bisimulation and
hence bisimilarity in terms of transfer conditions.

The procedure for characterizing bisimilarity is strongly connected to a notion
of relation liftings (cf. [Jac02, JH03]). We will focus on relation liftings in more
detail in the next subsection. For the moment, the following definition suffices.

Definition 3.6.1. Let R ⊆ S × T be a relation, and F a Set functor. The
relation R can be lifted to a relation Rel(F)(R) ⊆ FS ×FT defined by

〈x, y〉 ∈ Rel(F)(R) ⇐⇒ ∃z ∈ FR : Fπ1(z) = x, Fπ2(z) = y.

It is easy to see that the following lemma holds.

Lemma 3.6.2. Let F be a Set endofunctor. A relation R̂ ⊆ FS × FT is the
lifting of a relation R ⊆ S × T if and only if there exists a surjective map
ω : FR→ R̂ such that the following diagram commutes.

R̂
π1

||zz
zz

zz
zz

z
π2

""D
DD

DD
DD

DD

FS FR

ω

OOOO

Fπ1

oo
Fπ2

// FS

(3.14)

�
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The surjective map ω : FR→ Rel(F)(R) is given by ω(z) = 〈Fπ1(z),Fπ2(z)〉.

Remark 3.6.3. By comparing Definition 2.1.4 and Definition 3.6.1, we see
that the distribution lifting ≡R of a relation R ⊆ S × T is exactly the lifting
Rel(D)(R).

The following lemma provides transfer conditions for bisimulation in terms of
relation lifting.

Lemma 3.6.4. A relation R ⊆ S×T is a bisimulation between the F-coalgebras
〈S, α〉 and 〈T, β〉 if and only if

〈s, t〉 ∈ R =⇒ 〈α(s), β(t)〉 ∈ Rel(F)(R). (3.15)

Proof Let R be a bisimulation between the F-coalgebras 〈S, α〉 and 〈T, β〉,
and let 〈s, t〉 ∈ R. Let γ be the mediating coalgebra structure for R. Then
γ(〈s, t〉) satisfies Fπ1(γ(〈s, t〉)) = α(s) and Fπ2(γ(〈s, t〉)) = β(t). Hence, by
Definition 3.6.1, 〈α(s), β(t)〉 ∈ Rel(F)(R).

For the opposite, assume R satisfies condition (3.15). For 〈s, t〉 ∈ R, put
γ(〈s, t〉) = z for some z such that ω(z) = 〈α(s), β(t)〉. Such an element z ∈ FR
exists since ω : FR → Rel(F)(R) is surjective and 〈α(s), β(t)〉 ∈ Rel(F)(R).
Then R is a bisimulation with mediating coalgebra structure γ. �

The right-hand side of condition (3.15) is already a transfer condition. We shall
see in the later subsections how concrete transfer conditions can be instantiated
out of it for our basic and composed functors. However, for some functors also
the next observation will be helpful.

Recall that a functor weakly preserves total pullbacks if it transforms any pull-
back diagram with epi morphisms into a weak pullback diagram.

Lemma 3.6.5. If the functor F weakly preserves total pullbacks and R is an
equivalence on S, then Rel(F)(R) is the pullback in Set of the cospan

FS
Fc // F(S/R) FS

Fcoo (3.16)

where c : S → S/R is the canonical morphism mapping each element to its
equivalence class.

Proof Since R is an equivalence relation and therefore reflexive, the left diagram
below is a pullback diagram with epi legs.

R
π1

}}{{
{{

{{
{{ π2

!!C
CC

CC
CC

C

S

c

!!B
BB

BB
BB

B S

c

}}||
||

||
||

S/R

FR
Fπ1

zzuuuuuuuuu
Fπ2

$$J
JJJJJJJJ

FS

Fc

$$I
IIIIIIII FS

Fc

zzuuuuuuuuu

F(S/R)
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By the assumption, the right diagram is a weak pullback diagram. By (3.14)
the surjective map ω : FR → Rel(F)(R) makes the two upper triangles of the
next diagram commutative:

Rel(F)(R)

π1

����
��

��
��

��
��

��
��

π2

��9
99

99
99

99
99

99
99

9

FR

ω

OOOO

Fπ1yyssssssssss

Fπ2 %%LLLLLLLLLL

FS

Fc

%%KKKKKKKKK FS

Fc

yysssssssss

F(S/R)

Since ω is surjective the outer square of the above diagram also commutes, and
by the existence of ω from the weak pullback FR to Rel(F)(R), Rel(F)(R) is a
weak pullback as well. However, since it is based on a relation, it is a pullback
(see page 72). �

By the construction of a pullback in Set, we can formulate the following corollary.

Corollary 3.6.6. A relation R ⊆ S × S is an equivalence bisimulation on the
F-coalgebra 〈S, α〉, where F weakly preserves total pullbacks, if and only if

〈s, t〉 ∈ R =⇒ (Fc ◦ α)(s) = (Fc ◦ α)(t). (3.17)

where c : S → S/R is the canonical morphism mapping each element to its R-
equivalence class.

Note that Corollary 3.6.6 provides transfer conditions for equivalence bisimula-
tions only. This is still of use since often in the literature (cf. Chapter 2) for
concrete systems, bisimulations are defined as equivalence relations. We have
seen that the bisimilarity is a union of all equivalence bisimulations, for functors
that weakly preserve total pullbacks. Therefore, also Corollary 3.6.6 provides
a way to characterize bisimilarity in terms of transfer conditions, for functors
that weakly preserve total pullbacks. It is handy in cases in which we can not
immediately apply Lemma 3.6.4, as it will be the case in Chapter 5.

As an easy consequence of Lemma 3.6.5 for the distribution functor we obtain
Proposition 2.1.5. Namely, let R be an equivalence relation on a set S. By
Remark 3.6.3, ≡R = Rel(D)(R) and by Lemma 3.6.5 we get that ≡R is the
pullback of the cospan

DS
Dc // D(S/R) DS

Dcoo .
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Hence,

µ ≡R ν ⇐⇒ Dc(µ) = Dc(ν)

⇐⇒ for any C ∈ S/R : µ[c−1(C)] = ν[c−1(C)]

⇐⇒ for any C ∈ S/R : µ[C] = ν[C].

3.6.1 Properties of relation liftings

In this section we focus in more detail on relation liftings. Most of the presented
results are known and they can be found in the papers by Jacobs et al. [HJ98,
Jac02, JH03, Jac04].

Recall the definition of the category Rel from Example 3.1.1. For an endofunctor
F on Set, the relation lifting Rel(F) is an endofunctor Rel(F) : Rel→ Rel that
makes the following diagram commute

Rel
Rel(F) //

U

��

Rel

U

��
Set× Set

F×F // Set× Set

where U : Rel→ Set×Set is the forgetful functor that maps a relation R ⊆ S×T
to its underlying sets S × T , and an arrow in Rel is mapped to itself.

For functors that preserve weak pullbacks, the relation lifting preserves the
following [Jac02, JH03, Jac04]

• equality: Rel(F)(∆S) = ∆FS ,

• relational composition: Rel(F)(Q ◦R) = Rel(F)(Q) ◦ Rel(F)(R),

• inclusions: R ⊆ Q =⇒ Rel(F)(R) ⊆ Rel(F)(Q),

• inverse relations: Rel(F)(R−1) = Rel(F)(R)−1,

• inverse images: for R ⊆ S × T , f : S ′ → S and g : T ′ → T we have
Rel(F)((f × g)−1(R)) = (Ff ×Fg)−1(Rel(F)(R)).

Hence, the characteristic properties of equivalences and preorders are also pre-
served by relation liftings.

It has already been reported by Jacobs (cf. [Jac02]) that for the special case
of polynomial functors Rel(F) may equivalently be defined inductively on the
structure of F . The polynomial functors form a subclass of our class of basic and
derived functors. The next lemma shows that also for our class of inductively
defined functors, Rel(F) can be defined by structural induction.

Lemma 3.6.7. Let R ⊆ S × T . Then:
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(i) Rel(IdSet) = IdRel.

(ii) Rel(A) = ∆A i.e. the constant functor that maps any relation R to the
diagonal relation ∆A.

(iii) Rel(P)(R) =
{

〈X,Y 〉 | (∀x ∈ X)(∃y ∈ Y )〈x, y〉 ∈ R ∧ (∀y ∈ Y )(∃x ∈ X)〈x, y〉 ∈ R
}

.

(iv) Rel(IdA)(R) = {〈f, g〉 | (∀a ∈ A)〈f(a), g(a)〉 ∈ R}.

(v) Rel(D)(R) = ≡R.

(vi) Rel(F ◦ G)(R) = Rel(F)(Rel(G)(R)).

(vii) Rel(F × G)(R) =
{ 〈

〈x1, x2〉, 〈y1, y2〉
〉

| 〈x1, y1〉 ∈ Rel(F)(R) ∧ 〈x2, y2〉 ∈ Rel(G)(R)
}

.

(viii) Rel(F + G)(R) =
{

〈ι1(x1), ι1(y1)〉 | 〈x1, y1〉 ∈ Rel(F)(R)
}

∪
{

〈ι2(x2), ι2(y2)〉 | 〈x2, y2〉 ∈ Rel(G)(R)
}

.

Proof All of the listed properties can be proved from Definition 3.6.1 and using
Lemma 3.6.2. We shall only present the proof of (vi). Let R ⊆ S × T . By
Lemma 3.6.2 we get that Rel(G)(R) is the unique relation such that there exists
a surjective function ωG making the following diagram commute

Rel(G)(R)

g1

zzttttttttt
g2

$$J
JJJJJJJJ

GS GR
Gπ1

oo
Gπ2

//

ωG

OOOO

GT

(3.18)

where g1 and g2 denote the projections from Rel(G)(R) and π1, π2 the pro-
jections from R. By applying F to the diagram (3.18) we get the following
commuting diagram.

F(Rel(G)(R))

Fg1

xxqqqqqqqqqqq
Fg2

&&NNNNNNNNNN

FGS FGR
FGπ1

oo
FGπ2

//

FωG

OOOO

FGT

(3.19)

On the other hand, by Lemma 3.6.2, Rel(F)(Rel(G)(R)) is the unique relation
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for which there exists a surjective mapping ω making the next diagram commute

Rel(F)(Rel(G)(R))

f1

wwoooooooooooo
f2

''OOOOOOOOOOOO

FGS F(Rel(G)(R))
Fg1

oo
Fg2

//

ω

OOOO

FGT

(3.20)

where f1 and f2 are the projections from Rel(F)(Rel(G)(R)). By plugging (3.19)
and (3.20) together we get that the next diagram commutes

Rel(F)(Rel(G)(R))

f1

wwnnnnnnnnnnnn
f2

''PPPPPPPPPPPP

FGS FGR
FGπ1

oo
FGπ2

//

ω◦FωG

OOOO

FGT

and ω ◦FωG is a surjective map. Hence, by Lemma 3.6.2, Rel(F)(Rel(G)(R)) =
Rel(F ◦ G)(R). �

3.6.2 Transfer conditions for the basic and the composed functors

Having the inductive definition of Rel(F)(R) from Lemma 3.6.7 and the char-
acterization of Lemma 3.6.4 we now spell out the transfer conditions for bisim-
ulation relations for our set of basic and composed functors.

Let R ⊆ S × T . Let 〈S, α〉 and 〈T, β〉 be F-coalgebras. The relation R is a
bisimulation between 〈S, α〉 and 〈T, β〉 if and only if whenever 〈s, t〉 ∈ R then
the transfer condition 〈α(s), β(t)〉 ∈ Rel(F)(R) holds. When F is instantiated
to one of our basic functors, by Lemma 3.6.7 and Lemma 3.6.4 we get the
following concrete transfer conditions.

Id coalgebras:

By Lemma 3.6.7(i) the transfer condition is 〈α(s), β(t)〉 ∈ R, i.e.

if s→ s′ and t→ t′, then 〈s′, t′〉 ∈ R. (3.21)

Note that the largest equivalence on S, ∇S = S × S is a bisimulation on an
Id-coalgebra 〈S, α〉. Therefore for the bisimilarity we have ∼ = ∇S , i.e., any
two states in an Id-coalgebra are bisimilar.

A coalgebras:

The transfer condition for bisimulation of A-coalgebras is

α(s) =A α(t). (3.22)

In other words, bisimilar states have the same label or color.
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P coalgebras:

For transition systems we get the following transfer condition:

(∀s′ ∈ α(s),∃t′ ∈ β(t) : 〈s′, t′〉 ∈ R) ∧ (∀t′ ∈ β(t),∃s′ ∈ α(s) : 〈s′, t′〉 ∈ R) .

In terms of transitions, the condition reads

if s→ s′, then there exists t′ with t→ t′ and 〈s′, t′〉 ∈ R, and

if t→ t′, then there exists s′ with s→ s′ and 〈s′, t′〉 ∈ R.
(3.23)

IdA coalgebras:

The transfer condition is ∀a ∈ A : 〈α(s)(a), β(t)(a)〉 ∈ R, i.e.

for all a ∈ A : if s
a
−→ s′ and t

a
−→ t′, then 〈s′, t′〉 ∈ R. (3.24)

D coalgebras:

For Markov chains the transfer condition is 〈α(s), β(t)〉 ∈ ≡R, i.e.

if s ; µ and t ; ν, then µ ≡R ν. (3.25)

Note that the condition (3.25) is the same as the one given by Definition 2.1.19.
Hence, we have shown that a relation is a bisimulation (equivalence) according
to Definition 3.4.1 if and only if it is a bisimulation on Markov chains, according
to Definition 2.1.19. As a consequence, coalgebraic bisimilarity coincides with
the concrete bisimilarity in the case of Markov chains. This is an alternative
proof to the result of De Vink and Rutten [VR99] for Markov chains. Also for
D systems, any two states in a D-coalgebra are bisimilar.

Derived functors

Next we write down the transfer conditions for the derived functors.

F × G In this case we have that the transition structures α and β are pairings
α = (αF , αG) and β = (βF , βG) where αF , βF are transition structures of
an F-coalgebra, and αG , βG are transition structures of an G-coalgebra.
By Lemma 3.6.7(vii), the transfer condition is:

〈αF (s), βF (t)〉 ∈ Rel(F)(R) ∧ 〈αG(s), βG(t)〉 ∈ Rel(G)(R). (3.26)

F + G Now, we get a transfer condition

α(s) = ι1(x), β(t) = ι1(y), 〈x, y〉 ∈ Rel(F)(R) ∨

α(s) = ι2(x), β(t) = ι2(y), 〈x, y〉 ∈ Rel(G)(R).

or, if we omit the injections and consider the coproduct as a disjoint union:

either α(s) ∈ FS and β(t) ∈ FT and 〈α(s), β(t)〉 ∈ Rel(F)(R)

or α(s) ∈ GS and β(t) ∈ GT and 〈α(s), β(t)〉 ∈ Rel(G)(R).
(3.27)
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We can not directly write down a transfer condition for F ◦ G in general, but
having the transfer conditions for F and for G, by Lemma 3.6.7(vi) we can
derive transfer conditions in particular cases.

The inductive construction of transfer conditions for labelled transition systems
is illustrated in the next example.

Example 3.6.8. The functor defining LTSs is B = P ◦ (A × Id). A relation
R ⊆ S×T is a bisimulation between the two LTSs 〈S, α〉 and 〈T, β〉 if and only
if

〈s, t〉 ∈ R =⇒ 〈α(s), β(t)〉 ∈ Rel(B)(R).

Using the inductive definition we get, by Lemma 3.6.7(vi),

〈α(s), β(t)〉 ∈ Rel(B)(R)

if and only if

(∀s′ ∈ α(s),∃t′ ∈ β(t) : 〈s′, t′〉 ∈ Rel(A× Id)(R)) ∧

(∀t′ ∈ α(t),∃s′ ∈ β(s) : 〈s′, t′〉 ∈ Rel(A× Id)(R))

which by Lemma 3.6.7(vii) and (3.26) is equivalent to

(

∀〈a, s′〉 ∈ α(s),∃〈b, t′〉 ∈ β(t) : 〈a, b〉 ∈ Rel(A)(R) ∧ 〈s′, t′〉 ∈ Rel(Id)(R)
)

∧
(

∀〈a, t′〉 ∈ β(t),∃〈b, s′〉 ∈ α(s) : 〈a, b〉 ∈ Rel(A)(R) ∧ 〈s′, t′〉 ∈ Rel(Id)(R)
)

.

Applying Lemma 3.6.7(i),(ii) we get the following equivalent condition

(

∀〈a, s′〉 ∈ α(s),∃〈b, t′〉 ∈ β(t) : a = b ∧ 〈s′, t′〉 ∈ R
)

∧
(

∀〈a, t′〉 ∈ β(t),∃〈b, s′〉 ∈ α(s) : a = b ∧ 〈s′, t′〉 ∈ R
)

.

Finally, we rewrite the last condition in terms of transition notation and obtain
the transfer condition for bisimulation between labelled transition systems:

if s
a
−→ s′, then there exists t′ with t

a
−→ t′ and 〈s′, t′〉 ∈ R, and

if t
a
−→ t′, then there exists s′ with s

a
−→ s′ and 〈s′, t′〉 ∈ R.

(3.28)

Hence, as it is well-known [RT93, Rut00], coalgebraic bisimilarity coincides with
concrete bisimilarity (Definition 2.1.14) for the case of labelled transition sys-
tems.





4

A hierarchy of probabilistic
system types

In this chapter we arrange the various classes of probabilistic systems
in an expressiveness hierarchy. We model the different system types
as coalgebras of suitable behavior functors and argue that the corre-
sponding coalgebraic bisimilarity coincides with concrete probabilistic
bisimilarity. The theory of coalgebras provides a unifying framework
for the presentation of the various classes and the system translations
we needed to establish the hierarchy. All these translations arise in a
standard way from natural transformations between the two behavior
functors involved.

Probabilistic systems of different kinds have been studied as semantic objects
since the early nineties. Some of them arise from nondeterministic systems
by adding probabilistic information to all choices; sometimes both types of
uncertainty are mixed. The main motivation for considering probabilities is
the need for quantitative information, as opposed to qualitative information,
when reasoning about non-functional aspects of systems such as throughput,
resource utilization, etc. A vast amount of research has been conducted in the
area of performance analysis, in which the notion of compositionality typically
does not play a major role. In the area of semantics of programming lan-
guages and program verification, however, compositionality is a central theme.
Various different models with different trade-offs between performance analy-
sis and compositionality have thus been proposed in the literature (see, e.g.,
[Hil94, Her98, Ber99]). A notion of probabilistic bisimulation that preserves
performance metrics is a key ingredient for joint reasoning about qualitative
and quantitative behavior, and also for this many proposals have been made.

In earlier work a comparison is made between a number of probabilistic pro-
cess equivalences (see, e.g., [GSST90, GSS95]) and categorical formulations of
Larsen-Skou bisimulation and stochastic bisimulation are given [DEP98, VR99].
In Chapter 2 we focused on the relationship between these and various related
notions and made a taxonomy of the most prominent types of probabilistic
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bisimulation. In the present chapter we propose a purely coalgebraic perspec-
tive on this matter, which allows us to apply a novel general result for the
comparison of system types. This way the uniform coalgebraic treatment helps
us considerably to clarify the picture and to organize the setting.

As to the comparison of systems, as in Chapter 2, we say that one class of
systems is at most as expressive as another if we can map every system of the
first type into one of the second such that bisimilarity is preserved and reflected.
For this we require that the transformed system has the same carrier as the
original and that two states are bisimilar in the original system if and only if
they are bisimilar in the translated one.

The system translations we consider all arise in a straightforward way from
natural transformations τ between the two coalgebra functors involved. The
translations thus obtained always preserve bisimilarity. The reflection of bisim-
ilarity, however, is not guaranteed in general. For this we present a sufficient
condition on the natural transformation τ and the coalgebra functors involved.
Interestingly, in our opinion, the result builds on the notion of a cocongruence as
proposed e.g. by Kurz [Kur00]. This notion is similar to that of a bisimulation,
but based on cospans instead of spans—a change of direction which comes in
handy for the result we need to prove. We exploit the fact that both notions,
bisimulation and cocongruence, characterize the same behavioral equivalence in
case the coalgebra functor preserves weak pullbacks.

The expressiveness hierarchy we build with these tools provides a better un-
derstanding of the relationship of the various probabilistic system types. The
coalgebraic approach facilitated its construction significantly. As far as we know,
this form of application of the theory of coalgebras is not reported before in the
literature.

The outline of the chapter is as follows: In Section 4.1 we define the differ-
ent classes of probabilistic systems coalgebraically. We argue that coalgebraic
bisimilarity coincides with the standard concrete definitions in Section 4.2. Sec-
tion 4.3 is the coalgebraic core leading from bisimulation and cocongruences to
the result on reflection of bisimilarity. In Section 4.4 we apply the result from
Section 4.3 to build the expressiveness hierarchy. We wrap up with conclusions
and directions for future work in Section 4.5.

4.1 Probabilistic systems as coalgebras

In this section we model thirteen types of probabilistic systems from the litera-
ture on probabilistic modelling as coalgebras. A considerable amount of research
has been done on each of these types of systems. They are used as mathemat-
ical models of real systems so that formal verification methods based e.g. on
temporal logic or process algebra can be applied. Most of the types arose in-
dependently in order to improve the modelling of one or another property of a
system. One motivating issue is the need to model both non-deterministic and
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probabilistic choice. Another issue is the compositional modelling for which
operators like hiding (restriction by the environment) and parallel composition
play a major role. Therefore some more complex models were proposed that
support a definition of these operators. For example, generative systems were
extended to bundle probabilistic systems because the former type did not al-
low for a definition of a natural asynchronous parallel composition operator. In
Chapter 2 we gave a wider overview of these models. Here, we just note that the
different classes are not defined as coalgebras in the literature. Moreover, in few
cases our functorial definition varies from the original one in that we abstract
from certain features that are not essential, in our understanding, to the nature
of the model under consideration.

We define the systems as coalgebras of suitable behavior functors F . The func-
tors are built using the following syntax

F ::= Id | A | P | IdA | D | F ◦ F | F × F | F + F

where the basic functors Id,A,P , IdA and D, as well as the derived functors,
were defined in Section 3.5.

In several occasions throughout this chapter we shall need the property of weak
pullback preservation. Recall from Section 3.5 that the above syntax produces
weak pullback preserving functors.

Again, CoalgF denotes the category of coalgebras of the functor F . We fix a set
A to serve as a set of actions throughout this chapter.

We now present the probabilistic system types and the functors defining them
via Figure 4.1. For each system type the table lists the notation, the functor and
the name. For some systems we also include a reference to the bibliographic
source of the system. The names used for these systems follow Chapter 2.
Some of the names are otherwise not present in the literature. For the Vardi
systems sometimes the term concurrent Markov chains is used, for the Segala
systems the name (simple) probabilistic automata, the systems introduced by
Pnueli and Zuck are called probabilistic finite state programs. We use the name
alternating systems following Hansson [Han94], although we do not require strict
alternation. Note that the classes of probabilistic systems with strict alternation
SA, SAn and SAp do not find their way in this chapter. The reason is that we
could not model them as coalgebras for Set endofunctors, more precisely, the
extra condition of strict alternation does not allow for a standard coalgebraic
modelling. We introduced the last type of systems ourselves as a generalization
of the class PZ in order to have a top element in the hierarchy.

Basically, every type of probabilistic system arises from the plain definition of a
transition system with or without labels. Probabilities can then be added either
to every transition, or to transitions labelled with the same action, or there can
be a distinction between probabilistic and ordinary (non-deterministic) states,
where only the former ones include probabilistic information, or the transition
function can be equipped with structure that provides both non-determinism
and probability distributions.
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CoalgF F name/reference

MC D Markov chains

DLTS (Id+ 1)A deterministic automata

LTS P(A× Id) ∼= PA non-deterministic automata, LTSs

React (D + 1)A reactive systems [LS91, GSST90]

Gen D(A× Id) + 1 generative systems [GSST90]

Str D + (A× Id) + 1 stratified systems [GSST90]

Alt D + P(A× Id) alternating systems [Han94]

Var (D(A× Id) + P(A× Id))/ ./ Vardi systems [Var85]

SSeg P(A×D) simple Segala systems [SL94, Seg95b]

Seg PD(A× Id) Segala systems [SL94, Seg95b]

Bun DP(A× Id) bundle systems [DHK98]

PZ PDP(A× Id) Pnueli-Zuck systems [PZ93]

MG PDP(A× Id+ Id) most general systems

Figure 4.1: Probabilistic system types
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The simplest kind of probabilistic systems that we consider are discrete time,
finitely branching Markov chains. Two other classical basic models of proba-
bilistic systems are the reactive and the generative systems. They arise from
LTSs when replacing the powerset functor P by the distribution functor D. At
this point we can mention a distinction between systems, the one between input
type and output type of systems. An input system is one defined by a functor of
the kind FA while an output system has a functor of the form FP(A×F). Note
that LTSs can be viewed as both input and output type of systems, due to the
isomorphism P(A × Id) ∼= PA. For probabilistic systems this is not the case.
As the names already suggest, a reactive system is a probabilistic input system,
reacting to the input by the environment, while a generative system is a typical
output system, producing output depending on the probability distribution. A
reactive system can transit from a given state with a given action to any other
state according to the probability distribution that governs this transition. On
the other hand in a generative system the distributions involve actions. The
generative systems are fully probabilistic in the sense that it is enough to erase
the action labels on the transitions in order to obtain a Markov chain from a
generative system.

Some of the system types introduced above make a distinction between types of
states. Such are the stratified systems, the alternating systems, and the Vardi
systems. If a state in such a system allows a probabilistic transition, then it
is a probabilistic state. If, on the other hand, it allows a (non-)deterministic
transition, then it is a (non-)deterministic state. The functor defining the Vardi
systems needs more explanation. In a Vardi system 〈X,α〉, the states can be
divided into two sets, a set of non-deterministic states x ∈ X such that α(x) ∈
P(A ×X) and a set of probabilistic states x ∈ X for which α(x) ∈ D(A×X).
The probabilistic states show a generative behavior. Furthermore, by ./ we
identify some degenerate steps. If from a state x ∈ X the system can only
move, via an action a, to a state y ∈ X, then it is the same as saying that from
x, via a, with probability 1 the system moves to y. Therefore, the equivalence ./
identifies the Dirac distribution µ1

〈a,x〉 ∈ D(A×X), for µ1
〈a,x〉(〈a, x〉) = 1 and the

singleton set {〈a, x〉} ∈ P(A×X). This way, there are states in a Vardi system
that are both non-deterministic, with one outgoing transition, and probabilistic
with a Dirac outgoing transition. By considering (D(A× Id) +P(A× Id))/ ./
instead of D(A×Id) +P(A×Id), the functorial properties are still preserved.

Unlike reactive and generative ones, systems with the above distinction between
states can simulate full non-determinism. Another way of allowing both full
non-determinism and probabilities, without distinguishing between states, is by
equipping the transition function with a structure, as in the case of Segala,
simple Segala, bundle and Pnueli-Zuck systems. The simple Segala model is
of input type, enriching the reactive model with full non-determinism, and the
other models are of output type, allowing non-determinism in the generative
setting.
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4.2 Bisimulation correspondence

For most of the probabilistic system types introduced above, a concrete defini-
tion of bisimulation is given in the literature and we collected those definitions
in Chapter 2. A cornerstone of the coalgebraic approach to bisimulation is the
correspondence of bisimilarity of deterministic and non-deterministic transition
systems given in concrete terms of transfer conditions [Par81, Mil89] or given
in categorial terms of a mediating coalgebra [AM89] (see also [RT93]). De Vink
and Rutten have shown [VR99], exploiting the graph-theoretical max-min the-
orem as in [Jon89], that the concrete notion of bisimulation for Markov chains
coincides with the coalgebraic notion. The proof technique extends to most
other systems involving the finite support probability distribution functor Dω

in their definition. As an example, in [BSV03], we sketched the correspondence
of concrete bisimulation and coalgebraic bisimulation for the general Segala-
type systems (cf. [SL94, Seg95b]) which we modelled there as coalgebras of the
functor PDω(A×Id). In [BSV04] we presented another, more modular proof of
the correspondence of concrete probabilistic bisimulation with the coalgebraic
bisimulation in the case of simple Segala systems. That proof was essentially
based on Corollary 3.6.6. At the same time, it was a proof of the correspondence
for reactive systems. That technique can also be used in all the other cases.

However, having Section 3.6 available and in particular Section 3.6.2, it is a mat-
ter of simple, structured and modular derivation to show the correspondence of
coalgebraic and concrete bisimilarity for all of the probabilistic systems that
come with a notion of bisimulation. This section is devoted to this correspon-
dence result.

As already mentioned, the bundle probabilistic transition systems [DHK98] do
not come equipped with a concrete notion of bisimulation. Equivalence of bundle
probabilistic transition systems is defined in terms of the underlying generative
probabilistic transitions systems, for which concrete bisimulation coincides with
the coalgebraic bisimulation. The approach of Vardi [Var85] and Pnueli and
Zuck [PZ93] involves temporal logics. We do not unravel the explicit relation-
ship of logically indistinguishable systems vs. bisimilar ones [LS91]. However,
familiarity with coalgebraic bisimulation makes it easy to formulate concrete def-
initions of bisimulation in the cases of bundle, Vardi and Pnueli-Zuck systems.
In Chapter 2 we have given a bisimulation definition for the bundle probabilistic
systems and that we will justify here.

Before we present the correspondence results, two remarks are in place:

• A concrete bisimulation is often a relation on the states of one system,
while a coalgebraic bisimulation is a relation between the state sets of two
systems. We will restrict to coalgebraic bisimulations on the state set of
one system and show that two states are related with some coalgebraic
bisimulation if and only if they are related with some concrete bisimula-
tion, which gives us the correspondence result. Restriction to the state
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set of one system is without loss of generality. It can be shown (provided
that F preserves weak pullbacks) that two states s ∈ S and t ∈ T of two
F-systems 〈S, α〉 and 〈T, β〉 are related by a bisimulation between S and
T if and only if they are related by a bisimulation on the coproduct of the
two systems, i.e., 〈S + T, [Fι1,Fι2] ◦ (α+ β)〉.

• For the correspondence theorem we also need to restrict to coalgebraic
bisimulations which are equivalences. This can be done because the coal-
gebraic bisimilarity is an equivalence for weak-pullback-preserving func-
tors (cf. Section 3.4).

Theorem 4.2.1. Coalgebraic bisimilarity coincides with concrete bisimilarity,
for all types of probabilistic systems from Figure 4.1.

Proof We will use Lemma 3.6.7 and the results from Section 3.6.2 and provide
transfer conditions for bisimulations for each particular type of systems. We
will see that if restricted to transfer conditions for equivalence bisimulations on
one system, the transfer conditions are equivalent to the ones from the concrete
definitions, presented in Chapter 2. This gives us the correspondence results.

The correspondence for Markov chains was already stated in Section 3.6.2. Ex-
ample 3.6.8 provided us with transfer conditions for labelled transition systems
(the class LTS). We now derive the transfer conditions for the class of deter-
ministic automata DLTS.

A relation R ⊆ S × T is a bisimulation between the deterministic automata
〈S, α〉 and 〈T, β〉 if and only if 〈s, t〉 ∈ R implies

(∀a ∈ A) 〈α(s)(a), β(t)(a)〉 ∈ Rel(Id+ 1)(R)

which, by Lemma 3.6.7(i), (ii) and (3.27) is equivalent to: for all actions a,

either α(s)(a) = β(t)(a) = ι2(∗)

or 〈α(s)(a), β(t)(a)〉 ∈ R.

i.e., for all actions a,

if s
a
−→ s′, then t

a
−→ t′ and 〈s′, t′〉 ∈ R, and

if t
a
−→ t′, then s

a
−→ s′ and 〈s′, t′〉 ∈ R.

(4.1)

Hence, we have basically the same transfer condition as for the LTSs (Defini-
tion 2.1.14).

Now, since the functor defining the reactive probabilistic systems (D + 1)A

can be written as (Id + 1)A
◦ D, by Lemma 3.6.7(v),(vi), and by the previous

derivation (4.1), we directly get that the transfer condition for the class React
is: for all actions a

if s
a
→; µ, then t

a
→; ν and µ ≡R ν, and

if t
a
→; ν, then s

a
→; µ and µ ≡R ν.

(4.2)
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Hence we have obtained exactly the transfer condition from Definition 2.2.3.

Next we derive an auxiliary transfer condition for the functor D+1. The transfer
condition is

〈α(s), β(t)〉 ∈ Rel(D + 1)(R)

i.e., as in the previous derivations,

if s ; µ, then t ; ν and µ ≡R ν, and

if t ; ν, then s ; µ and µ ≡R ν.
(4.3)

For generative systems of type D ◦ (A × Id) + 1 = (D + 1) ◦ (A × Id), we use
again Lemma 3.6.7(vi) and the transfer condition (4.3) for D + 1 systems, and
we obtain

if s ; µ, then t ; ν and µ ≡Rel(A×Id)(R) ν, and

if t ; ν then s ; µ and µ ≡Rel(A×Id)(R) ν.
(4.4)

Moreover, since by Lemma 3.6.7(i), (ii) and (vii):

〈〈a, s〉, 〈b, t〉〉 ∈ Rel(A× Id)(R) ⇐⇒ a = b ∧ 〈s, t〉 ∈ R

it is obvious that

Rel(A× Id)(R) = R̂ and ≡Rel(A×Id)(R) = ≡R,A

as in Definition 2.1.6. Hence, the transfer condition for generative systems is
exactly the one from Definition 2.2.4.

For the classes Str and Alt, one can easily get the transfer conditions from
Definition 2.2.8. For the simple Segala systems SSeg, since P(A×D) = P(A×
Id) ◦D, as in the case of reactive systems, using the transfer condition for LTSs,
one gets directly the following transfer condition

if s
a
→; µ, then there exists ν with t

a
→; ν and µ ≡R ν, and

if t
a
→; ν, then there exists µ with s

a
→; µ and µ ≡R ν.

(4.5)

Finally, we justify Definition 2.2.18 for bundle probabilistic systems, Bun. The
functor defining the bundle systems is D ◦ P(A × Id). By the transfer condi-
tion (3.25) for D-coalgebras, we get that a relation R ⊆ S × T is a bisimulation
between the bundle systems 〈S, α〉 and 〈T, β〉 if and only if 〈s, t〉 ∈ R implies

if s ; µ and t ; ν, then µ ≡Rel(P(A×Id))(R) ν. (4.6)

We need only to convince ourselves that

≡Rel(P(A×Id))(R) = ≡R,P
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where ≡R,P was defined in Definition 2.2.17. We have

Rel(P(A× Id))(R) = Rel(P)(Rel(A× Id)(R))

= Rel(P)({〈〈a, s〉, 〈a, t〉〉 | 〈s, t〉 ∈ R})

= {〈X,Y 〉 | X ⊆ A× S, Y ⊆ A× T

(∀〈a, s〉 ∈ X)(∃〈a, t〉 ∈ Y ) 〈s, t〉 ∈ R

(∀〈a, t〉 ∈ Y )(∃〈a, s〉 ∈ X) 〈s, t〉 ∈ R}
= ≡R,P

which completes the proof. �

4.3 Translation of coalgebras

In this section we will prove a technical result about translations of coalgebras.
We use translations of F-coalgebras into G-coalgebras in order to compare the
expressiveness of coalgebras for different functors, F and G. Recall that such
a translation can easily be obtained from a natural transformation between
the two functors under consideration (cf. Definition 3.3.3). Namely, a natural
transformation τ : F ⇒ G induces a functor Tτ : CoalgF → CoalgG defined as

Tτ 〈S, α〉 = 〈S, τS ◦ α〉 and Tτh = h.

The induced functor is a translation map that always preserves bisimilarity (cf.
Section 3.4).

In order to establish that G-coalgebras are at least as expressive as F-coalge-
bras, we shall use translations Tτ for which the converse holds as well, i.e. where
s and t are bisimilar in the G-coalgebras Tτ 〈S, α〉 and Tτ 〈T, β〉 only if they are
bisimilar in the original F-coalgebras 〈S, α〉 and 〈T, β〉. In this case we say that
Tτ reflects bisimilarity.

To this end it appears reasonable to ask that the components of τ : F =⇒G
should be injective: Assume that for some set S the component τS is not injec-
tive, because it identifies two distinct elements φ, ψ ∈ FS, i.e. τS(φ) = τS(ψ).
Usually it should not be difficult to find an F-coalgebra structure α on S such
that, for two states s, t ∈ S, α(s) = φ and α(t) = ψ but s 6∼ t in 〈S, α〉. Since we
get τS(α(s)) = τS(φ) = τS(ψ) = τS(α(t)), we have s ∼ t in Tτ 〈S, α〉 = 〈S, τS ◦α〉,
which means that Tτ does not reflect bisimilarity. (Note though that the above
approach does not work in the degenerate case of a functor F that does not
allow non-bisimilar behavior at all, like F = Id. We shall come back to this
example at the end of the section.)

In the following we show that componentwise injectivity of τ implies that Tτ re-
flects a notion of behavioral equivalence defined in terms of cocongruences rather
than bisimulations. Then we explain that this notion coincides with bisimilarity
for coalgebras of functors which preserve weak pullbacks. All coalgebra functors
that we consider have this property.



102 Chapter 4 The hierarchy

Definition 4.3.1. A cocongruence between two F-coalgebras 〈S, α〉 and 〈T, β〉
is a cospan 〈U, u1, u2〉 between S and T , which is jointly surjective, such that
there exists an F-coalgebra structure γ : U → FU making u1 and u2 coalgebra
homomorphisms, i.e.,

S

α

��

u1 // U

∃γ

���
�
� T

u2oo

β

��
FS

Fu1

// FU FT
Fu2

oo

We say that s ∈ S and t ∈ T are behavioral equivalent, and write s ≈ t, in
the F-coalgebras 〈S, α〉 and 〈T, β〉, if they are identified by some cocongruence
between them, i.e., if there exists a cocongruence 〈U, u1, u2〉 with u1(s) = u2(t).

We took the name cocongruence from Kurz [Kur00, Def. 1.2.1]. Wolter [Wol00]
calls these structures compatible corelations.

Theorem 4.3.2. Let F and G be two Set functors. For a natural transformation
τ : F ⇒ G with injective components we have that Tτ : CoalgF → CoalgG reflects
behavioral equivalence.

For the proof of the theorem we need the following elementary fact.

Lemma 4.3.3. The category Set has the diagonal fill-in property for surjective
and injective functions: Assume that the outer square in the setting depicted
below commutes, where e is surjective and m is injective. Then there exists a
unique diagonal arrow d making both of the resulting triangles commute.

A
e // //

f

��

B

g

��

∃!d

{{v
v

v
v

v

C ��
m

// D

We proceed with the proof of Theorem 4.3.2.

Proof (of Theorem 4.3.2) Let 〈S, α〉 and 〈T, β〉 be two F-coalgebras with
states s ∈ S and t ∈ T such that s ≈ t in the G-coalgebras Tτ 〈S, α〉 and
Tτ 〈T, β〉. So there exists a cocongruence 〈U, u1, u2〉 between the latter two
coalgebras identifying s and t. We shall show below that the same cospan is
also a cocongruence between the F-coalgebras 〈S, α〉 and 〈T, β〉 that identifies
s and t.

Let γ : U → GU be the transition structure witnessing the cocongruence prop-
erty of 〈U, u1, u2〉, i.e. both parts of the diagram below commute.

S
α ��

u1 // U

γ

��

T
u2oo

β��
FS� _

τS ��

FT_�
τT��

GS
Gu1

// GU GT
Gu2

oo

(4.7)
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Using this and the naturality of τ in step (∗), we compute

γ ◦ [u1, u2] = [γ ◦ u1, γ ◦ u2]

(4.7)
= [Gu1 ◦ τS ◦ α, Gu2 ◦ τT ◦ β]

(∗)
= [τU ◦ Fu1 ◦ α, τU ◦ Fu2 ◦ β]

= τU ◦ [Fu1 ◦ α, Fu2 ◦ β].

This means that the outer square of the diagram below commutes. By the
definition of a cocongruence, [u1, u2] is surjective and, by assumption, τU is
injective, so Lemma 4.3.3 provides a diagonal fill-in, say γ̃ : U → FU .

S + T
[u1,u2] // //

[Fu1◦α,Fu2◦β]

��

U

γ

��

γ̃

yyr r
r

r
r

r

FU ��
τU

// GU

This shows that γ factors as τU ◦ γ̃, and we can refine picture (4.7) into the
one below. It follows from the commutativity of the upper left triangle in
the diagram above that the two upper squares in the diagram below indeed
commute. So γ̃ witnesses that – as wanted – 〈U, u1, u2〉 is a cocongruence
between the original F-coalgebras 〈S, α〉 and 〈T, β〉.

S
α ��

u1 // U
γ̃ ��

T
u2oo

β��
FS

Fu1 //
� _

τS ��

FU� _
τU ��

FT
Fu2oo

� _
τT ��

GS
Gu1

// GU GT
Gu2

oo

�

We shall show that behavioral equivalence and bisimilarity coincide for coal-
gebras of a functor that preserves weak pullbacks, so that the above theorem
implies that Tτ also reflects bisimilarity under appropriate assumptions.

We first demonstrate that we can use pullbacks and pushouts to switch between
bisimulations and cocongruences. The argument is standard.

Lemma 4.3.4. Let 〈S, α〉 and 〈T, β〉 be F-coalgebras.

(i) If R ⊆ S × T is a bisimulation between 〈S, α〉 and 〈T, β〉 then the pushout
〈P, p1, p2〉 of R according to the diagram below is a cocongruence between
〈S, α〉 and 〈T, β〉.

R
π1

��~~
~~ π2

��@
@@

@

S

p1 ��@
@ T

p2��~
~

P

��
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(ii) If F preserves weak pullbacks and 〈U, u1, u2〉 is a cocongruence between
〈S, α〉 and 〈T, β〉 then the pullback Q = {〈s, t〉 ∈ S × T | u1(s) = u2(t)} of
〈U, u1, u2〉 is a bisimulation between 〈S, α〉 and 〈T, β〉.

Q
π1

���
� π2

��?
?

��

S

u1 ��@
@@

@ T

u2��~~
~~

U

Proof (i) Let γ : R → FR be the coalgebra structure witnessing the bisim-
ulation property. Applying the functor F to the pushout square we obtain
Fp1 ◦ Fπ1 = Fp2 ◦ Fπ2. Together with the bisimulation property this implies
that the outer hexagon in the left diagram below commutes. So, by the prop-
erty of the pushout, there is a unique mediating arrow m : P → FP such that
m ◦ p1 = Fp1 ◦α and m ◦ p2 = Fp2 ◦ β, i.e. 〈P, p1, p2〉 is a cocongruence between
〈S, α〉 and 〈T, β〉.

R
γ
��

π1

wwppppppppp π2

''NNNNNNNNN Q
m���

�π1

wwppppppppp π2

''NNNNNNNNN

S
α ��

p1
''OOOOOOOOO FRFπ1

wwooooooo Fπ2

''OOOOOOO T
β��

p2
wwooooooooo S

α ��
u1

''OOOOOOOOO FQFπ1

wwooooooo Fπ2

''OOOOOOO T
β��

u2
wwooooooooo

FS

Fp1 ''PPPPPPP P
m���

� FT

Fp2wwnnnnnnn FS

Fu1 ''PPPPPPP U
γ��

FT

Fu2wwnnnnnnn

FP FU

(ii) Since F preserves weak pullbacks, 〈FQ,Fπ1,Fπ2〉 is a weak pullback of
〈FU,Fu1,Fu2〉. Using this and an argument dual to the one for item (i), we
get a (not necessarily unique) mediating arrow m : Q → FQ in the situation
pictured in the right diagram above, which witnesses that Q is a bisimulation
between 〈S, α〉 and 〈T, β〉. �

In Section 3.3 we have given a concrete description of pushouts in Set. The
following observation about them suffices for our comparison of bisimilarity and
behavioral equivalence: the pushout of a relation R ⊆ S × T , i.e. of the span
〈R, π1, π2〉 identifies all elements related by R. With this we get the following
corollary.

Corollary 4.3.5. Let 〈S, α〉 and 〈T, β〉 be two F coalgebras with states s ∈ S
and t ∈ T .

(i) If s ∼ t then s ≈ t, i.e. bisimilarity implies behavioral equivalence.

(ii) If F preserves weak pullbacks, then s ≈ t also implies s ∼ t, i.e. bisimi-
larity and behavioral equivalence coincide.
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Proof If s ∼ t then there exists a bisimulation R ⊆ S × T with 〈s, t〉 ∈ R.
With Lemma 4.3.4 (i) the pushout of R is a cocongruence. Since the pushout
identifies all pairs related by R, we get s ≈ t. For item (ii), let s ≈ t. This means
that there exists a cocongruence 〈U, u1, u2〉 identifying s and t. According to
Lemma 4.3.4 (ii), the set of all pairs identified by 〈U, u1, u2〉 is a bisimulation,
so s ∼ t. �

From Theorem 4.3.2 and Corollary 4.3.5 we easily get our result about Tτ re-
flecting bisimilarity.

Theorem 4.3.6. Let τ : F ⇒ G be a natural transformation between the Set-
functors F and G. If F preserves weak pullbacks and all components of τ are
injective then the functor Tτ from Definition 3.3.3 reflects bisimilarity.

Proof Let 〈S, α〉 and 〈T, β〉 be F-coalgebras with states s ∈ S and t ∈ T .
If s ∼ t in the G-coalgebras Tτ 〈S, α〉 and Tτ 〈T, β〉 then s ≈ t in the same
coalgebras according to Corollary 4.3.5 (i). By Theorem 4.3.2 this implies s ≈ t
in the original F-coalgebras 〈S, α〉 and 〈T, β〉. Since F was assumed to preserve
weak pullbacks, we can apply Corollary 4.3.5 (ii) to obtain s ∼ t in 〈S, α〉 and
〈T, β〉 as needed. �

The following example demonstrates that Theorem 4.3.6 does not hold without
the assumption on weak pullback preservation. It is built on a classical example
[AM89] of a functor not preserving weak pullbacks, which is treated in detail
also by Gumm and Schröder [GS00].

Example 4.3.7. Consider the functors

FX := {〈x, y, z〉 ∈ X3 | |{x, y, z}| ≤ 2} and GX := X3

and the obvious inclusion natural transformation τ : F ⇒ G, all components
of which are clearly injective. The functor F does not preserve weak pullbacks
(see [AM89]). To see that the translation Tτ does not reflect bisimilarity, con-
sider the F-coalgebra 〈S, α〉 with

S := {s, t}, α(s) := 〈s, s, t〉, α(t) := 〈s, t, t〉.

The two states s and t are bisimilar in Tτ 〈S, α〉 but not in 〈S, α〉. For the first
claim, note that ∇S = S × S is a bisimulation on Tτ 〈S, α〉. For the second
claim, assume there was a bisimulation R ⊆ S×S on 〈S, α〉 with 〈s, t〉 ∈ R. For
the mediating coalgebra structure γ : R → FR let γ(〈s, t〉) = 〈z1, z2, z3〉. The
homomorphism condition implies

〈π1(z1), π1(z2), π1(z3)〉 = 〈s, s, t〉 and 〈π2(z1), π2(z2), π2(z3)〉 = 〈s, t, t〉.

From this we conclude γ(〈s, t〉) = 〈〈s, s〉, 〈s, t〉, 〈t, t〉〉, but, since all three pairs
are different, this is not an element of FR.
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The example also suggests that weak pullback preservation is a needed assump-
tion if bisimilarity should relate states with the same observational behavior.
Bisimilarity in this case fails to relate s and t, although they cannot be distin-
guished by external observations.

Coming back to an earlier remark, we mention that componentwise injectivity
of the natural transformations τ in Theorem 4.3.6 is not a necessary condition
for the reflection of bisimilarity. An example of a natural transformation τ with
non-injective components such that Tτ still reflects bisimilarity is the natural
transformation ! : Id=⇒ 1, with the unique maps !S : S → 1 into the singleton
set 1 = {∗} as components. The translation T! trivially reflects bisimilarity,
because all states in Id-coalgebras are bisimilar. As it were, the natural trans-
formation forgets only information that is not relevant for bisimilarity. Another,
more interesting example of the same kind is the natural transformation that
maps probability distributions on their set of support. However, we are not
aware of any examples involving a functor F such that there are F-coalgebras
with non-bisimilar states.

4.4 The hierarchy

We will exploit Theorem 4.3.6 to achieve the primary goal of this chapter, viz.
establishing a hierarchy of probabilistic system types. The hierarchy is the
one already presented in Chapter 2, except for the strictly alternating classes.
Theorem 4.3.6 and the coalgebraic approach in general lead to a brief and elegant
proof of the hierarchy result.

Let F and G be functors on Set. If there exists a translation functor from CoalgF

to CoalgG that both preserves and reflects bisimilarity then we say that the class
CoalgF is coalgebraically embedded in the class CoalgG . This relation is clearly
reflexive and transitive.

The expressiveness criterion makes sure that if a class of systems A is coalge-
braically embedded in a class B then a “copy” of any system belonging to A
exists in B, and therefore we consider the class B at least as expressive as the
class A. Another hierarchy result, using a different expressiveness criterion is
given for the reactive, generative and stratified systems by Van Glabbeek et al.
[GSST90, GSS95]. According to the expressiveness criterion of Van Glabbeek et
al. the class A is at least as expressive as the class B if there exists a translation
functor from A to B that preserves bisimilarity. Their expressiveness criterion
is local: any system of A can be considered as expressing at least as much as
its image in B, while our expressiveness criterion is global: each system in A
expresses exactly the same as its image, but the class B may be “bigger”.

The next theorem lists coalgebraic embeddings between the probabilistic system
types introduced in Figure 4.1.

Theorem 4.4.1. The coalgebraic embeddings presented in Figure 4.2 hold
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Figure 4.2: Hierarchy of probabilistic system types

among the probabilistic system types, where an arrow A → B expresses that
the class A is coalgebraically embeddable in the class B.

Proof By Theorem 4.3.6, if F ,G are functors on Set such that F preserves weak
pullbacks and there is a componentwise injective natural transformation from
F to G, then CoalgF is coalgebraically embeddable in CoalgG .

Having the weak pullback preservation for all functors from Figure 4.1, it is
enough to construct a componentwise injective natural transformation for each
embedding. We start by defining some elementary natural transformations and
collecting some simple properties. Let F ,G,H be functors on Set.

• We define the empty natural transformation 1
η

=⇒P, for ηX(∗) = ∅.

• The left and right coproduct injections ι1 and ι2 are natural transforma-
tions F

ι1=⇒F + G, G
ι2=⇒F + G with injective components.

• For every set X, the injective functions σX : X → PX where σX(x) = {x}

form a natural transformation Id
σ

=⇒P, the singleton natural transforma-
tion.

• For every set X, the injective functions δX : X → DX where δX(x) =

µ1
x, µ

1
x(x) = 1 form the Dirac natural transformation Id

δ
=⇒D.

• For any set X, the injective functions φX : (X +1)A → P(A×X) defined
by φX(f) = Graph(f) = {〈a, f(a)〉 | f(a) ∈ X} for f : A → X + 1, form

a natural transformation (Id+ 1)A φ
=⇒P(A× Id)

• From F
τ1=⇒H and G

τ2=⇒H we get a natural transformation F+G
[τ1,τ2]
=⇒ H.
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• If F1
τ1=⇒G1 and F2

τ2=⇒G2 are componentwise injective, then so is the

natural transformation F1 + F2
τ1+τ2=⇒ G1 + G2.

• If F
τ

=⇒G is componentwise injective, then so is FH
τH
=⇒GH, where

(τH)X = τHX .

• From F
τ

=⇒G we get a natural transformation HF
Hτ
=⇒HG with (Hτ)X =

H(τX). If the functor H preserves injectivity and all components of τ are
injective, then so are the components of Hτ . For the first condition, since
every Set-functor preserves injectives with nonempty domain, we just need
to check that H maps functions from the empty set to injective functions.
This is the case for P, D, and the other functors we use below, as one
directly verifies.

Now we prove all the coalgebraic embeddings, by building the needed natural
transformations from the elementary ones mentioned above.

MC→ Str: D
ι1=⇒D + (A× Id) + 1

DLTS→ LTS: (Id+ 1)A φ
=⇒P(A× Id)

DLTS→ React: (Id+ 1)A Fδ
=⇒ (D + 1)A, for F = (Id+ 1)A.

React→ SSeg: (D + 1)A φD
=⇒P(A×D)

LTS→ SSeg: P(A× Id)
Fδ
=⇒P(A×D), for F = P(A× Id).

LTS→ Var: P(A × Id)
ξ◦ι2
=⇒ (D(A × Id) + P(A × Id))/ ./ for D(A × Id) +

P(A× Id)
ξ

=⇒ (D(A× Id) + P(A× Id))/ ./ being the canonical natural
transformation, that maps every element to its class. Although ξ is not
injective, ξ ◦ ι2 is.

Gen→ Var: D(A × Id) + 1
ξ◦(id+ηF)

=⇒ (D(A × Id) + P(A × Id))/ ./, for F =
A×Id. The transformation ξ ◦(id+ηF) is componentwise injective, since
id+ηF does not reach ./-identifiable elements in D(A×Id)+P(A×Id).

Var→ Seg: (D(A × Id) + P(A × Id))/ ./
[σD,Pδ]F

=⇒ PD(A × Id) for F = A ×
Id. Note that the natural transformation factors through the equivalence
classes, because the ./-identified elements are mapped to the same Segala
behavior. The transformation is injective.

Var→ Bun: (D(A×Id)+P(A×Id))/ ./
[Dσ,δP]F

=⇒ DP(A×Id) for F = A×Id.
As in the case Var → Seg, the ./-identified elements are mapped to the
same bundle behavior, and the transformation is injective.
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SSeg→ Seg: P(A×D)
Pτ
=⇒PD(A×Id) where (A×D)

τ
=⇒D(A×Id) is given

by τX(〈a, µ〉) = µ1
a × µ, where µ× µ′(〈x, x′〉) = µ(x) · µ′(x′) and µ1

a is the
Dirac distribution for a. All components of τ are injective.

Str→ Alt: D + (A× Id) + 1
id+[σ,η]F

=⇒ D + P(A× Id), for F = A× Id. Com-
ponentwise injectivity holds.

Seg→ PZ: PD(A× Id)
PDσF
=⇒ PDP(A× Id), for F = A× Id.

Bun→ PZ: DP(A× Id)
σF
=⇒PDP(A× Id), for F = DP(A× Id).

PZ→MG: PDP(A× Id)
PDPι1=⇒ PDP(A× Id+ Id)

Alt→MG: D+P(A×Id)
σH◦[D(σF◦ι2),δG◦Pι1]

=⇒ PDP(A×Id+Id). Here injec-
tions go to A×Id+Id and F = A×Id+Id, G = PF , H = DG = DPF .
Again, there is no overlap between the images in the two cases.

�

We note here that some more arrows than those presented in Figure 4.2 may
exist. Our results do not provide a way of showing absence of arrows. For
instance in case of a countable label set A, we get React → Gen by the
transformation τ : (D + 1)A ⇒ D(A × Id) + 1 defined in the following way.
Fix a distribution µ ∈ DA such that spt(µ) = A. For any set X and any
φ : A → DX + 1 , define τX(φ) = ∗ if and only if φ(a) = ∗ for all a ∈ A and
otherwise, τX(φ) = ν ∈ D(A× Id) where for a ∈ A, x ∈ X

ν(a, x) =

{

0 ifφ(a) = ∗,
φ(a)(x)·µ(a)

µ[{b∈A|φ(b)6=∗}] otherwise.

The transformation τ is natural and its components are injective. However, we
can argue that this transformation can not be defined for arbitrary set A.

4.5 Conclusions and future work

We have studied a relation between the classes of coalgebras of several Set-
functors that arise naturally from the literature on probabilistic and nonde-
terministic systems. We proved a general embeddability result and used it to
establish a hierarchy of probabilistic system types. The hierarchy pictures the
expressive power of system behavior types that differ mainly in the combination
of nondeterminism and probability.

However, we lack a general way to prove that one class is strictly more expressive
than another. A deeper study of expressiveness should try to find the boundaries
by also establishing negative embeddability results. We leave this task for future
work. Some alternative characterization of what it means that one class of
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systems is embeddable in another may be helpful here. Another direction for
further research is a similar classification of essentially continuous systems, in
addition to the discrete systems that we have focused on so far.



5

Weak bisimulation

We propose a coalgebraic definition of weak bisimulation for classes
of coalgebras obtained from bifunctors in the category Set. Weak
bisimilarity for a system is obtained as strong bisimilarity of a trans-
formed system. The transformation consists of two steps: First, the
behavior on actions is expanded to behavior on finite words. Second,
the behavior on finite words is taken modulo the hiding of invisi-
ble actions, yielding behavior on equivalence classes of words closed
for silent steps. The coalgebraic definition is justified by two corre-
spondence results: one for the classical notion of weak bisimulation
of Milner, another for the notion of weak bisimulation for generative
probabilistic transition systems as advocated by Baier and Hermanns.

In this chapter we present a definition of weak bisimulation for action type
systems. A typical example of an action type system is the familiar labelled
transition system (LTS) (see, e.g., [Plo81, Mil90]), but also many types of prob-
abilistic systems (see, e.g., [LS91, SL94, GSS95, BH97, Seg95b]) fall into this
class. In order to emphasize the role of the actions we view coalgebras as arising
from bifunctors over Set.

For the verification of properties of a system strong bisimilarity is often too
strong an equivalence. Weak bisimilarity [Mil80, Mil90] is a looser equivalence on
systems that abstracts away from invisible steps; weak bisimilarity for a labelled
transition system S amounts to strong bisimilarity on the ‘double-arrowed’ sys-
tem S ′ induced by S. We exploit this idea for a general coalgebraic definition
of weak bisimulation. Our approach, given a system S, consists of two stages.

1. First, we define a ‘∗-extension’ S ′ of S which is a system with the same
carrier as S, but with action set A∗, the set of all finite words over A. The
system S ′ captures the behavior of S on finite traces.

2. Next, given a set of invisible actions τ ⊆ A, we transform S ′ into a ‘weak-
τ -extension’ S ′′ which abstracts away from τ steps. Then we define weak
bisimilarity on S as strong bisimilarity on the weak-τ -extension S ′′.

For LTS weak bisimulation is an established notion. In the context of concrete

111
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probabilistic transition systems, there have been several proposals for a notion of
weak bisimulation, often relying on the particular model under consideration.
Segala [SL94, Seg95b] proposed four notions of weak relations for his model
of simple probabilistic automata. Baier and Hermanns [BH97, Bai98, BH99]
have given a rather appealing definition of weak bisimulation for generative
probabilistic systems. Philippou, Lee and Sokolsky [PLS00] studied weak
bisimulation in the setting of the alternating model [Han91]. This work was
extended to infinite systems by Desharnais, Gupta, Jagadeesan and Panan-
gaden [DGJP02b]. The same authors also provided a metric analogue of weak
bisimulation [DGJP02a].

Here, we work in a coalgebraic framework and use the general coalgebraic ap-
paratus of bisimulation [AM89, JR96, Rut00]. For weak bisimulation in this
setting, there has been early work by Rutten on weak bisimulation for while
programs [Rut99] succeeded by a syntactic approach to weak bisimulation by
Rothe [Rot02]. In the latter paper, weak bisimulation for a particular class of
coalgebras was obtained by transforming a coalgebra into an LTS and making
use of Milner’s weak bisimulation there. This approach also enabled a defini-
tion of weak homomorphisms and weak simulation relations. Later, in the work
of Rothe and Mašulović [RM02] a complex, but interesting coalgebraic theory
was developed leading to weak bisimulation for functors that weakly preserve
pullbacks. They also consider a chosen ‘observer’ and hidden parts of a functor.
However, in the case of probabilistic and similar systems, it does not lead to
intuitive results and can not be related to the concrete notions of weak bisim-
ulation mentioned above. The so-called skip relations used in [RM02] seem to
be the major obstacle as it remains unclear how quantitative information can
be incorporated.

The two-phase approach of defining weak bisimilarity is, amplifying Milner’s
original idea, rather natural. In the category theoretical setting it has been
suggested in the context of the open map treatment of weak bisimulation on
presheaf models [FCW99]. Our proposal builds up on the intuition from con-
crete cases. We focus only on hiding actions and we provide a (parameterized)
definition of weak bisimulation for action-type coalgebras. A drawback of our
approach is that the definition of weak bisimulation is parameterized with a no-
tion of a ∗-extension that does not come from a general categorical construction
but has to be defined ad-hoc for concrete types of systems. We are able to prove,
not only for the case of labelled transition systems, but also for probabilistic
systems that our coalgebraic proposal corresponds to the concrete definitions
of [Mil90] and [BH97]. Despite the appeal of the coalgebraic definition of weak
bisimulation, proofs of correspondence results may vary from straightforward
to technically involved. For example, the relevant theorem for labelled transi-
tion systems takes less than a page, whereas proving the correspondence result
for generative probabilistic systems takes in its present form more than twenty
pages (additional machinery included).

The chapter is organized as follows: Section 5.1 presents the definition of weak
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bisimulation. We show that our definition of weak bisimilarity leads to Milner’s
weak bisimilarity for LTSs in Section 5.2. Section 5.3 is devoted to a correspon-
dence result for the class of generative systems of the notion of weak bisimilarity
of Baier and Hermanns and our coalgebraic definition. Finally, Section 5.4 draws
some conclusions.

5.1 Weak bisimulation for action-type coalgebras

In this section we present a general definition of weak bisimulation for action-
type systems. Our idea arises as a generalization of what is known from the
literature for concrete types of systems. In our opinion, a weak bisimulation on
a given system must be a strong bisimulation on a suitably transformed system
obtained from the original one.

Weak bisimulation in concrete cases deals with hiding invisible actions. There-
fore we focus on weak bisimulation for systems that can perform some actions.
Such systems are the action-type coalgebras. Recall that we have defined action-
type coalgebras in Definition 3.2.4 as triples 〈S,A, α〉 such that 〈S, α : S → FAS〉
is a coalgebra for the functor FA induced by a bifunctor F , as in Equation (3.1).
Specifying the set A in the definition of action-type coalgebras emphasizes the
set of possible actions. We denote by CoalgA

F the category of action-type coal-
gebras defined by a bifunctor F with action set A.

Before we discuss weak bisimilarity in general, we fix two examples that we will
consider in detail in this chapter: LTSs and generative probabilistic systems.
We note that LTSs are action-type coalgebras for the functor LA, derived from
the bifunctor

L = P(Id× Id).

The generative probabilistic systems are also action-type coalgebras of type GA
corresponding to the bifunctor

G = D(Id× Id) + 1.

We proceed with the definition of weak bisimulation for action-type coalgebras.
The definition consists of two phases. First we define a ∗-extended system,
that captures the behavior of the original system when extending from the
given set of actions A to A∗, the set of finite words over A. The ∗-extension
should emerge from the original system in a faithful way (which will be made
precise below). The second phase considers invisibility. Given a subset τ ⊆ A of
invisible actions, we restrict the ∗-extension to visible behavior only, by defining
a so-called, weak-τ -extended system. Then a weak bisimulation relation on the
original system is any bisimulation relation on the weak-τ -extension.

Definition 5.1.1. Let F and G be two bifunctors. Let Φ be a map assigning
to every FA coalgebra 〈S,A, α〉, a GA∗ system 〈S,A∗, α′〉, on the same state set,
such that the following conditions are met
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(1) Φ is injective, i.e. Φ(〈S,A, α〉) = Φ(〈S,A, β〉)⇒ α = β;

(2) Φ preserves and reflects bisimilarity, i.e. s ∼ t in the system 〈S,A, α〉 if
and only if s ∼ t in the transformed system Φ(〈S,A, α〉).

Then Φ is called a ∗-translation, notation Φ : F
∗
→ G, and we say that

Φ(〈S,A, α〉) is a ∗-extension of 〈S,A, α〉.

The conditions (1) and (2) in Definition 5.1.1 make sure that the original system
is “embedded” in its ∗-extension, cf. Chapter 2 and Chapter 4. The fact that a
∗-translation may lead to systems of a new type, viz. of the bifunctor G, might
seem counterintuitive at first sight. However, this extra freedom is exploited in
Section 5.3 when the starting functor is not expressive enough to allow for a
∗-extension of generative systems.

A way to obtain ∗-translations follows from a previous result. Namely, if
λ : FA⇒GA∗ is a natural transformation with injective components and the
functor FA preserves weak pullbacks, then the induced functor (see Defini-
tion 3.3.3) is a ∗-translation, according to Theorem 4.3.6. However, we shall see
later that ∗-translations emerging from natural transformations do not cover
known concrete cases.

Having extended an FA system to its ∗-extension we show how to hide invisible
actions. Let τ ⊆ A. Consider the function hτ : A∗ → (A \ τ)∗ induced by:
hτ (a) = a if a 6∈ τ and hτ (a) = ε for a ∈ τ (where ε denotes the empty word).
The function hτ is deleting all the occurrences of elements of τ in a word of A∗.
Denote by Aτ the set Aτ = (A \ τ)∗. By Lemma 3.3.2, we get the following.

Corollary 5.1.2. The transformation ητ : GA∗⇒GAτ
given by ητ

S = G〈hτ , idS〉
is natural.

Let Ψτ be the functor from CoalgA∗

G to CoalgAτ

G induced by the natural trans-
formation ητ , i.e. Ψτ (〈S,A∗, α′〉) = 〈S,Aτ , α

′′〉 for α′′ = ητ
S

◦ α′ and Ψτf = f
for any morphism f : S → T (see Definition 3.3.3). As mentioned above, the
induced functor preserves bisimilarity. The composition of a ∗-translation Φ
and the hiding functor Ψτ is denoted by Wτ = Ψτ ◦ Φ and is called a weak-τ -
translation. The resulting system is the weak-τ -extension of 〈S,A, α〉.

The transformation to a weak-τ -extension is presented in the following scheme.
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〈S,A, α〉
Φ ///o/o/o/o/o

��

〈S,A∗, α′〉
Ψτ ///o/o/o/o

��

〈S, (A \ τ)∗, α′′〉

��

FA - coalgebra

GA∗ - coalgebra

G(A\τ)∗ - coalgebra

A weak-τ -translation, or equivalently, the pair 〈Φ, τ〉, yields a notion of weak
bisimulation with respect to Φ and τ .

Definition 5.1.3. Let F , G be two bifunctors, Φ : F
∗
→ G a ∗-translation

and τ ⊆ A. Let 〈S,A, α〉 and 〈T,A, β〉 be two FA systems. A relation R ⊆
S × T is a weak bisimulation w.r.t. 〈Φ, τ〉 if and only if it is a bisimulation
between Wτ (〈S,A, α〉) and Wτ (〈T,A, β〉). Two states s ∈ S and t ∈ T are
weakly bisimilar w.r.t. 〈Φ, τ〉, notation s ≈τ t, if they are related by some weak
bisimulation w.r.t. 〈Φ, τ〉.

Next we prove that any relation ≈τ obtained in this way, satisfies the properties
that are intuitively expected from a weak bisimilarity relation.

Lemma 5.1.4. Let F , G be two bifunctors, Φ : F
∗
→ G a ∗-translation, 〈S,A, α〉

an FA-coalgebra, τ ⊆ A and let ≈τ denote the weak bisimilarity on 〈S,A, α〉
w.r.t. 〈Φ, τ〉. Then the following hold:

(i) ∼ ⊆ ≈τ for any τ ⊆ A
i.e. strong bisimilarity implies weak.

(ii) ∼ = ≈∅

i.e. strong bisimilarity is weak bisimilarity in absence of invisible actions.

(iii) τ1 ⊆ τ2⇒ ≈τ1
⊆ ≈τ2

for any τ1, τ2 ⊆ A.
i.e. the more actions are invisible, the coarser the weak bisimilarity gets.

Proof

(i) Assume s ∼ t in 〈S,A, α〉. Since Φ preserves bisimilarity (Definition 5.1.1)
we have that s ∼ t in Φ(〈S,A, α〉). Next, since Ψτ preserves bisimilarity
we get s ∼ t in Ψτ ◦ Φ(〈S,A, α〉), which by Definition 5.1.3 means s ≈τ t
in 〈S,A, α〉.

(ii) From (i) we get ∼ ⊆ ≈∅. For the opposite inclusion, note that the natural
transformation η∅ from Corollary 5.1.2 is the identity natural transforma-
tion. Therefore the induced functor Ψ∅ is the identity functor on CoalgA∗

G .
Now assume s ≈∅ t in 〈S,A, α〉. This means s ∼ t in W∅(〈S,A, α〉),
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i.e. s ∼ t in Ψ∅ ◦ Φ(〈S,A, α〉), i.e. s ∼ t in Φ(〈S,A, α〉). Since, by
Definition 5.1.1, every ∗-translation reflects bisimilarity we get s ∼ t in
〈S,A, α〉.

(iii) Let τ1 ⊆ τ2. Consider the diagram

A∗
hτ2 //

hτ1

��

(A \ τ2)
∗

(A \ τ1)
∗

hτ1,τ2

88rrrrrrrrrr

where hτ1,τ2
is the map deleting all occurrences of elements of τ2 in a word

of (A \ τ1)
∗. The diagram commutes since first deleting all occurrences of

elements of τ1 followed by deleting all occurrences of elements of τ2, in a
word of A∗ is the same as just deleting all occurrences of elements of τ2.

Denote by ητ1 , ητ2 , ητ1,τ2 the natural transformations from Corol-
lary 5.1.2, Lemma 3.3.2, corresponding to hτ1

, hτ2
, hτ1,τ2

respectively.
They make the following diagram commute.

GA∗

ητ2
+3

ητ1

��

GAτ2

GAτ1

ητ1,τ2

8@zzzzzzzz

zzzzzzzz

Since the functors Ψτ1
, Ψτ2

, Ψτ1,τ2
are induced by the natural transfor-

mations ητ1 , ητ2 , ητ1,τ2 , respectively, by Definition 3.3.3 it holds that

Ψτ2
= Ψτ1,τ2

◦ Ψτ1
(5.1)

and they all preserve bisimilarity. Now assume s ≈τ1
t in 〈S,A, α〉. This

means that s ∼ t in the system Ψτ1
◦ Φ(〈S,A, α〉). Then, since Ψτ1,τ2

preserves bisimilarity we have s ∼ t in the system Ψτ1,τ2
◦Ψτ1

◦Φ(〈S,A, α〉)
which by equation (5.1) is the system Ψτ2

◦Φ(〈S,A, α〉) and we find s ≈τ2
t

in 〈S,A, α〉.

�

For further use, we introduce some more notation. For any w ∈ Aτ , we denote
Bw = h−1

τ ({w}) ⊆ A∗. We refer to the sets Bw as blocks. Note that Bw =
τ∗a1τ

∗ · · · τ∗akτ
∗ for w = a1 . . . ak ∈ Aτ = (A \ τ)∗.

5.2 Weak bisimulation for LTSs

In this section we show that in the case of LTS there exists a ∗-translation
according to the general definition, such that weak bisimulation in the concrete
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case [Mil89] coincides with weak bisimulation induced by this ∗-translation.
First we recall the definition of concrete weak bisimulation for LTSs.

Definition 5.2.1. Let 〈S,A, α〉 be an LTS. Assume τ ∈ A is an invisible
action. An equivalence relation R ⊆ S × S is a weak bisimulation on 〈S,A, α〉
if and only if 〈s, t〉 ∈ R implies that

if s
a
−→ s′, then there exists t′ ∈ S with t

τ
−→ ∗

◦
a
−→ ◦

τ
−→ ∗t′ and 〈s′, t′〉 ∈ R

for all a ∈ A \ {τ}, and

if s
τ
−→ s′, then there exists t′ ∈ S with t

τ
−→ ∗t′ and 〈s′, t′〉 ∈ R.

Two states s and t are called weakly bisimilar if and only if they are related by
some weak bisimulation relation. Notation s ≈l t.

We now present a definition of a ∗-translation that will give us the same weak
bisimilarity relation. Let L, LA be the functors for LTSs, as introduced in
Section 5.1.

Definition 5.2.2. Let Φ assign to every LTS, i.e. any LA coalgebra 〈S,A, α〉
the LA∗ coalgebra 〈S,A∗, α′〉 where for w = a1 . . . ak ∈ A

∗,

〈a1 . . . ak, s
′〉 ∈ α′(s) ⇐⇒ s

a1−→ ◦
a2−→ ◦ · · · ◦

ak−→ s′.

We use the notation s
w
⇒ s′ for 〈w, s′〉 ∈ α′(s).

Hence, for w = a1 . . . ak, we have s
w
⇒ s′ if and only if there exist states

s1, . . . , sk−1 such that

s
a1−→ s1

a2−→ s2 · · ·
ak−1
−→ sk−1

ak−→ sk.

Furthermore, note that for a ∈ A, since no hiding applies, it holds that

s
a
−→ s′ in 〈S,A, α〉 if and only if s

a
⇒ s′ in 〈S,A, α′〉 = Φ(〈S,A, α〉)

i.e.,
〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s).

Theorem 5.2.3. The assignment Φ from Definition 5.2.2 is a ∗-translation.

Proof We need to prove that Φ is injective and reflects and preserves bisim-
ilarity. Let Φ(〈S,A, α〉) = 〈S,A∗, α′〉, Φ(〈S,A, β〉) = 〈S,A∗, β′〉 and α′ = β′.
Then

〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s) ⇐⇒ 〈a, s′〉 ∈ β′(s) ⇐⇒ 〈a, s′〉 ∈ β(s).
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Hence for any state s, α(s) = β(s), i.e., α = β.

For the reflection of bisimilarity, let s ∼ t in Φ(〈S,A, α〉) = 〈S,A∗, α′〉. Hence
there exists an equivalence bisimulation relation R such that 〈s, t〉 ∈ R and
(according to Example 3.6.8) for all w ∈ A∗,

if s
w
⇒ s′ then there exists t′ ∈ S such that t

w
⇒ t′ and 〈s′, t′〉 ∈ R.

Assume s
a
−→ s′ in 〈S,A, α〉. Then s

a
⇒ s′ in 〈S,A, α′〉 and therefore there exists

t′ ∈ S with 〈s′, t′〉 ∈ R and t
a
⇒ t′, i.e., t

a
−→ t′. Hence, R is a bisimulation on

〈S,A, α〉 i.e. s ∼ t in the original system.

For the preservation of bisimulation, let s ∼ t in 〈S,A, α〉 and let R be an

equivalence bisimulation relation such that 〈s, t〉 ∈ R. Assume s
w
⇒ s′, for some

word w ∈ A∗. We show by induction on the length of w that there exists t′

with t
w
⇒ t′ and 〈s′, t′〉 ∈ R. If w has length 0, then w = ε, s′ = s and we take

t′ = t. Assume w has length k + 1, i.e. w = a · w′ for a ∈ A,w′ ∈ A∗. Pick

s′′ such that s
a
−→ s′′

w′

⇒ s′. Since 〈s, t〉 ∈ R we can pick t′′ such that t
a
−→ t′′

and 〈s′′, t′′〉 ∈ R. By the inductive hypothesis, for w′ we can choose t′ such

that t′′
w′

⇒ t′ and 〈s′, t′〉 ∈ R. Note that t
a
−→ t′′

w′

⇒ t′, i.e., t
w
⇒ t′. Hence R is a

bisimulation on 〈S,A∗, α′) and s ∼ t holds in the ∗-extension. �

Note that if T is a functor induced by a natural transformation η and if
〈S,A, α〉, 〈S,A, β〉 are two systems such that, for some s ∈ S, α(s) = β(s),
then, clearly,

α′(s) = ηS(α(s)) = ηS(β(s)) = β′(s) (5.2)

for 〈S,A, α′〉 = T (〈S,A, α〉, 〈S,A, β′〉 = T (〈S,A, β〉.

However, the following simple example shows that the ∗-translation Φ from
Definition 5.2.2 violates (5.2), and therefore it can not be induced by a natural
transformation.

Example 5.2.4. Let S = {s1, s2, s3} and A = {a, b, c}. Consider the LTSs:

〈S,A, α〉 : s1
a
−→ s2

b
−→ s3 and 〈S,A, β〉 : s1

a
−→ s2

c
−→ s3.

Obviously α(s1) = β(s1). However, α′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ab, s3〉} while
β′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ac, s3〉}.

We next show that the coalgebraic and the concrete definitions coincide in the
case of LTS.

Theorem 5.2.5. Let 〈S,A, α〉 be an LTS. Let τ ∈ A be an invisible action and
s, t ∈ S any two states. Then s ≈{τ} t according to Definition 5.1.3 w.r.t the
pair 〈Φ, {τ}〉 if and only if s ≈l t according to Definition 5.2.1.

Proof Assume s ≈{τ} t for s, t ∈ S of an LTS 〈S,A, α〉. This means that s ∼ t

in the LTS 〈S,A{τ}, η
{τ}
S

◦α′〉, i.e., there exists an equivalence bisimulation R on
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this system with 〈s, t〉 ∈ R. As usual, α′ is such that 〈S,A∗, α′〉 = Φ(〈S,A, α〉).

Here we have η
{τ}
S = L(h{τ}, idS) = P(h{τ}, idS) and

(η
{τ}
S

◦ α′)(s) = η
{τ}
S (α′(s))

= P(〈h{τ}, idS〉)(α
′(s))

= {〈h{τ}(w), s′〉 | 〈w, s′〉 ∈ α′(s)}

= {〈u, s′〉 | ∃w ∈ Bu : s
w
⇒ s′}

We denote the transition relation of the weak-τ -system 〈S,A{τ}, η
{τ}
S

◦ α′〉 by
⇒ τ . The above shows that for any word w = a1 . . . ak ∈ Aτ

s
w
⇒ τ s

′ ⇐⇒ 〈w, s′〉 ∈ (η
{τ}
S

◦α′)(s) ⇐⇒ ∃v ∈ Bw = τ∗a1τ
∗ . . . τ∗akτ

∗ : s
v
⇒ s′.

We will show that the relation R is a weak bisimulation on 〈S,A, α〉 according

to Definition 5.2.1. Let s
a
−→ s′ (a 6= τ). Then s

a
⇒ s′, implying s

a
⇒ τ s

′. Since

R is a bisimulation on the weak-τ -system, there exists t′ such that t
a
⇒ τ t

′ and
〈s′, t′〉 ∈ R. We only need to note here that

a
⇒ τ =

τ
−→ ∗

◦
a
−→ ◦

τ
−→ ∗. In case

s
τ
−→ s′ we have s

τ
⇒ s′ implying now s

ε
⇒ τs

′. Hence, there exists t′ such that
t

ε
⇒ τ t

′ and 〈s′, t′〉 ∈ R. Since
ε
⇒ τ =

τ
−→ ∗, we have proved that R is a weak

bisimulation on 〈S,A, α〉 according to Definition 5.2.1.

For the opposite, let R be a weak bisimulation on 〈S,A, α〉 according to Def-
inition 5.2.1 such that 〈s, t〉 ∈ R. It is easy to show by induction that for all

〈s, t〉 ∈ R and for any a ∈ A, if s
τ
−→ ∗

◦
a
−→ ◦

τ
−→ ∗s′ then there exists t′ such

that t
τ
−→ ∗

◦
a
−→ ◦

τ
−→ ∗t′ and 〈s′, t′〉 ∈ R. Hence, if s

a
⇒ τ s

′ then there exists t′

with t
a
⇒ τ t

′ and 〈s′, t′〉 ∈ R. Based on this, another simple inductive argument

on k leads to the conclusion that for any word w = a1 . . . ak ∈ Aτ , if s
w
⇒ τ s′

then there exists a t′ such that t
w
⇒ τ t

′ and 〈s′, t′〉 ∈ R, i.e. R is a bisimulation
on the weak-τ -system and hence s ≈{τ} t. �

5.3 Weak bisimulation for generative systems

In this section we deal with generative systems and their weak bisimilarity.
We first focus on the concrete definition of weak bisimulation by Baier and
Hermanns [BH97, Bai98, BH99]. Inspired by it, we provide a functor that
suits for a definition of a ∗-translation for generative systems. This way we
obtain a coalgebraic definition of weak bisimulation for this type of systems.
We show that our definition, although at first sight much stronger, coincides
with the definition of Baier and Hermanns. Unlike in the case of LTSs, here the
∗-translation leaves the class of generative systems.

We have dealt with generative systems in the previous chapters, and we have
seen that they can also be cast into action-type coalgebras. A different nota-
tion than the one via a transition function is also possible and common in the
literature. In this section we will interchangeably use both notations.
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Remark 5.3.1. A generative probabilistic system can also be defined as a triple
〈S,A,P〉 where S and A are sets and P : S × A× S → [0, 1] with the property
that for s ∈ S,

∑

a∈A, s′∈S

P(s, a, s′) ∈ {0, 1}. (5.3)

We speak of P as the probabilistic transition relation. Condition (5.3) states
that for all s ∈ S, P(s, , ) is either a distribution over A×S or P(s, , ) ≡ 0, i.e.

s is a terminating state. As usual one writes s
a[p]
−→ s′ whenever P(s, a, s′) = p,

and s
a
−→ s′ for P(s, a, s′)> 0.

The definition of bisimulation for generative systems can also be reformulated
differently. Let 〈S,A,P〉 be a generative system. An equivalence relation R ⊆
S×S is a (strong) bisimulation on 〈S,A,P〉 if and only if 〈s, t〉 ∈ R implies that
for all a ∈ A and for all equivalence classes C ∈ S/R

P(s, a, C) = P(t, a, C). (5.4)

Here we have put P(s, a, C) =
∑

s′∈C P(s, a, s′). Two states s and t are bisimilar
if and only if they are related by some bisimulation relation.

This section is divided into several parts that lead to the correspondence result:
First we introduce paths in a generative system and establish some notions and
properties of paths. Next we define a measure on the set of paths, where we
basically follow the lines of Baier and Hermanns [BH99, Bai98]. Furthermore,
we present the definition of weak bisimulation by Baier and Hermanns, and we
prove some properties of weak bisimulation relations that will be used later on
(without restricting to finite state systems). Then we define a translation and
prove that it is a ∗-translation which therefore provides us with a notion of
weak-τ -bisimulation. The final part is devoted to the proof of correspondence
of the notion of weak-τ -bisimulation defined by means of the given ∗-translation
and the concrete notion by Baier and Hermanns.

5.3.1 Paths and cones in a generative system

Let 〈S,A,P〉 be a generative system. A finite path π of 〈S,A,P〉 is an al-
ternating sequence 〈s0, a1, s1, a2, . . . , ak, sk〉, where k ∈ N0, si ∈ S, ai ∈ A,
and P(si−1, ai, si) > 0, i = 1, . . . , k. We will denote a finite path π =
〈s0, a1, s1, a2, . . . , ak, sk〉 more suggestively by

s0
a1−→ s1

a2−→ s2 · · · sk−1
ak−→ sk .

Moreover, set

length(π) = k, first(π) = s0, last(π) = sk, trace(π) = a1a2 · · · ak .

The path εs0
= (s0) will be understood as the empty path starting at s0. We

will often write just ε for an arbitrary empty path. Similar to the finite case,
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an infinite path π of 〈S,A,P〉 is an infinite sequence 〈s0, a1, s1, a2, . . .〉, where
si ∈ S, ai ∈ A and P(si−1, ai, si)> 0, i ∈ N, and will be written as

s0
a1−→ s1

a2−→ s2 · · ·

Again we set first(π) = s0. A path π is called complete if it is either infinite or
it is finite with last(π) a terminating state.

The sets of all (finite or infinite) paths, of all finite paths and of all complete
paths will be denoted by Paths, FPaths and CPaths, respectively. Moreover, if
s ∈ S, we write

Paths(s) =
{

π ∈ Paths | first(π) = s
}

,
FPaths(s) =

{

π ∈ FPaths | first(π) = s
}

,
CPaths(s) =

{

π ∈ CPaths | first(π) = s
}

.

The set Paths(s) is partially ordered in a natural way by the prefix relation
which is defined as follows. For π, π′ ∈ Paths(s) we have π � π′ if and only if
one of (a), (b) or (c) holds:

(a) Both, π and π′, are finite, say π ≡ s
a1−→ s1 · · ·

ak−→ sk, π′ ≡

s
a′
1−→ s′1 · · ·

a′
n−→ s′n, and we have

k ≤ n and si = s′i, ai = a′i, i ≤ k .

(b) π is a finite and π′ an infinite path, say π ≡ s
a1−→ s1 · · ·

ak−→ sk, π′ ≡

s
a′
1−→ s′1

a′
2−→ s′2 · · · , and we have

si = s′i, ai = a′i, i ≤ k .

(c) π = π′.

The complete paths are exactly the maximal elements in this partial order. For
every π ∈ Paths(s), there exists a π′ ∈ CPaths(s) such that π � π′.

The following statement will be used at several occasions throughout this sec-
tion.

Lemma 5.3.2. For any state s ∈ S, the set FPaths(s) is at most countable.

Proof We first show, by induction on the length of paths, that for any fixed
natural number k the number of finite paths that start in s and have length k
is at most countable. For k = 1 the statement follows from the fact that
P(s, , ) is a probability distribution on A × S which implies that it has at
most countable support set (Proposition 2.1.2), i.e. P(s, a, s′) > 0 for at most
countably many pairs 〈a, s′〉 ∈ A × S. Consider paths of length n + 1. By the
inductive hypothesis there are at most countably many paths of length n. Each
of these can be extended to a path of length n + 1 in at most countably many
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ways, hence the number of paths of length n+ 1 is also countable. Finally, the
statement follows since FPaths(s) =

⋃

k∈N0
{π ∈ FPaths(s) | length(π) = k}.

�

For a finite path π ∈ FPaths(s), let π↑ denote the set

π↑ = {ξ ∈ CPaths(s) | π � ξ}

also called the cone of complete paths generated by the finite path π.

Note that always π↑ 6= ∅. Let

Γ =
{

π↑ | π ∈ FPaths(s)
}

⊆ P(CPaths(s))

denote the set of all cones. By Lemma 5.3.2 this set is at most countable. For the
study of weak bisimulation in generative systems a thorough understanding of
the geometry of cones is crucial. First of all let us state the following elementary
property:

Lemma 5.3.3. Let π1, π2 ∈ FPaths(s). Then the cones π1 ↑ and π2 ↑ are
either disjoint or one is a subset of the other. In fact,

π1↑ ∩ π2↑ =











π2↑ if π1 � π2

π1↑ if π2 � π1

∅ if π1 6� π2 and π2 6� π1

Moreover, we have π1↑ = π2↑ if and only if either

π1 ≡ s
a1−→ · · ·

ak−→ sk, π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ sk+1 · · ·

an−→ sn (5.5)

and thereby
P(si−1, ai, si) = 1, i = k + 1, . . . , n (5.6)

or vice-versa.

Proof Let π̂ ∈ π1↑ ∩ π2↑ , π̂ ∈ CPaths(s). Then π1 � π̂ and π2 � π̂. This, by
the definition of the prefix ordering, implies that π1 � π2 or π2 � π1. Assume
π1 � π2. Then

π ∈ π2↑ ⇐⇒ π2 � π =⇒ π1 � π ⇐⇒ π ∈ π1↑

i.e., π2↑ ⊆ π1↑ and therefore π1↑ ∩ π2↑ = π2↑ .

It is clear that (5.5) and (5.6) imply π1↑ = π2↑ . Assume π1↑ = π2↑ . Then
π1 ↑ ∩ π2 ↑ 6= ∅ and therefore π1 � π2 or π2 � π1. Assume π1 � π2, π1 ≡

s
a1−→ · · ·

ak−→ sk, π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ sk+1 · · ·

an−→ sn. If for some i ∈ {k+
1, . . . , n} it happens that P(si−1, ai, si) < 1, then there exists an action a′i ∈ A
and a state s′i ∈ S such that 〈a′i, s

′
i〉 6= 〈ai, si〉 and

π′
2 ≡ s

a1−→ · · ·
ai−1
−→ si−1

a′
i−→ s′i
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is a path in 〈S,A,P〉. Since i ≥ k + 1 we have π1 � π′
2. However, this path

is not prefix related to π2, i.e., we have π′
2 6� π2 and π2 6� π′

2. Therefore
π′

2↑ ∩ π1↑ = π′
2↑ and π′

2↑ ∩ π2↑ = ∅ contradicting π1↑ = π2↑ . �

Let Π ⊆ FPaths(s). We say that Π is minimal if for any two π1, π2 ∈ Π, π1 6= π2,
we have π1 ↑ ∩ π2 ↑ = ∅. Hence in a minimal set of paths Π no path of Π is
a proper prefix of another path of Π. We will express that Π is minimal by
writing min(Π). As example note that every singleton set {π}, π ∈ FPaths(s),
is minimal.

For Π ⊆ FPaths(s) we denote by Π↑ the set

Π↑ =
⋃

π∈Π

π↑ .

Then the fact min(Π) just means that Π↑ is actually the disjoint union of all
π↑ , π ∈ Π, i.e.

min(Π) ⇐⇒ Π↑ =
⊔

π∈Π

π↑ ,

where, here and in the sequel, the symbol t denotes disjoint union. It is an
immediate consequence of the definition that,

min(Π), Π′ ⊆ Π =⇒ min(Π′).

If Π1 and Π2 are minimal, their union need not necessarily be minimal, even if
Π1 ∩Π2 = ∅. We will use the notation

Π =
⊎

i∈I

Πi

to express that

Πi ⊆ FPaths(s), i ∈ I, Π =
⊔

i∈I

Πi and min(Π) .

Note that if Π =
⊎

i∈I Πi, also min(Πi) for all i ∈ I. In particular this notation
applies to minimal subsets Π written as the union of their one-element subsets:

min(Π) =⇒ Π =
⊎

π∈Π

{π}.

Observe that the following properties hold:

1. If Π =
⊎

i∈I Πi, then

Π↑ =
⊔

i∈I

Πi↑ =
⊔

i∈I,π∈Πi

π↑ .



124 Chapter 5 Weak bisimulation

2. We have Π =
⊎

i∈I Πi if and only if

(a) ∀i ∈ I : min(Πi),

(b) ∀i, j ∈ I : i 6= j =⇒ Πi ∩Πj = ∅, and

(c) ∀i, j ∈ I : i 6= j =⇒ ∀πi ∈ Πi,∀πj ∈ Πj : πi 6� πj , πj 6� πi.

Lemma 5.3.4. Let Π ⊆ FPaths(s). Then there exists a unique set Π ↓ ⊆
FPaths(s), such that

(i) Π↓ ⊆ Π, min(Π↓ ), and

Π↑ =
(

Π↓
)

↑ .

(ii) For every set Π′ ⊆ FPaths(s) which possesses the property (i), we have

∀π′ ∈ Π′, ∃π ∈ Π↓ : π � π′.

Proof Let Π ⊆ FPaths(s). Take

Π↓ = {π ∈ Π | ∀π′ ∈ Π : π′ 6≺ π}.

If Π 6= ∅, then Π↓ 6= ∅ since ≺ is an order relation and there are no infinite
prefix descending sequences. The set Π ↓ is minimal by construction. Also
Π↓ ⊆ Π implying (Π↓ )↑ ⊆ Π↑ . Moreover ∀π ∈ Π,∃π′ ∈ Π↓ : π′ � π. Hence,
by Lemma 5.3.3, for any π ∈ Π, there exists π′ ∈ Π↓ such that π↑ ⊆ π′↑ i.e.
Π↑ ⊆ (Π↓ )↑ and we have shown (i).

Let Π′ be a set that satisfies (i), i.e., Π′ ⊆ Π, min(Π′) and Π↑ = Π′ ↑ . Let
π′ ∈ Π′. Then π′ ∈ Π and as noted before there exists π ∈ Π↓ such that π � π′,
proving (ii). The uniqueness follows from (ii) and the minimality of Π↓ . �

5.3.2 The measure Prob

Our first task is to construct out of P a probability measure on a certain σ-
algebra on CPaths(s). This method was used in [BH99, Bai98], and before
that in [Seg95b]. However, for the convenience of the reader we shall give
complete proofs. As a standard reference for measure theoretic notions and
results we use the monograph [Zaa58]. A famous measure theoretic theorem is
the extension theorem which states that any pre-measure (σ-additive, monotone
function with value zero for the empty set) on a semi-ring extends in a unique
way to a measure on the σ-field generated by the semi-ring. Slightly different
versions of this theorem apply to different definitions of the notion “semi-ring”.
For our purposes, the definition of a semi-ring from [Zaa58] fits best. Namely,
a family of subsets of a given set S is a semi-ring if it contains the empty set,
is closed under intersection and the set difference of any two of its elements is a
disjoint union of at most countably many elements of the semi-ring. Therefore
we refer to [Zaa58] rather than to more popular texts such as [Hal50].
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Lemma 5.3.5. The set Γ ∪ {∅} is a semi-ring.

Proof Clearly, Γ∪{∅} contains the empty set and it is closed under intersection,
by Lemma 5.3.3. We need to check that the set-difference of any two of its
elements is a disjoint union of at most countably many elements of Γ∪{∅}. Let
π1↑ , π2↑ ∈ Γ. We consider π1↑ \ π2↑ . Since π1↑ \ π2↑ = π1↑ \ (π1↑ ∩ π2↑ ),
by Lemma 5.3.3, the only interesting case is π1↑ ∩ π2↑ = π2↑ i.e. π1 � π2.

Let

π1 ≡ s
a1−→ · · ·

ak−→ sk, π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ sk+1 · · ·

an−→ sn

and put

Π = {π | π ≡ s
a1−→ · · ·

am−→ sm
a
−→ s′, k ≤ m<n, s

a1−→ · · ·
am−→ sm ≺ π2, π 6≺ π2}.

Then π1↑ \ π2↑ = Π↑ = ∪π∈Π π↑ and the union is at most countable since the
set Π is at most countable by Lemma 5.3.2. �

Now we are ready to introduce the desired extension of P to a measure. By
Lemma 5.3.3 a function Prob : Γ ∪ {∅} → [0, 1] is well defined by

Prob(C) =



















P(s, a1, s1) · . . . · P(sk−1, ak, sk) ,
C = π↑ with k ≥ 1,
π = s

a1→ s1 · · · sk−1
ak→ sk

1 , C = ε↑ = CPaths(s)

0 , C = ∅

Lemma 5.3.6. The function Prob is a pre-measure1 on the semi-ring Γ∪ {∅}.

Proof The proof of this property is a reformulation of the proof by
Segala [Seg95b]. By definition Prob(∅) = 0. We need to check σ-additivity
and monotonicity.

For the σ-additivity, assume

π↑ =
⊔

i∈I

πi↑ (5.7)

for some at most countable index set I. We need to show that Prob(π ↑ ) =
∑

i∈I Prob(πi↑ ).

If π is a terminating path, then |I| = 1 and the property is trivially satisfied.
Therefore we assume that π is not terminating and that |I|>1. Let {πo | o ∈ O}
be the set of paths that extend π in one step, which means that

∀o ∈ O : π ≺ πo, length(πo) = length(π) + 1. (5.8)

Then
π↑ =

⊔

o∈O

πo↑ (5.9)

1In [Zaa58] pre-measures are also called measures.
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and
∑

o∈O

Prob(πo↑ ) =
∑

a∈A,s′∈S

Prob(π↑ ) · P(last(π), a, s′)

= Prob(π↑ ) ·
∑

a∈A,s′∈S

P(last(π), a, s′)

= Prob(π↑ ) (5.10)

since π does not end in a terminating state, i.e.
∑

a∈A,s∈S P(last(π), a, s) = 1.

By the assumption (5.7) we have that

∀i ∈ I : π � πi. (5.11)

Moreover, from (5.7) and (5.9), using Lemma 5.3.3 we easily conclude that

∀i ∈ I,∃!o ∈ O : πo � πi (5.12)

and
∀o ∈ O,∃i ∈ I : πo � πi. (5.13)

Let
Io = {i ∈ I | πo � πi}.

From (5.12) and (5.13), we get that

I =
⊔

o∈O

Io and πo↑ =
⊔

i∈Io

πi↑ for o ∈ O. (5.14)

We will now define a partial function, depth, that assigns to some finite paths
an ordinal number, by a maximal assignment following the following rules:

If ξ ∈ FPaths(s) is such that πi � ξ for some i ∈ I, then depth(ξ) = 0. If
ξ ∈ FPaths(s) ∩ CPaths(s) i.e. ξ terminates, then also depth(ξ) = 0. If ξ is
a finite path that has not yet assigned depth, but all its one step successors
{ξ′ | ξ � ξ′, length(ξ′) = length(ξ) + 1} have assigned depth then put

depth(ξ) = sup{depth(ξ′) | ξ � ξ′, length(ξ′) = length(ξ) + 1}+ 1. (5.15)

We first show, by reducing to contradiction, that our starting finite path π
has been assigned a value for depth. Assume that π has not been assigned
a value for depth. Let π0 = π. For each i > 0 let πi be a path such that
length(πi) = length(πi−1) + 1, πi−1 � πi and πi has not been assigned a value
for depth. Such a chain under the prefix ordering exists since if for some i all
paths that extend πi in one step would had been assigned depth, then πi would
also have been assigned a depth. Consider the infinite complete path π∞ such
that for all i > 0, πi � π∞. By definition π∞ ∈ π↑ . By (5.7), there exists i ∈ I
such that π∞ ∈ πi↑ , implying that πi � π

∞ and hence πi = πn for some n ≥ 0.
However, then depth(πn) = depth(πi) = 0 contradicting that πn has no value
for depth assigned.
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Let depth(π) = α. If α = 0 then |I| = 1 and σ-additivity trivially holds.
Assume α is a successor or limit ordinal and assume that σ-additivity holds for
any finite path ξ with depth(ξ)< α. Then we get

Prob(π↑ )
(5.10)
=

∑

o∈O

Prob(πo↑ )

(I.H.)
=

∑

o∈O

∑

i∈Io

Prob(πi↑ )

(5.14)
=

∑

i∈I

Prob(πi↑ ).

where the inductive hypothesis is applicable since by (5.15) and (5.8),
depth(πo)< α for all o ∈ O. This completes the proof of σ-additivity.

The function Prob is monotonic by definition: Assume π1↑ ⊆ π2↑ . Then, by
Lemma 5.3.3, two things are possible. Either π2 ≺ π1 and since P(s, a, t) ≤ 1 for
all s, t ∈ S, a ∈ A, from the definition of Prob we get Prob(π1↑ ) ≤ Prob(π2↑ ),
or π1↑ = π2↑ , in which case Prob(π1↑ ) = Prob(π2↑ ). �

Corollary 5.3.7. The function Prob extends uniquely to a probability measure
on the σ-algebra on CPaths(s) generated by Γ∪{∅}. We will denote this measure
again by Prob.

Remark 5.3.8. Note that, although paths are more or less just sequences of
elements of S and A, not only the function Prob itself, but also the σ-algebra
where it is defined and in fact already the base set CPaths(s) depends heavily
on P. At first sight this might seem to be an undesirable fact, however, a second
look at the matters shows that it cannot be avoided.

The measure Prob induces a set-function on finite paths, which we will also
denote by Prob. Define Prob : P(FPaths(s))→ [0, 1] by

Prob(Π) = Prob(Π↑ ).

This notation is not in conflict with the already existing notation of the mea-
sure Prob. In fact, P(FPaths(s)) ∩ P(CPaths(s)) consists entirely of Prob-
measurable sets and on such sets both definitions coincide. To see this,
note that if π ∈ FPaths(s) ∩ CPaths(s), then π ↑ = {π}. Thus, if Π ∈
P(FPaths(s)) ∩ P(CPaths(s)), we have

Π =
⊔

π∈Π

{π} =
⊔

π∈Π

π↑ = Π↑ ,

and this union is at most countable.

It will always be clear from the context whether we mean the measure Prob or
the just defined set-function Prob. Still, there is a word of caution in order:
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The function Prob : P(FPaths(s))→ [0, 1] is in general not additive. However,
looking at the notations introduced above, we find that

Π =
⊎

i∈I

Πi =⇒ Prob(Π) =
∑

i∈I

Prob(Πi) .

In particular, we obtain that Prob(Π) =
∑

π∈Π Prob(π ↑ ) for every minimal
set Π. Moreover, by Lemma 5.3.4, we always have

Prob(Π) = Prob(Π↓ ) .

We next introduce some particular sets of paths. For s ∈ S, S ′, S′′ ⊆ S with
S′ ⊆ S′′, and W,W ′ ⊆ A∗ with W ⊆W ′, denote

s
W
→¬W ′

¬S′′

S′ =
{

π ∈ FPaths(s) |
last(π) ∈ S′, trace(π) ∈W

∀ ξ ≺ π : trace(ξ) ∈W ′ ⇒ last(ξ) 6∈ S′′

}

and write Prob(s,W,¬W,S′,¬S′′) = Prob(s
W
→¬W ′

¬S′′

S′). Since S′ ⊆ S′′ and

W ⊆ W ′ we always have min(s
W
→¬W ′

¬S′′

S′). For notational convenience we will

drop redundant arguments whenever possible. Put

s
W
→¬W ′ S′ = s

W
→¬W ′

¬S′

S′,

s
W
→¬S′′ S′ = s

W
→¬W

¬S′′
S′,

s
W
→ S′ = s

W
→¬W

¬S′
S′ ,

(5.16)

and, correspondingly,

Prob(s,W,¬W ′, S′) = Prob(s,W,¬W ′, S′,¬S′),
Prob(s,W, S′,¬S′′) = Prob(s,W,¬W,S′,¬S′′),
Prob(s,W, S′) = Prob(s,W,¬W,S′,¬S′) .

(5.17)

Note that

s
W
→ S′ =

{

π ∈ FPaths(s) | last(π) ∈ S′, trace(π) ∈W
}

↓ .

Let S′, S′′,W,W ′ be as above and let moreover F ⊆ S be given. Then denote

F
W
→¬W ′

¬S′′

S′ =
⊔

s∈F

s
W
→¬W ′

¬S′′

S′ ⊆ FPaths

We will often encounter the situation that for every s ∈ F the value of
Prob(s,W,¬W ′, S′,¬S′′) is the same. In this case we speak of this value as
Prob(F,W,¬W ′, S′,¬S′′). Also, in this context, we shall freely apply shorten-
ing of notation as in (5.16) and (5.17).

Next we define sets of concatenated paths. For Π ⊆ FPaths, put

first(Π) = {first(π) | π ∈ Π}, last(Π) = {last(π) | π ∈ Π} .
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If Π1,Π2 ⊆ FPaths and last(Π1) = first(Π2), we define

Π1 ·Π2 =
{

π1 · π2 | π1 ∈ Π1, π2 ∈ Π2, last(π1) = first(π2)
}

,

where π1 · π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ · · ·

an−→ sn for π1 ≡ s
a1−→ · · ·

ak−→ sk and

π2 ≡ sk
ak+1
−→ · · ·

an−→ sn. Note that, whenever a concatenation π1 · π2 is defined,
we have Prob({π1 · π2}) = Prob({π1}) · Prob({π2}).

The next technical proposition will be used at several occasions in this chapter.

Proposition 5.3.9. Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths with last(Π1) =
first(Π2) and assume that this set is represented as a disjoint union

last(Π1) = first(Π2) =
⊔

i∈I

Si .

Denote Π1,Si
= {π1 ∈ Π1 | last(π1) ∈ Si}, Π2,t = {π2 ∈ Π2 | first(π2) = t}.

Assume that for every i ∈ I

Prob(Π2,t′) = Prob(Π2,t′′), t
′, t′′ ∈ Si .

Moreover, assume that Π1,Π2 and Π1 ·Π2 are minimal. Then, for every choice
of (ti)i∈I ∈

∏

i∈I Si, we have

Prob(Π1 ·Π2) =
∑

i∈I

Prob(Π1,Si
) · Prob(Π2,ti

) .

Proof Denote by Π2,Si
= {π2 ∈ Π2 | first(π2) ∈ Si} and by Π1,t = {π1 ∈ Π1 |

last(π1) = t}. Under the assumptions of the proposition, we have

Prob(Π1 ·Π2) = Prob(
⊎

π∈Π1·Π2

π↑ )

= Prob(
⊎

i∈I

(
⊎

π∈Π1,Si
·Π2,Si

π↑ ))

= Prob(
⊎

i∈I

(
⊎

t∈Si

(
⊎

π∈Π1,t·Π2,t

π↑ )))

=
∑

i∈I

∑

t∈Si

∑

π∈Π1,t·Π2,t

Prob(π↑ )

Since, by minimality, Π1,t ×Π2,t
∼= Π1,t ·Π2,t via (π1, π2) 7→ π1 · π2, we have

∑

π∈Π1,t·Π2,t

Prob(π↑ ) =
∑

(π1,π2)∈Π1,t×Π2,t

Prob(π1 · π2↑ )

=
∑

π1∈Π1,t

∑

π2∈Π2,t

Prob(π1↑ ) Prob(π2↑ )

=
∑

π1∈Π1,t

Prob(π1↑ ) ·
∑

π2∈Π2,t

Prob(π2↑ )

= Prob(Π1,t) · Prob(Π2,t) .
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Since, by assumption, for every i ∈ I the value of Prob(Π2,t) does not depend
on t ∈ Si, it follows that

Prob(Π1 ·Π2) =
∑

i∈I

∑

t∈Si

Prob(Π1,t) · Prob(Π2,t)

=
∑

i∈I

(

Prob(Π2,ti
) ·

∑

t∈Si

Prob(Π1,t)
)

=
∑

i∈I

Prob(Π2,ti
) Prob(Π1,Si

) .

�

It is worth to explicitly note the particular case of this proposition when |I| = 1.

Corollary 5.3.10. Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths with last(Π1) =
first(Π2). Let Π2,t = {π2 ∈ Π2 | first(π2) = t}. Then, if min(Π1), min(Π2)
and min(Π1 · Π2), and if for any t′, t′′ ∈ first(Π2), Prob(Π2,t′) = Prob(Π2,t′′),
we have that

Prob(Π1 ·Π2) = Prob(Π1) · Prob(Π2,t)

for arbitrary t ∈ first(Π2).

For further reference, we state the following simple property.

Proposition 5.3.11. Consider a generative system 〈S,A,P〉. Let s ∈ S, W ⊆
A∗ and S′ ⊆ S such that it partitions as S′ = ti∈ISi. Then

Prob(s,W, S′) =
∑

i∈I

Prob(s,W, Si,¬S
′).

Proof It holds that
s

W
−→S′ =

⊎

i∈I

s
W
−→ ¬S′Si.

�

5.3.3 The concrete weak bisimulation

In this subsection we recall the original definition of weak bisimulation for gen-
erative systems by Baier and Hermanns and we establish some properties of the
weak bisimulation relations that are essential for the correspondence result of
Section 5.3.5 below.

Definition 5.3.12. [BH97, Bai98, BH99] Let 〈S,A,P〉 be a generative system.
Let τ ∈ A be an invisible action. An equivalence relation R ⊆ S × S is a weak
bisimulation on 〈S,A,P〉 if and only if 〈s, t〉 ∈ R implies that for all actions
a ∈ A \ {τ} and for all equivalence classes C ∈ S/R:

Prob(s, τ∗aτ∗, C) = Prob(t, τ∗aτ∗, C) (5.18)
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and for all C ∈ S/R:

Prob(s, τ∗, C) = Prob(t, τ∗, C). (5.19)

Two states s and t are weakly bisimilar if and only if they are related by some
weak bisimulation relation. Notation s ≈g t.

Note the analogy between the transfer conditions (5.18), (5.19) and (5.4). We
borrow the next proposition from Baier and Hermanns, [Bai98, BH99].

Proposition 5.3.13. Let 〈S,A,P〉 be a generative system and let s ≈g t. If R
is a weak bisimulation relating s and t, then for all a1, . . . , ak ∈ A \ {τ} and for
all classes C ∈ S/R

Prob(s, τ∗a1τ
∗ . . . τ∗akτ

∗, C) = Prob(t, τ∗a1τ
∗ . . . τ∗akτ

∗, C).

Proof Let R be a weak bisimulation on 〈S,A,P〉 such that 〈s, t〉 ∈ R. We prove
the property by induction on k. For k ∈ {0, 1} the property holds by Defini-
tion 5.3.12. Let B = τ∗a1τ

∗ . . . τ∗akτ
∗. Assume Prob(s,B,C) = Prob(t, B,C)

for all C ∈ S/R and let B′ = τ∗a1τ
∗ . . . τ∗akτ

∗ak+1τ
∗. We have

s
B′

−→C =
⊎

C′∈S/R

s
B
−→C ′ · C ′ τ∗ak+1τ∗

−→ C

and, sinceR is a weak bisimulation, for any class C ′ ∈ S/R and for any t′, t′′ ∈ C ′

we have Prob(t′, τ∗ak+1τ
∗, C) = Prob(t′′, τ∗ak+1τ

∗, C) and we may write this
common value as Prob(C ′, τ∗ak+1τ

∗, C). Hence, we may apply Corollary 5.3.10
and we get,

Prob(s,B′, C) =
∑

C′∈S/R

Prob(s,B,C ′) · Prob(C ′, τ∗ak+1τ
∗, C)

(IH)
=

∑

C′∈S/R

Prob(t, B,C ′) · Prob(C ′, τ∗ak+1τ
∗, C)

= Prob(t, B′, C).

�

Let R be a weak bisimulation on 〈S,A,P〉 . Define a relation → on S/R by

C1 → C2 ⇐⇒ Prob(C1, τ
∗, C2) = 1

and denote by ↔ the equivalence closure of →, i.e., ↔= (→ ∪ ←)∗.

A weak bisimulation on 〈S,A,P〉 is called complete, if Prob(C1, τ
∗, C2) =

1 ⇐⇒ C1 = C2 for all classes C1, C2 ∈ S/R. Hence, if R is a complete
weak bisimulation then for any two different classes C1, C2 ∈ S/R it holds that
Prob(C1, τ

∗, C2)< 1.

The next result is also stated in [BH99] and is used for the correspondence result
below.
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Proposition 5.3.14. Let 〈S,A,P〉 be a generative system and let s ≈g t. Then
there exists a complete weak bisimulation R relating s and t.

We will gradually build up the proof of Proposition 5.3.14, by a sequence of
lemmas showing properties of the → relation.

Lemma 5.3.15. The relation → corresponding to a weak bisimulation R is
reflexive and transitive.

Proof Reflexivity follows since ε ∈ C
τ∗

−→C for any class C. Namely, this
implies that 1 = Prob(ε) ≤ Prob(C, τ ∗, C) ≤ 1 and hence C → C for any class
C.

Assume C1 → C2 and C2 → C3. It is important to note that for any s ∈ C1,

(s
τ∗

−→C2 · C2
τ∗

−→C3)↑ ⊆
⋃

{π↑ | first(π) = s, trace(π) ∈ τ ∗, last(π) ∈ C3}

since every cone that contributes to the left-hand-side also contributes to the
right-hand-side. Now, as in the proof of Proposition 5.3.13, using Corol-
lary 5.3.10 and the fact that s ∈ C1, we get

Prob((s
τ∗

−→C2 · C2
τ∗

−→C3)↑ ) = Prob(s
τ∗

−→C2 · C2
τ∗

−→C3)

= Prob(s
τ∗

−→C2) · Prob(C2
τ∗

−→C3)

= 1

and

Prob(
⋃

{π↑ | first(π) = s, trace(π) ∈ τ ∗, last(π) ∈ C3}) = Prob(C1
τ∗

−→C3).

Hence, 1 ≤ Prob(C1
τ∗

−→C3), i.e. Prob(C1
τ∗

−→C3) = 1. �

We next investigate in more detail the behavior of the → relation.

Lemma 5.3.16. Let R be a weak bisimulation on 〈S,A,P〉. Let C1, C2, C3 be
different elements of S/R and assume C1 → C2. Then either (i) or (ii) holds.

(i) ∀π ∈ C1
τ∗

−→C3,∃π
′ ∈ C1

τ∗

−→C2 : π′ ≺ π,
i.e. all τ∗ paths from C1 to C3 pass C2.

(ii) C3 → C2

Proof Assume C1 → C2 and not (i). Let π ∈ C1
τ∗

−→C3 be a path that does
not pass C2. Let s = first(π). Since Prob(s, τ ∗, C2) = 1, also

Prob(π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑ ) = 1
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implying that, by additivity and Prob(π↑ )> 0,

π↑ ∩
⊎

π̄∈s
τ∗

−→C2

π̄↑ 6= ∅

i.e., there exists π̄ ∈ s
τ∗

−→C2 such that π↑ ∩ π̄↑ 6= ∅ which implies that π ≺ π̄
or π̄ ≺ π. The latter is excluded by assumption. Now,

π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑ =











π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑











t
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑=∅

π̄↑ .

Hence,

Prob(π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ ) + Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑=∅

π̄↑ ) = 1

and, on the other hand, since Prob(s, τ ∗, C2) = 1,

Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ ) + Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑=∅

π̄↑ ) = 1

implying

Prob(π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ ) = Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ )

and, since for any π̄ ∈ s
τ∗

−→C2 with π̄↑ ∩π↑ 6= ∅ we have (as before) π ≺ π̄ i.e.
π̄↑ ⊆ π↑ , we get that

Prob(π↑ ) = Prob(π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ ) = Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ ). (5.20)

Consider the set of paths that extend π to a path in s
τ∗

−→C2

Π = {π̂ = π̄ − π | π · π̂ = π̄, π̄ ∈ s
τ∗

−→C2}.

Recall that last(π) ∈ C3. Then

Π ⊆ last(π)
τ∗

−→C2

and therefore the set Π is minimal and

Π ⊆ C3
τ∗

−→C2. (5.21)
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We have, for any π̂ = π̄ − π ∈ Π,

Prob(π̂) =
Prob(π̄)

Prob(π)

and therefore

Prob(Π) =
∑

π̂∈Π

Prob(π̂)

=

∑

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

Prob(π̄)

Prob(π)

(∗)
=

Prob(
⊎

π̄∈s
τ∗

−→C2

π̄↑∩π↑6=∅

π̄↑ )

Prob(π↑ )

(5.20)
= 1

where (∗) holds by the minimality of the set {π̄ | π̄ ∈ s
τ∗

−→C2, π̄↑ ∩π↑ 6= ∅}.
Hence, by (5.21),

Prob(C3
τ∗

−→C2) ≥ Prob(Π) = 1,

i.e. C3 → C2. �

The next lemma states that if a path exits a class C1 with a trace that does not
consist entirely of τ ’s, given that C1 → C2, then this path must pass C2 after
performing a τ -trace.

Lemma 5.3.17. Let R be a weak bisimulation on 〈S,A,P〉. Let C1, C2 be

different elements of S/R and assume C1 → C2. If for s ∈ C1, π ∈ s
τ∗aτ∗

−→ S,

then there exists π′ ∈ C1
τ∗

−→C2 such that π′ ≺ π.

Proof A similar argument as for Lemma 5.3.16 applies here as well. Assume

π ∈ s
τ∗aτ∗

−→ S. Since Prob(s, τ∗, C2) = 1, also

Prob(π↑ ∪
⊎

π̄∈s
τ∗

−→C2

π̄↑ ) = 1

implying that

π↑ ∩
⊎

π̄∈s
τ∗

−→C2

π̄↑ 6= ∅

i.e., there exists π̄ ∈ s
τ∗

−→C2 such that π↑ ∩ π̄↑ 6= ∅ which implies that π̄ ≺ π
(since π ≺ π̄ is excluded by the form of the traces). �

Our next lemma shows a sort of confluence of the → relation.
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Lemma 5.3.18. Let R be a weak bisimulation on 〈S,A, P 〉. If C1 → C2 and
C1 → C3, then C2 → C3 or C3 → C2, for all C1, C2, C3 ∈ S/R.

Proof From Lemma 5.3.16 we get that either C3 → C2, or each path from C1

to C3 with a trace in τ∗ passes C2. Hence, in the later case, we have

C1
τ∗

−→C3 ⊆ C1
τ∗

−→C2 · C2
τ∗

−→C3

i.e.

Prob(C1, τ
∗, C3) ≤ Prob(C1, τ

∗, C2) · Prob(C2, τ
∗, C3)

which leads to 1 ≤ Prob(C2, τ
∗, C3) i.e. C2 → C3. �

Next we establish a “sink” property for two → connected classes.

Lemma 5.3.19. Let R be a weak bisimulation on 〈S,A, P 〉. If C1 ↔ C2, then
there exists C such that C1 → C and C2 → C.

Proof We prove this by induction on the length of the sequence of → and ←
connecting C1 and C2. For a sequence of length 0, we have C1 = C2 and the
statement holds trivially, by reflexivity, with C = C1 = C2. Assume C1 ↔ C2

via a sequence of → and ← of length k + 1. Then there is a C3 such that
C1 ↔ C3 via a sequence of → and ← of length k, and, C2 → C3 or C3 → C2.
By the inductive hypothesis, there exists C such that C1 → C and C3 → C.
Now, if C2 → C3, then also, by transitivity, C2 → C. If, on the other hand,
C3 → C2, then since also C3 → C, by Lemma 5.3.18, we get either C → C2

implying C1 → C2, or C2 → C. �

From Lemma 5.3.19, by induction on the number of elements, we obtain a sink
for any finite set of → connected classes.

Lemma 5.3.20. Let R be a weak bisimulation on 〈S,A, P 〉. Let F ⊆ S/R be a
finite set of classes, with the property that for all C1, C2 ∈ F , C1 ↔ C2. Then
there exists a class C ∈ S/R such that for all C ′ ∈ F , C ′ → C. �

The next result shows that we can join → connected classes of a weak bisim-
ulation and still obtain a weak bisimulation. In the sequel by [C]↔ we denote
the ↔ - equivalence class of C.

Lemma 5.3.21. Let R be a weak bisimulation on 〈S,A, P 〉. Let C0 ∈ S/R be
a fixed class such that U = [C0]↔ 6= {C0}. Define an equivalence R′ on S by
determining the set of classes, as

S/R′ = {C ∈ S/R | C = C0} ∪ {∪C∈UC}.

Then R′ is a weak bisimulation and R ⊂ R′.
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Proof We need to prove that for all a ∈ A, all K1,K2 ∈ S/R′ and for all
s, t ∈ K1

Prob(s, τ∗âτ∗,K2) = Prob(t, τ∗âτ∗,K2)

where â = a if a 6= τ and τ̂ = ε, the empty word. There are several cases:

Case 1. K1,K2 ∈ S/R.

The statement holds since R is a weak bisimulation relation.

Case 2. K1 ∈ S/R,K2 = ∪C∈UC.

If U = [C0]↔ contains a sink C for U , i.e. for all C ′ ∈ U we have C ′ → C, we
can write

s
τ∗âτ∗

−→ C = s
τ∗âτ∗

−→ ¬K2
C ]

⊎

C′∈ U−{C}

s
τ∗âτ∗

−→ ¬K2
C ′ · C ′ τ∗

−→C

and since there are at most countably many R-classes C ′ ∈ U − {C} for which

s
τ∗âτ∗

−→ ¬K2
C ′ 6= ∅, we get

Prob(s, τ∗âτ∗, C) = Prob(s, τ∗âτ∗, C,¬K2)

+
∑

C′∈U−{C}

Prob(s, τ∗âτ∗, C ′,¬K2)

=
∑

C′∈U

Prob(s, τ∗âτ∗, C ′,¬K2)

= Prob(s, τ∗âτ∗,K2).

The last equation holds since

s
τ∗âτ∗

−→ K2 =
⊎

C′∈ U

s
τ∗âτ∗

−→ ¬K2
C ′.

In the same way we get Prob(t, τ ∗âτ∗, C) = Prob(t, τ∗âτ∗,K2), thus

Prob(s, τ∗âτ∗,K2) = Prob(t, τ∗âτ∗,K2).

Note that we only used that U has a sink, and not that it is a whole class of
the equivalence relation ↔.

On the other hand, if U does not contain an R-class which is a sink (and
this can only happen for infinite U because of Lemma 5.3.20), we use an ap-
proximation argument. Since there are at most countably many paths outgoing
from s, there exists a countable set Us ⊆ U such that Prob(s, τ∗âτ∗,∪C∈Us

C) =
Prob(s, τ∗âτ∗,∪C∈UC). For the same reason, there exists Ut ⊆ U , a countable
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set with the property Prob(t, τ ∗âτ∗,∪C∈Ut
C) = Prob(t, τ∗âτ∗,∪C∈UC). Taking

U ′ = Us ∪ Ut we get a countable set, such that both

Prob(s, τ∗âτ∗,∪C∈U ′C) = Prob(s, τ∗âτ∗,K2) (5.22)

and
Prob(t, τ∗âτ∗,∪C∈U ′C) = Prob(t, τ∗âτ∗,K2). (5.23)

Let {Ci | i ∈ N} be an enumeration of U ′. We will define a chain of subsets of
U in the following way. Put U1 = {C1} and

Un+1 = Un ∪ {Cn+1} ∪ {C
n+1}

where Cn+1 ∈ S/R is a sink for Un ∪ {Cn+1}. Such a sink exists by
Lemma 5.3.20, and it belongs to U , since U is a ↔ equivalence class. We
have Un ⊆ Un+1 for every natural number n, and also

U ′ ⊆
⋃

n∈N

Un ⊆ U.

Next we denote some sets of finite paths. Let

Πn
s = {π | first(π) = s, trace(π) ∈ τ ∗âτ∗, last(π) ∈ ∪C∈Un

C}

ΠU
s = {π | first(π) = s, trace(π) ∈ τ ∗âτ∗, last(π) ∈ ∪C∈U C}

ΠU ′

s = {π | first(π) = s, trace(π) ∈ τ ∗âτ∗, last(π) ∈ ∪C∈U ′C}

and similarly we use Πn
t ,Π

U
t ,Π

U ′

t . We have

ΠU ′

s ⊆
⋃

n∈N

Πn
s ⊆ ΠU

s

and similar holds for t in place of s. Furthermore, by (5.22) we have Prob(ΠU ′

s ) =
Prob(ΠU

s ), hence

Prob(∪n∈NΠn
s ) = Prob(s, τ∗âτ∗,K2).

Also, by (5.23),
Prob(∪n∈NΠn

t ) = Prob(t, τ∗âτ∗,K2).

Now since Πn
s ⊆ Πn+1

s and Πn
t ⊆ Πn+1

t we get that

Prob(∪n∈NΠn
s ) = lim

n→∞
Prob(Πn

s )

= lim
n→∞

Prob(s, τ∗âτ∗,∪C∈Un
C)

(∗)
= lim

n→∞
Prob(t, τ∗âτ∗,∪C∈Un

C)

= Prob(∪n∈NΠn
t )
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where (∗) holds since each Un is a set of R-classes that contains a sink, which
completes the proof of this case.

Case 3. K1 = ∪C∈UC, K2 ∈ S/R
′

Consider s, t ∈ K1. There exist R-classes C1 and C2 such that s ∈ C1 and
t ∈ C2. We have C1 ↔ C2. By Lemma 5.3.19, there also exists an R-class C
such that C1 → C and C2 → C, and moreover C ∈ U , again since U is a ↔
equivalence class.

If K2 = K1, then we have

Prob(s, τ∗,K2) = Prob(t, τ∗,K2) = 1.

If K2 6= K1 then K2 ∈ S/R and C = K2. So, by Lemma 5.3.16 any τ ∗ path
from Ci to K2 must pass C, for i ∈ {1, 2}. Hence,

Ci
τ∗

−→K2 ⊆ Ci
τ∗

−→C · C
τ∗

−→K2

and moreover, by Lemma 5.3.16, equality holds, i.e., Ci
τ∗

−→C =

Ci
τ∗

−→ ¬(K2∪C)C since, if a τ∗ path from Ci to C passes K2 on the way, then
either it was not minimal, i.e. it has a prefix that is also a τ ∗ path from Ci to
C, or K2 → C which is not possible, since K2 6= K1. Hence, in this case

Prob(s, τ∗,K2) = Prob(s
τ∗

−→K2)

= Prob(C1, τ
∗, C) · Prob(C, τ∗,K2)

= Prob(C, τ∗,K2)

= Prob(C2, τ
∗, C) · Prob(C, τ∗,K2)

= Prob(t, τ∗,K2).

Next we consider paths with traces in τ ∗aτ∗. For i ∈ {1, 2}, and K2 ∈ S/R
′

arbitrary (K2 = K1 is also possible), by Lemma 5.3.17 we have

Ci
τ∗aτ∗

−→ K2 ⊆ Ci
τ∗

−→C · C
τ∗aτ∗

−→ K2.

Here also equality holds, since no path on the right hand side can have a proper

prefix in Ci
τ∗aτ∗

−→ K2. Hence, similar as before,

Prob(s, τ∗aτ∗,K2) = Prob(C, τ∗aτ∗,K2) = Prob(t, τ∗aτ∗,K2).

The notation Prob(C, τ∗aτ∗,K2) if K2 = K1 is justified by Case 2. �

We need one more property in order to prove Proposition 5.3.14.

Lemma 5.3.22. Let R be a weak bisimulation on 〈S,A, P 〉. Consider the set

W = {R′ | R′ is a weak bisimulation on 〈S,A,P〉, R′ ⊇ R}

ordered by inclusion. Every chain of W has an upper bound.
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Proof Let {Ri | i ∈ I} be a chain of elements of W , where I is also a chain
of indices, and Ri ⊆ Rj for i ≤ j. We show that ∪i∈IRi ∈ W. Note that if
C ∈ S/ ∪i∈I Ri is a class, then C = ∪i∈ICi where Ci ∈ S/Ri, and Ci ⊆ Cj for
i ≤ j.

The simplest case is when the chain has a largest element, say Rm and hence
also C = Cm and the property Prob(s, τ∗âτ∗, C) = Prob(t, τ∗âτ∗, C) for 〈s, t〉 ∈
∪i∈IRi holds for Rm is a weak bisimulation.

We next treat the case when I is a countable set, ordered as the natural numbers,
I = N, i.e., {Ri | i ∈ N} is a countable chain, with Ri ⊆ Ri+1. Let 〈s, t〉 ∈
∪i∈NRi. Then there exists j such that 〈s, t〉 ∈ Rj , but also 〈s, t〉 ∈ Rn for all
n ≥ j. Consider the sets of paths

Πs = ∪{π↑ | first(π) = s, trace(π) = τ ∗âτ∗, last(π) ∈ C}

Πi
s = ∪{π↑ | first(π) = s, trace(π) = τ ∗âτ∗, last(π) ∈ Ci}, i ∈ N

Similarly, we use Πt and Πi
t. We have Πs = ∪i∈N Πi

s and Πi
s ⊆ Πi+1

s for all i.
Hence,

Prob(s, τ∗âτ∗, C) = Prob(Πs)

= Prob(∪i∈N Πi
s)

(a)
= lim

n→∞
Prob(Πn

s )

= lim
n→∞

Prob(s, τ∗âτ∗, Cn)

(b)
= lim

n→∞
Prob(t, τ∗âτ∗, Cn)

= Prob(t, τ∗âτ∗, C)

where (a) holds since Prob is a measure, and (b) holds since for n ≥ j we have:
〈s, t〉 ∈ Rn, Cn is an Rn-class, and Rn is a weak bisimulation.

We further show that if I is a countable chain of sets {Ci | i ∈ I}, then there
exists a sub-chain I ′ of I with ∪i∈ICi = ∪i∈I′Ci and I ′ is either finite or iso-
morphic to ω, the order type of the natural numbers. We give the construction
of I ′. Given a countable chain I, denote by f : N→ I the bijection that exists
since I is countable. Define a sequence of finite sub-chains of I by I0 = {f(0)}
and

In+1 =

{

In ∪ {f(n+ 1)} ∀i ∈ In : f(n+ 1)> i
In otherwise.

Put
I ′ =

⋃

n∈N

In.

It is straightforward to see that either I ′ is a finite chain, or I ′ is isomorphic to
ω and in any case

⋃

i∈I

Ci =
⋃

i∈I′

Ci.
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Assume now that {Ri | i ∈ I} is an arbitrary chain in W . Let 〈s, t〉 ∈ ∪i∈IRi,
and let C ∈ S/ ∪i∈I Ri. Then C = ∪i∈ICi. Let

Πs = {π | first(π) = s, trace(π) = τ ∗âτ∗, last(π) ∈ C = ∪i∈ICi}

Πt = {π | first(π) = t, trace(π) = τ ∗âτ∗, last(π) ∈ C = ∪i∈ICi}

Let in be a function, in : Πs∪Πt → I such that last(π) ∈ Cin(π). Such a function
exists by the definition of Πs and Πt. Then the set I ′ = in(Πs ∪ Πt) ⊆ I is at
most countable since such are Πs and Πt. Furthermore, let

Π′
s = {π | first(π) = s, trace(π) = τ ∗âτ∗, last(π) ∈ C = ∪i∈I′Ci}

Π′
t = {π | first(π) = t, trace(π) = τ ∗âτ∗, last(π) ∈ C = ∪i∈I′Ci}

By the construction of I ′ we have that Πs = Π′
s and Πt = Π′

t and

Prob(s, τ∗âτ∗, C) = Prob(Πs) = Prob(Π′
s)

(∗)
= Prob(Π′

t) = Prob(t, τ∗âτ∗, C).

The equality marked by (∗) holds since Prob(Π′
s) = Prob(s, τ∗âτ∗,∪i∈I′Ci)

and Prob(Π′
t) = Prob(t, τ∗âτ∗,∪i∈I′Ci), and as proved above, in the case of a

finite chain of classes or a countable chain of classes of order type ω, we have
Prob(s, τ∗âτ∗,∪i∈I′Ci) = Prob(t, τ∗âτ∗,∪i∈I′Ci). �

Finally, Proposition 5.3.14 follows from the lemmas 5.3.15-5.3.22.

Proof [of Proposition 5.3.14] By Lemma 5.3.22, since the set W is nonempty,
as it contains R, and by Zorn’s lemma we have that the set

W = {R′ | R′ is a weak bisimulation on 〈S,A,P〉, R′ ⊇ R}

has a maximal element. Let it be R̃. Assume R̃ is not complete, i.e. there exists
two different classes C1, C2 ∈ S/R̃ such that C1 → C2. Then by Lemma 5.3.21
we can construct a weak bisimulation R̃′ ⊃ R̃ which contradicts the maximality
of R̃. Hence R̃ is complete i.e. for any two different C1, C2 ∈ S/R̃ we have
Prob(C1, τ

∗, C2) < 1, and since R ⊆ R̃ it relates s and t which completes the
proof. �

5.3.4 Weak coalgebraic bisimulation for generative systems

In this subsection we will provide a definition of weak bisimulation for generative
systems, according to our coalgebraic approach from Section 5.1. For this we
need a ∗-translation that will translate the generative systems with action set A
to some systems with action set A∗. Unlike for the LTS, for the generative
probabilistic systems, it does not seem possible to define a ∗-translation which
will be of the same type, i.e. for the functor GA. Therefore, for coalgebraic weak
probabilistic bisimulation, we shall consider yet another type of systems.



5.3 Weak bisimulation for generative systems 141

The functor

Let G∗ be the bifunctor defined by

G∗(A,S) = (P(A)× P(S)→ [0, 1])

on objects 〈A,S〉 and for morphisms 〈f1, f2〉 : A× S → B × T by

G∗f = (ν 7→ ν ◦ 〈f−1
1 , f−1

2 〉 | ν : P(A)× P(S)→ [0, 1]).

Consider the Set functor G∗A corresponding to G∗, so that

G∗A(S) = (P(A)× P(S)→ [0, 1])

and for a mapping f : S → T ,

G∗Af = (ν 7→ ν ◦ 〈id−1
A , f−1〉 | ν : P(A)× P(S)→ [0, 1]).

Properties of the functor

We will use the functor G∗A to model the ∗-translation of generative systems.
Therefore we are interested in characterizing equivalence bisimulations for this
functor. In order to apply the results from Section 3.6 we need the following.

Lemma 5.3.23. The functor G∗A weakly preserves total pullbacks.

Proof Let 〈P, π1, π2〉 be a total Set pullback of the cospan X
f // Z Y

goo

i.e. P = {〈x, y〉 | f(x) = g(y)} and π1, π2 surjective. Then the outer square
of the following diagram commutes, and a morphism γ : G∗AP → P ′ exists,
where 〈P ′, p1, p2〉 with p1, p2 projections, is the Set pullback of the cospan

G∗AX
G∗

Af // G∗AZ G∗AY
G∗

Agoo .

G∗AP

G∗

Aπ1

��


























G∗

Aπ2

��4
44

44
44

44
44

44
44

γ

���
�
�

P ′

p1{{www
ww

ww
ww

p2 ##G
GG

GG
GG

GG

G∗AX
G∗

Af

##F
FFFFFFF

G∗AY
G∗

Ag

||xxxxxxxx

G∗AZ

According to Lemma 3.3.5, it is enough to prove that γ is surjective, i.e., that
for every 〈u, v〉 ∈ P ′ there exists w ∈ G∗AP with G∗Aπ1(w) = u and G∗Aπ2(w) = v
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which is equivalent to w◦〈id−1
A , π−1

1 〉 = u and w◦〈id−1
A , π−1

2 〉 = v. Fix 〈u, v〉 ∈ P ′.
We have

〈u, v〉 ∈ P ′ =⇒ ∀A′ ⊆ A,∀Z ′ ⊆ Z : u(A′, f−1(Z ′)) = v(A′, g−1(Z ′)) (5.24)

Let X ′ ⊆ X,Y ′ ⊆ Y and assume π−1
1 (X ′) = π−1

2 (Y ′). Then

(i) f−1(f(X ′)) = X ′

Clearly X ′ ⊆ f−1(f(X ′)). Let x ∈ f−1(f(X ′)) such that f(x) = f(x′) for
some x′ ∈ X ′. Since π1 is surjective, there exists y ∈ Y with 〈x, y〉 ∈ P i.e.
f(x) = g(y) and hence also f(x′) = g(y) i.e. 〈x′, y〉 ∈ P . Thus 〈x′, y〉 ∈
π−1

1 (X ′) = π−1
2 (Y ′) implying y ∈ Y ′. Hence 〈x, y〉 ∈ π−1

2 (Y ′) = π−1
1 (X ′)

i.e. x ∈ X ′.

(ii) g−1(g(Y ′)) = Y ′, similar as (i).

(iii) f(X ′) = g(Y ′)
Let z ∈ f(X ′) i.e. z = f(x′) for x′ ∈ X ′. Since π1 is surjective there
exists y ∈ Y with 〈x′, y〉 ∈ P i.e. f(x′) = g(y). Now, 〈x′, y〉 ∈ π−1

1 (X ′) =
π−1

2 (Y ′) and therefore y ∈ Y ′ i.e. z = f(x′) = g(y) ∈ g(Y ′). We have
shown f(X ′) ⊆ g(Y ′). Similarly, g(Y ′) ⊆ f(X ′).

Hence, if π−1
1 (X ′) = π−1

2 (Y ′) for X ′ ⊆ X,Y ′ ⊆ Y we get, for any A′ ⊆ A

u(A′, X ′)
(i)
= u(A′, f−1(f(X ′)))

(5.24)
= v(A′, g−1(f(X ′)))

(iii)
=

v(A′, g−1(g(Y ′)))
(ii)
= v(A′, Y ′).

This, together with

π−1
1 (X ′) = π−1

1 (X ′′) =⇒ X ′ = X ′′

and
π−1

2 (Y ′) = π−1
2 (Y ′′) =⇒ Y ′ = Y ′′

for any X ′, X ′′ ⊆ X and any Y ′, Y ′′ ⊆ Y (π1 and π2 are surjective), shows that
the function w : P(A)× P(P )→ [0, 1] given by

w(A′, Q) =







u(A′, X ′) Q = π−1
1 (X ′)

v(A′, Y ′) Q = π−1
2 (Y ′)

0 otherwise

is well defined. Clearly, w ◦ 〈id−1
A , π−1

1 〉 = u and w ◦ 〈id−1
A , π−1

2 〉 = v. Thus the
functor G∗A weakly preserves total pullbacks. �

Note that, however, G∗A does not preserve weak pullbacks, as shown by the next
example.
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Example 5.3.24. G∗A does not preserve weak pullbacks.

Choose X with |X| ≥ 3. Fix x0 ∈ X. Let Z = {1, 2, 3} and consider the cospan

X
f // Z X

goo for the maps

f(x) =

{

2 x = x0

1 otherwise
g(x) =

{

2 x = x0

3 otherwise.

The Set pullback of this cospan is then P = {〈x0, x0〉}. On the other hand, let
P ′ be the pullback of the cospan

G∗AX
G∗

Af // G∗AZ G∗AX
G∗

Agoo .

We have 〈µ, ν〉 ∈ P ′ if and only if

G∗Af(µ) = G∗Ag(ν)

i.e.
µ(A′, f−1(X ′)) = ν(A′, g−1(X ′))

for all A′ ⊆ A,X ′ ⊆ X. Therefore, every pair 〈µ, ν〉 ∈ G∗AX × G
∗
AX with the

property

µ(A′, ∅) = µ(A′, {x0}) = µ(A′, X \ {x0}) = µ(A′, X) =

= ν(A′, ∅) = ν(A′, {x0}) = ν(A′, X \ {x0}) = ν(A′, X)

belongs to P ′ since ∅, {x0}, X \ {x0} and X are the only subsets of X that are
inverse images of subsets of Z under f and g.

Now we consider G∗AP = {χ : P(A) × P(P ) → [0, 1]}. If µ ∈ G∗AX is such
that µ = (G∗Aπ1)(χ) for some χ ∈ G∗AP then µ = χ ◦ 〈id−1

A , π−1
1 〉. Hence, for

A′ ⊆ A,X ′ ⊆ X we have

µ(A′, X ′) =

{

χ(A′, ∅) x0 6∈ X
′

χ(A′, {〈x0, x0〉}) x0 ∈ X
′.

Choose x1 ∈ X, x1 6= x0. Since |X| ≥ 3 we have {x0, x1} 6∈ {∅, {x0}, X \
{x0}, X}. Define ξ : P(A)× P(X)→ [0, 1] by

ξ(A′, X ′) =

{

1 X ′ = {x0, x1}
0 otherwise.

Then ξ ∈ G∗A(X) and the pair 〈ξ, ξ〉 belongs to P ′ since for every A′ ⊆ A,

ξ(A′, ∅) = ξ(A′, {x0}) = ξ(A′, X \ {x0}) = ξ(A′, X) = 0.

However, ξ can not be written as (G∗Aπ1)(χ) for any χ ∈ G∗AP since

ξ(A′, {x0, x1}) 6= ξ(A′, {x0}),
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while, as noted above,

(G∗Aπ1)(χ)(A′, {x0, x1}) = χ(A′, {〈x0, x0〉}) = (G∗Aπ1)(χ)(A′, {x0}).

Hence, for the pair 〈ξ, ξ〉 ∈ P ′ there does not exist an element χ ∈ G∗AP such
that G∗Aπ1(χ) = ξ and G∗Aπ2(χ) = ξ, which by Lemma 3.3.5 shows that G∗A does
not preserve weak pullbacks.

Next, we investigate the bisimulations for the newly introduced type of systems.

Let R be an equivalence relation on a set S. A subset M ⊆ S is an R-saturated
set if for all s ∈ M the whole equivalence class of s is contained in M . We
denote by Sat(R) the set of all R-saturated sets, Sat(R) ⊆ P(S). Actually, M
is a saturated set if and only if M = ∪i∈ICi for Ci ∈ S/R. Hence there is
a one-to-one correspondence between the R-saturated sets and the elements of
P(S/R).

The next lemma derives a transfer condition for equivalence bisimulations for
systems of type G∗A.

Lemma 5.3.25. An equivalence relation R on a set S is a bisimulation on the
G∗A system 〈S,A, α〉 if and only if

〈s, t〉 ∈ R =⇒ ∀A′ ⊆ A,∀M ∈ Sat(R) : α(s)(A′,M) = α(t)(A′,M).

Proof Consider the pullback P of the cospan

G∗AS
G∗

Ac // G∗A(S/R) G∗AS
G∗

Acoo

where c is the canonical projection of S onto S/R. We have 〈µ, ν〉 ∈ P if and
only if G∗Ac(µ) = G∗Ac(ν), i.e. µ ◦ 〈id−1

A , c−1〉 = ν ◦ 〈id−1
A , c−1〉. This is equivalent

to
∀A′ ⊆ A,∀M ⊆ S/R : µ(A′, c−1(M)) = ν(A′, c−1(M))

and, since c−1 : P(S/R)→ Sat(R) is a bijection, we get an equivalent condition

∀A′ ⊆ A,∀M ∈ Sat(R) : µ(A′,M) = ν(A′,M).

Now, using Corollary 3.6.6 we obtain the stated characterization. �

We proceed by presenting a suitable ∗-translation for generative systems.

The ∗-translation

We can now define a ∗-translation for generative systems. The translation will
be of type G∗A.

Definition 5.3.26. Let Φg assign to every generative system 〈S,A,P〉, i.e.
any GA coalgebra 〈S,A, α〉 the G∗A∗ coalgebra 〈S,A∗, α′〉 where for W ⊆ A∗ and
S′ ⊆ S, α′(s)(W,S′) = Prob(s,W, S′).
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We next show that the defined translation is indeed a ∗-translation.

Theorem 5.3.27. The assignment Φg from Definition 5.3.26 is a ∗-translation.

For the proof we need an auxiliary property.

Lemma 5.3.28. Let 〈S,A, α〉, i.e. 〈S,A,P〉 be a GA system, R a bisimulation
equivalence on 〈S,A, α〉 and 〈s, t〉 ∈ R. For k ∈ N, Ci ∈ S/R and ai ∈ A,

i ∈ {1, . . . , k}, let s
a1−→C1

a2−→C2 · · ·
ak−→Ck denote the set of paths

s
a1−→C1

a2−→C2 · · ·
ak−→Ck = {s

a1−→ s1
a2−→ s2 · · ·

ak−→ sk | si ∈ Ci, i = 1, . . . , k}.

Then s
a1−→C1

a2−→C2 · · ·
ak−→Ck is minimal and

Prob(s
a1−→C1

a2−→C2 · · ·
ak−→Ck) = Prob(t

a1−→C1
a2−→C2 · · ·

ak−→Ck) (5.25)

Proof The fact that s
a1−→C1

a2−→C2 · · ·
ak−→Ck is minimal is clear, since all

paths in this set have the same length. We use induction on k to establish (5.25).
For k = 1 the statement is

∑

s′∈C1
P(s, a1, s

′) =
∑

s′∈C1
P(t, a1, s

′) and it holds
since R is a bisimulation relation and 〈s, t〉 ∈ R. Consider

s
a1−→C1

a2−→C2 · · ·
ak+1
−→ Ck+1 = s

a1−→C1
a2−→C2 · · ·

ak−→Ck · Ck
ak+1
−→ Ck+1.

By the inductive hypothesis,

Prob(s
a1−→C1

a2−→C2 · · ·
ak−→Ck) = Prob(t

a1−→C1
a2−→C2 · · ·

ak−→Ck).

By the bisimulation condition for generative systems, Prob(t′
ak+1
−→ Ck+1) =

Prob(t′′
ak+1
−→ Ck+1) for all t′, t′′ ∈ Ck. Hence, by Corollary 5.3.10 we get

Prob(s
a1−→C1

a2−→C2 · · ·
ak−→Ck · Ck

ak+1
−→ Ck+1)

= Prob(s
a1−→C1

a2−→C2 · · ·
ak−→Ck) · Prob(Ck

ak+1
−→ Ck+1)

= Prob(t
a1−→C1

a2−→C2 · · ·
ak−→Ck) · Prob(Ck

ak+1
−→ Ck+1)

= Prob(t
a1−→C1

a2−→C2 · · ·
ak−→Ck · Ck

ak+1
−→ Ck+1).

�

We are now prepared for the proof of Theorem 5.3.27.

Proof [of Theorem 5.3.27] We need to check that Φg is injective and preserves
and reflects bisimilarity. Assume Φg(〈S,A, α〉) = Φg(〈S,A, β〉) = 〈S,A∗, α′〉.
Then by the definition of Prob we get that for any s, t ∈ S and any a ∈ A,
α(s)(〈a, t〉) = P(s, a, t) = Prob(s, {a}, {t}) = α′(s)({a}, {t}) = β(s)(〈a, t〉).

Reflection of bisimilarity is direct from Lemma 5.3.25: Assume s ∼ t in
Φg(〈S,A, α〉) = 〈S,A∗, α′〉 and assume that R is an equivalence bisimulation
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on 〈S,A∗, α′〉 such that 〈s, t〉 ∈ R. By Lemma 5.3.25, we get that for W ⊆ A∗

and for M ∈ Sat(R),
α′(s)(W,M) = α′(t)(W,M). (5.26)

In particular, for all a ∈ A and all C ∈ S/R we have

α′(s)({a}, C) = α′(t)({a}, C). (5.27)

By the definition of α′ and Prob we have

α′(s)({a}, C) = Prob(s, {a}, C) =
∑

s′∈C

P(s, a, s′) =
∑

s′∈C

α(s)(〈a, s′〉)

and therefore for all a ∈ A and all C ∈ S/R

∑

s′∈C

α(s)(〈a, s′〉) =
∑

s′∈C

α(t)(〈a, s′〉) (5.28)

which means that R is a bisimulation equivalence on the generative system
〈S,A, α〉, i.e. s ∼ t in the original system.

The proof of preservation of bisimilarity uses Lemma 5.3.28. Let s ∼ t in the
generative system 〈S,A, α〉. Then there exists an equivalence bisimulation R
with 〈s, t〉 ∈ R. The relation R induces an equivalence RP on FPaths(s) defined
by

〈s
a1−→ s1

a2−→ s2 · · ·
ak−→ sk , s

a′
1−→ s′1

a′
2−→ s′2 · · ·

a′

k′

−→ s′k′〉 ∈ RP

if and only if k = k′, ai = a′i and 〈si, s
′
i〉 ∈ R for i = 1, . . . , k. The classes of RP

are exactly the sets s
a1−→C1

a2−→C2 · · ·
ak−→Ck for Ci ∈ S/R and ai ∈ A.

Assume M ∈ Sat(R) and W ⊆ A∗. We show that the set s
W
−→M is saturated

with respect to RP . Namely, let π ≡ s
a1−→ s1

a2−→ s2 · · ·
ak−→ sk ∈ s

W
−→M and

let π′ ≡ s
a1−→ s′1

a2−→ s′2 · · ·
ak−→ s′k be a path such that 〈π, π′〉 ∈ RP . Then

trace(π) = trace(π′), first(π) = first(π′) and 〈last(π), last(π′)〉 ∈ R. Since M
is saturated, last(π′) ∈ M for last(π) ∈ M . Furthermore, π′ does not have a
proper prefix with trace in W and last in M , since this would imply that π has

such a prefix, contradicting π ∈ s
W
−→M . Hence, π′ ∈ s

W
−→M .

Therefore, the set s
W
−→M is a disjoint union of some RP classes, and since

s
W
→M is minimal we can write

s
W
→M =

⊎

i∈I

s
ai1→ Ci1

ai2→ Ci2 · · ·
aiki→ Ciki

.

It follows that Prob(s,W,M) =
∑

i∈I Prob(s
ai1−→Ci1

ai2−→Ci2 · · ·
aik−→Cik). By

Lemma 5.3.28, we get that Prob(s,W,M) = Prob(t,W,M), i.e. α′(s)(W,M) =
α′(t)(W,M) proving that R is a bisimulation on 〈S,A∗, α′〉 and s ∼ t in the
*-extension 〈S,A∗, α′〉. �
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The same systems of Example 5.2.4 when each transition is considered as prob-
abilistic with probability 1 show that the ∗-translation Φg is also not induced
by a natural transformation.

Remark 5.3.29. The ∗-translation Φg together with a subset τ ⊆ A determines
a weak-τ -bisimulation. The weak-τ -system is

Ψτ ◦ Φg(〈S,A, α〉) = Ψτ (〈S,A∗, α′〉) = 〈S,Aτ , α
′′〉

where α′′(s) : P(Aτ )× P(S)→ [0, 1] is given by

α′′(s) = ητ
S(α′(s)) = G∗〈hτ , idS〉(α

′(s)) = α′(s) ◦ 〈h−1
τ , id−1

S 〉.

Hence for X ⊆ Aτ and S′ ⊆ S,

α′′(s)(X,S′) = α′(s)(h−1
τ (X), S′) = α′(s)(

⋃

w∈X

Bw, S
′) = Prob(s,

⋃

w∈X

Bw, S
′),

where, as before, for w = a1 . . . ak ∈ Aτ , Bw is the block Bw =
τ∗a1τ

∗ . . . τ∗akτ
∗ = h−1

τ ({w}).

Therefore, from Lemma 5.3.25 we get that an equivalence relation R is a weak-
τ -bisimulation w.r.t. 〈Φg, τ〉 on the generative system 〈S,A, α〉 if and only if
〈s, t〉 ∈ R implies that for any collection (Bi)i∈I of blocks writing Bi as a
shorthand for Bwi

for some word wi ∈ A
∗, and any collection (Cj)j∈J of classes

Prob(s,
⋃

i∈I

Bi,
⋃

j∈J

Cj) = Prob(t,
⋃

i∈I

Bi,
⋃

j∈J

Cj). (5.29)

Sets of the form ∪i∈IBi will be called saturated blocks.

5.3.5 The correspondence theorem

We are now able to state and prove the correspondence theorem.

Theorem 5.3.30. Let 〈S,A, α〉 be a generative system. Let τ ∈ A be an in-
visible action and s, t ∈ S any two states. Then s ≈{τ} t according to Defini-
tion 5.1.3 w.r.t. the pair 〈Φg, {τ}〉 if and only if s ≈g t according to Defini-
tion 5.3.12.

In order to build the proof of the necessity part of the correspondence theorem,
we present a sequence of lemmas.

Lemma 5.3.31. Assume that R is a complete weak bisimulation on a gen-
erative system 〈S,A, α〉 i.e. 〈S,A,P〉 with 〈s, t〉 ∈ R. For any saturated set
M = tn

i=1Ci consisting of finitely many classes Ci ∈ S/R, for any block
B = τ∗a1τ

∗ . . . τ∗akτ
∗ where a1, . . . , ak ∈ A \ {τ} and for any i ∈ {1, . . . , n},

Prob(s,B,Ci,¬M) = Prob(t, B,Ci,¬M).
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Proof We use induction on n, the number of classes that M con-
tains. For n = 1 the property is simply Proposition 5.3.13. Assume
Prob(s,B,Ci,¬M) = Prob(t, B,Ci,¬M) for any R - saturated set M being a
union of less than n classes, and any class Ci ⊆M . Let M be an R- saturated
set which is a union of n classes, i.e. M = tn

i=1Ci for some Ci ∈ S/R. We use
the following notation, for i ∈ {1, . . . , n} and j ∈ {1, . . . , i− 1, i+ 1, . . . , n}.

Vi = Prob(s,B,Ci)
5.3.13
= Prob(t, B,Ci)

Gj
i = Prob(s,B,Cj ,¬ t

n
k=1,k 6=i Ck)

IH
= Prob(t, B,Cj ,¬ t

n
k=1,k 6=i Ck)

which makes the following notation justified

T j
i = Prob(Cj , τ

∗, Ci)

Hj
i = Prob(Ci, τ

∗, Cj ,¬ t
n
k=1,k 6=i Ck).

We define a function ω : s
B
→ S → {1, 2}∗. The function ω will, in a sense,

trace the classes that a path visits with a word in B. Some auxiliary functions

will be needed for the definition of ω. Let ω̃ : s
B
→ S → {1, 2}∗ be defined by

ω̃(π · last(π)
a
→ t) =











































1 t ∈ Ci, π 6∈ s
B
→ S

2 t ∈M \ Ci, π 6∈ s
B
→ S

ε t 6∈M,π 6∈ s
B
→ S

ω̃(π) · 1 t ∈ Ci, π ∈ s
B
→ S

ω̃(π) · 2 t ∈M \ Ci, π ∈ s
B
→ S

ω̃(π) t 6∈M,π ∈ s
B
→ S

and if ε ∈ s
B
→ S, then ω̃(ε) = ε.

Let d : {1, 2}∗ → {1, 2}∗ and d′ : {1, 2}∗ → {1, 2}∗ be defined in the following
way, for u, v ∈ {1, 2}∗ and x, y ∈ {1, 2}:

d(u · x) =

{

d(u) · x u = v · x
d′(u) · x u = v · y, y 6= x

d′(u · x) =

{

d′(u) u = v · x
d′(u) · x u = v · y, y 6= x

and d(ε) = d′(ε) = ε. We put ω = d ◦ ω̃. We can explain the definition of the
maps d, ω̃ and ω as follows: The map ω̃ takes a path with a trace in B and
encodes the sequence of the classes that are visited by the path, after a word in B
has already been performed. The encoding is 1 if the class under consideration,
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Ci, has been visited and 2 if any other class from M has been visited, there
is no record of classes outside M . Then the map d removes adjacent multiple
occurrences of 1 and 2 in the word obtained by ω̃, except for the multiple
occurrences at the end of the word. Basically, the map d is computed by the
normal algorithm {112→ 12, 221→ 21}. It is important to note that

ω−1({1}) = s
B
→¬M Ci

hence, we need to calculate Prob(ω−1({1})). By the definition of ω we easily
get that

ω−1({1, 21}) = ω−1({1}) ] ω−1({21}).

Therefore, we try to express Prob(ω−1({1, 21})) and Prob(ω−1({21})) via
Vi, G

j
i , T

j
i and Hj

i . It is obvious that

ω−1({1, 21}) = s
B
→ Ci,

and therefore Prob(ω−1({1, 21})) = Vi. A more careful inspection shows that

ω−1({21}) ]
(

]n
j=1,j 6=iω

−1({1}) · Ci
τ∗

→¬M\Ci
Cj

τ∗

→ Ci

)

= ]n
j=1,j 6=is

B
→¬M\Ci

Cj
τ∗

→ Ci.

This, by Proposition 5.3.9 and Corollary 5.3.10 implies that

Prob(ω−1({21})) =

n
∑

j=1,j 6=i

Gj
i · T

j
i − Prob(ω−1({1})) ·

n
∑

j=1,j 6=i

Hj
i · T

j
i

and we get

Prob(ω−1({1})) = Prob(ω−1({1, 21}))− Prob(ω−1({21}))

= Vi −





n
∑

j=1,j 6=i

Gj
i · T

j
i − Prob(ω−1({1})) ·

n
∑

j=1,j 6=i

Hj
i · T

j
i



 .

Let ρ =
∑n

j=1,j 6=iH
j
i · T

j
i . Let Ti = maxn

j=1,j 6=i T
j
i . By the completeness of R,

T j
i < 1 for all j 6= i and therefore Ti < 1. Furthermore, by Proposition 5.3.11,

n
∑

j=1,j 6=i

Hj
i = Prob(Ci, τ

∗,tn
j=1,j 6=iCj) ≤ 1.

Hence,

ρ =

n
∑

j=1,j 6=i

Hj
i · T

j
i ≤ Ti ·

∑

j=1,j¬i

Hj
i ≤ Ti < 1.
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We have

Prob(s,B,Ci,¬M) = Vi −
n

∑

j=1,j 6=i

Gj
i · T

j
i + Prob(s,B,Ci,¬M) · ρ.

and since ρ < 1 we obtain

Prob(s,B,Ci,¬M) =
Vi −

∑n
j=1,j 6=iG

j
i · T

j
i

1− ρ
.

The expression on the right side does not depend on the starting state s and we
get

Prob(s,B,Ci,¬M) = Prob(t, B,Ci,¬M)

which completes the proof. �

Next we extend the property to arbitrary R-saturated sets.

Lemma 5.3.32. Assume that R is a complete weak bisimulation on a generative
system 〈S,A, α〉 i.e. 〈S,A,P〉 with 〈s, t〉 ∈ R. For any R-saturated set M , for
any block B = τ∗a1τ

∗ . . . τ∗akτ
∗ where a1, . . . , ak ∈ A \ {τ} and for any class

C ⊆M
Prob(s,B,C,¬M) = Prob(t, B,C,¬M).

Proof Let C ⊆M . We will show that we can assume that M contains at most
countably many classes. Let S ′ be the set of states that are reachable from s
by a finite path. This set is at most countable since each finite path contributes
to S′ with finitely many states, and there are at most countably many paths
starting in s according to Lemma 5.3.2. Let Ms be the smallest R-saturated set
containing S′∩M and C. Since S′∩M is at most countable, the set Ms contains
at most countably many classes and Prob(s,B,C,¬M) = Prob(s,B,C,¬Ms).
In the same way we get a saturated set Mt containing at most count-
ably many classes such that Prob(t, B,C,¬M) = Prob(t, B,C,¬Mt). Then
M ′ = Ms∪Mt is a saturated set containing at most countably many classes and

Prob(s,B,C,¬M ′) = Prob(s,B,C,¬M),

Prob(t, B,C,¬M ′) = Prob(t, B,C,¬M).

So, assume M = ti≥0Ci, and C = Ci0 . Note that

s
B
→¬M C =

⋂

k≥i0

s
B
→¬Uk

C

for Uk = C0 ∪ · · · ∪ Ck, and the intersection is clearly countable. Moreover, let

J = {I | I ⊆ N \ {0, . . . , i0 − 1}, I is finite}.
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If I ∈ J with m = max(I), then

⋂

i∈I

s
B
→¬Ui

C = s
B
→¬Um

C.

We use the following simple property from measure theory: If µ is a probability
measure on some set and if A = ∩n∈NAn is a measurable set which is a countable
intersection of measurable sets, then µ(A) = inf{µ(∩i∈IAi) | I ⊆ N, I finite }.
Hence,

Prob(s,B,C,¬M)

= inf{Prob(∩i∈Is
B
→¬Ui

C) | I ∈ J}

= inf{Prob(s,B,C,¬Um) | I ∈ J,m = max(I)}
5.3.31
= inf{Prob(t, B,C,¬Um) | I ∈ J,m = max(I)}

= Prob(t, B,C,¬M)

�

By Lemma 5.3.32, noting that Prob(s,B,M) = Prob(s,B,ti∈ICi) =
∑

i∈I Prob(s,B,Ci,¬M) we get the following property.

Corollary 5.3.33. Assume that R is a complete weak bisimulation on a gen-
erative system 〈S,A, α〉 i.e. 〈S,A,P〉 with 〈s, t〉 ∈ R. For any R-saturated set
M , for any block B = τ∗a1τ

∗ . . . τ∗akτ
∗ where a1, . . . , ak ∈ A \ {τ}

Prob(s,B,M) = Prob(t, B,M).

�

We proceed to saturated blocks. Again we first treat saturated blocks containing
finitely many blocks and then extend to arbitrary saturated blocks.

Lemma 5.3.34. Assume that R is a complete weak bisimulation on a generative
system 〈S,A, α〉 i.e. 〈S,A,P〉 with 〈s, t〉 ∈ R. For any R-saturated set M and
for any saturated block W = tn

i=1Bi containing finitely many blocks

Prob(s,W,M) = Prob(t,W,M).

Proof Note that

Prob(s,W,M) =
n

∑

i=1

Prob(s,Bi,¬W,M)

since

s
W
−→M =

n
⊎

i=1

s
Bi−→ ¬WM,
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and also

Prob(s,Bi,¬W,M) =
∑

j : Cj⊆M

Prob(s,Bi,¬W,Cj ,¬M)

since
s

Bi−→ ¬WM =
⊎

Cj⊆M

s
Bi→¬W

¬M
Cj ,

as in Proposition 5.3.11, and the summation is possible since we can assume
that M contains at most countably many classes. Hence it suffices to prove
that

Prob(s,Bi,¬W,Cj ,¬M) = Prob(t, Bi,¬W,Cj ,¬M)

for any Bi, i ∈ {1, . . . , n} and any class Cj ⊆ M . For any i, let wi ∈ A \ {τ}
∗,

wi = ai1 . . . aiki
be the word such that Bi = Bwi

= τ∗ai1τ
∗ · · · τ∗aiki

τ∗. The
prefix ordering on the set of words {w1, . . . , wn} induces an ordering on the set
of blocks {B1, . . . , Bn} given by Bi ≺ Bj if and only if wi ≺ wj . If Bi ≺ Bj ,
by Bj−i we denote the block corresponding to wj−i, the unique word satisfying
wi ·wj−i = wj . We are going to prove, by induction on the number of elements
in the set {i ∈ {1, . . . , n} | Bi ≺ Bj}, that

s
Bj
→¬M C = s

Bj
→¬W

¬M
C ]





⊎

Bi≺Bj

⊎

C′⊆M

s
Bi→¬W

¬M
C ′ Bj−i
→ ¬M C



 (5.30)

where C ′ ⊆M is a class. First of all we have to make sure that the right hand
side of the equation is well defined, i.e. that the unions are really disjoint and
minimal. By the definition of the involved sets of paths a careful inspection
shows that it is indeed the case. It is rather obvious that the right hand side
is contained in the left hand side since all the paths of the right hand side do
start in s, have a trace in Bj and end up in C, without reaching M before
with a prefix whose trace is also in Bj . For the opposite inclusion we use
an inductive argument. Assume Bj has no (strict) prefixes in {B1, . . . , Bn}.

Then the equation becomes s
Bj
→¬M C = s

Bj
→¬W

¬M
C and it holds since, by

assumption, no path which has a trace in Bj can have a strict prefix with a

trace in W . For the inductive step, assume π ∈ s
Bj
→¬M C and π 6∈ s

Bj
→¬W

¬M
C.

This means that π has a prefix that has a trace in ∪n
i=1Bi and ends in M . So,

π ∈ s
Bk→ C ′ Bj−k

→ ¬M C for some k and for some class C ′ ⊆ M . We want to

show that π ∈ ]Bi≺Bj
]C′⊆M s

Bi→¬W
¬M

C ′ Bj−i
→ ¬M C. We can assume that

π ∈ s
Bk→¬M C ′ Bj−k

→ ¬M C by taking C ′ to be the first class of M that π hits
having performed a trace in Bk. Now Bk, being a prefix of Bj , has less prefixes
than Bj and therefore, by the inductive hypothesis, either

π ∈ s
Bk→¬W

¬M
C ′ Bj−k
→ ¬M C
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or there exist r ∈ {1, . . . , n} and a class C ′′ ⊆M such that

π ∈ s
Br→¬W

¬M
C ′′ Bk−r

→ ¬M C ′ Bj−k
→ ¬M C

i.e. π ∈ s
Br→¬W

¬M
C ′′ Bj−r

→ ¬M C, which completes the proof of equation (5.30).

Now, by the same inductive argument we get: if Bj has no proper prefixes, then

Prob(s,Bj ,¬W,C,¬M) = Prob(s,Bj , C,¬M)
5.3.32
= Prob(t, Bj , C,¬M)

= Prob(t, Bj ,¬W,C,¬M).

Assume that Prob(s,Bi,¬W,C,¬M) = Prob(t, Bi,¬W,C,¬M) for all Bi ≺ Bj .
Then by (5.30), by Proposition 5.3.9 and by Lemma 5.3.32, we get

Prob(s,Bj ,¬W,C,¬M)

= Prob(s,Bj , C,¬M)

−
∑

Bi≺Bj

∑

C′⊆M

Prob(s,Bi,¬W,C
′,¬M) · Prob(C ′, Bj−i, C,¬M)

(IH)
= Prob(t, Bj , C,¬M)

−
∑

Bi≺Bj

∑

C′⊆M

Prob(t, Bi,¬W,C
′,¬M) · Prob(C ′, Bj−i, C,¬M)

= Prob(t, Bj ,¬W,C,¬M)

which completes the proof. �

We next extend the last property to any saturated block.

Lemma 5.3.35. Assume that R is a complete weak bisimulation on a generative
system 〈S,A, α〉 i.e. 〈S,A,P〉 with 〈s, t〉 ∈ R. For any R-saturated set M and
for any saturated block W

Prob(s,W,M) = Prob(t,W,M).

Proof We first consider the countable case. Let W = tn∈NBn. Let

Πs
n = {π | first(π) = s, last(π) ∈M, trace(π) ∈ Bn}

Πt
n = {π | first(π) = t, last(π) ∈M, trace(π) ∈ Bn}.
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Then

Prob(s,W,M) = Prob(s,tn∈NBn,M)

= Prob((∪n∈NΠs
n) ↓)

= Prob(∪n∈NΠs
n)

(∗)
= sup{Prob(∪i∈IΠ

s
i ) | I ⊆ N, I finite }

= sup{Prob(s,WI ,M) |WI = ti∈IBi, I finite }

= sup{Prob(t,WI ,M) |WI = ti∈IBi, I finite }

= Prob(t,W,M),

where the equality (∗) holds because of the following elementary property from
measure theory: Let µ be a measure on some set, and let A = ∪n∈NAn be a
measurable set which is a countable union of measurable sets. Then µ(A) =
sup{µ(∪i∈IAi) | I ⊆ N, I finite}.

If W = ti∈IBi contains arbitrary many blocks then there exists a countable
index set Is ⊆ I and a saturated set Ws = ti∈Is

Bi such that Prob(s,W,M) =
Prob(s,Ws,M) using Lemma 5.3.2. For the same reason, there exists a count-
able index set It ⊆ I and a corresponding saturated set Wt = ti∈It

Bi

with Prob(t,W,M) = Prob(t,Wt,M). Hence Prob(s,W,M) = Prob(s,Ws ∪
Wt,M) = Prob(t,Ws ∪Wt,M) = Prob(t,W,M) since Ws ∪Wt is countable,
and that case we have already proved. �

Proof [of Theorem 5.3.30] The sufficiency part of the theorem holds trivially,
having in mind Definition 5.3.12 and Remark 5.3.29, equation (5.29), since τ ∗

as well as τ∗aτ∗, for any a ∈ A \ {τ} is a saturated block and also each R-
equivalence class is an R saturated set. Hence ≈{τ} is at least as strong as ≈g,
≈{τ}⊆≈g. For the necessity part, assume s ≈g t in a system 〈S,A, α〉. Let R
be a weak bisimulation according to Definition 5.3.12 such that 〈s, t〉 ∈ R. By
Proposition 5.3.14, we can assume that R is complete. By Lemma 5.3.35, we
get that the transfer condition (5.29) of Remark 5.3.29 holds, and hence R is a
weak bisimulation witnessing that s ≈{τ} t. �

5.4 Concluding remarks

In this chapter we have proposed a coalgebraic definition of weak bisimulation
for action-type systems. For its justification we have considered the case of
the familiar labelled transition systems and of generative probabilistic systems,
and we have argued that the coalgebraic notion coincides with the concrete
definitions.

Note however, that our approach does not provide a final solution to the weak
bisimulation problem for coalgebras. Still, it provides a fresh view, and per-
haps a way towards a solution. The main problem is namely that one has to
come up with a suitable definition of a ∗-translation, in order to obtain a weak
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bisimulation for a class of coalgebras of a given type. It would be better if a
coalgebraic construction would automatically lead to ∗-translations. Obtaining
∗-translations is a topic for future research. The definition of composition from
Chapter 6 is partially connected to this question.

Furthermore, most of the work and technical difficulties of this chapter were
related to the correspondence result for generative probabilistic systems. We
hope to have provided clear and complete proofs, and we have shown that the
results of Baier and Hermanns extend to arbitrary infinite systems as well.





6

Simulation, coloring, composition,
and paths for coalgebras

Semantic relations other than bisimulation and weak bisimulation
are also often used for verification purposes. Such are for example
simulations and trace equivalence. In this chapter we point to related
work and briefly explain the state of the art of these semantic relations
for probabilistic systems and coalgebras. The chapter collects some
ideas and observations, and addresses further research.

In this chapter we collect some notes on various semantical issues. We take a
general coalgebraic point of view and consider probabilistic systems as leading
examples.

The chapter is divided into several sections. First, we focus on simulation re-
lations in section 6.1. We briefly elaborate on existing work on coalgebraic
simulations [JH03], as well as existing work on simulations of probabilistic sys-
tems [Seg95b, Bai98]. We show that the concrete definitions for probabilistic
systems can be obtained from the coalgebraic one and we point out some open
questions.

Next, we briefly mention colored trace semantics [GW96]. It is shown that
colored trace semantics coincides with bisimilarity [GW96, AW05] for labelled
transition systems and for the alternating probabilistic systems. Actually, in
these two cases colored trace semantics is the same as colored transition seman-
tics. We point out that colored transition semantics for coalgebras is actually
behavior equivalence. We focus on this topic in Section 6.2.

Our third topic of interest is trace semantics. For some probabilistic systems
there is a notion of trace semantics i.e. trace distribution [Seg95a, Seg95b,
Bai98]. For coalgebras in general it is difficult to define what traces are. In-
teresting solutions for some classes of coalgebras have been recently proposed
[Jac04, HJ05b, Jac05, HJ05a]. We believe that an important building block
for defining trace semantics as well as weak bisimulation for coalgebras is the
notion of a composite step. In a coalgebra, for each state, the transition func-

157
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tion represents the one-step behavior of the state. In order to define traces or
weak steps, one needs to consider sequences of steps i.e. composite steps. In
Section 6.3 we discuss how composition of coalgebras, i.e. composition of steps
in a coalgebra can be defined for some types of coalgebras.

We next emphasize the importance of the notion of paths. Consider labelled
transition systems. A (finite) path π is an alternating sequence of states and

labels of the form s0
a1−→ s1

a2−→ s2 · · ·
an−→ sn. We notice that many of the seman-

tic relations can be defined via a transformation on paths in the following way.
Assume T is a function defined on paths. Then a T -semantics can be defined
as: two states s and t are T -equivalent if and only if the image under T of the
set of paths that start in s equals the image under T of the set of paths that
start in t. Indeed, if the transformation T is the consistent coloring, then we get
bisimilarity. If T is weak consistent coloring, then we get branching bisimilarity.
If T maps a path π as above to its trace a1 . . . an, then the semantic relation
obtained is the trace equivalence. For probabilistic systems the notion of a path
is also used in many occasions, for example we used it in Chapter 5. For these
reasons, we investigate what a proper notion of a path in coalgebra might be.
We focus on this in Section 6.4 and Section 6.5.

6.1 Simulation

Simulation can be viewed as uni-directional bisimulation in a sense that a state s
can be simulated by a state t if every transition of s can be mimicked by a
matching transition from t. The original definition for LTS is due to Milner
[Mil80, Mil89].

Definition 6.1.1. A relation R ⊆ S × T is a simulation between the LTSs
〈S, α〉 and 〈T, β〉 if and only if the following transfer condition holds whenever
〈s, t〉 ∈ R:

if s
a
→ s′, then there exists t′ with t

a
→ t′ and 〈s′, t′〉 ∈ R.

Hence, one of the two symmetric transfer conditions in the definition of a bisim-
ulation (Definition 2.1.14) for LTS is dropped.

The definition of a simulation for simple Segala probabilistic automata, coalge-
bras of the functor P(A×D) [SL94, Seg95b] follows the same lines.

Definition 6.1.2. A relation R ⊆ S×T is a simulation between the two simple
Segala systems 〈S, α〉 and 〈T, β〉 if and only if 〈s, t〉 ∈ R implies that

if s
a
→; µ, then there exists a distribution µ′ with t

a
→; µ′ and µ ≡R µ′.

(6.1)

Please note, a bisimulation equivalence for simple Segala systems (Defini-
tion 2.2.3) was defined with the same transfer condition (6.1). This does not
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mean that a simulation is a bisimulation which is not an equivalence. For bisim-
ulations that are not equivalences between simple Segala systems one gets (as
for the LTS, Definition 2.1.14) two symmetric transfer conditions, namely:

if s
a
→; µ, then there exists a distribution µ′ with t

a
→; µ′ and µ ≡R µ′,

and

if t
a
→; µ, then there exists a distribution µ′ with s

a
→; µ′ and µ ≡R µ′.

A notion of simulation has also been defined for the generative probabilistic
systems (functor D(A× Id) + 1) [Bai98].

Definition 6.1.3. A relation R ⊆ S × T is a simulation between the two gen-
erative systems 〈S, α〉 and 〈T, β〉 if and only if 〈s, t〉 ∈ R implies that either
α(s) = ∗ or

if s ; µ, then there exists a distribution µ′ with t ; µ′ and µ ≡R,A µ′.

Recall that ≡R,A = Rel(D(A× Id))(R).

Definition 6.1.3 differs from the definition of bisimulation between generative
systems (that need not be an equivalence) only in the fact that a terminating
state s with α(s) = ∗ can be simulated by any other state. Besides this spe-
cial treatment of terminating states, a simulation according to Definition 6.1.3
is simply a bisimulation according to Definition 2.2.4. This way of defining
simulations for generative probabilistic systems seems to be too restrictive.

Let us look at what exists on the topic of simulation relations for coalgebras. Fol-
lowing the definition of simulation for coalgebras by Jacobs and Hughes [JH03],
we shall instantiate definitions for probabilistic systems. All the definitions and
properties in this section are taken from [JH03].

The definition of simulation for coalgebras is based on a definition of order of a
functor and of lax relation lifting, a relaxed form of relation lifting with respect
to order of a functor. Therefore, the definition of simulation is parameterized
by the order of the functor.

We denote by PreOrd the category of preorders 〈X,≤〉 (with ≤ a reflexive and
transitive relation on the set X) and order-preserving (monotone) functions
between them. Let F be a set endofunctor. In order to define simulations for
coalgebras of type F we need to have an order on the functor F .

Definition 6.1.4. Let F : Set → Set. An order on F is a functor v: Set →
PreOrd making the following diagram commute.

PreOrd

U

��
Set

v
==zzzzzzzz F // Set
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where U denotes the forgetful functor from PreOrd to Set, mapping a preorder
to its underlying set.

Hence, an order of a functor v is a collection of preorders vX⊆ FX × FX
indexed by sets, with the property that for any function f : X → Y , Ff :
FX → FY is order preserving.

Given a functor F with an order v, the notion of relation lifting Rel(F) (see
Section 3.6.1) relaxes to lax relation lifting Relv(F), by putting, for a relation R,

Relv(F)(R) = v ◦ Rel(F)(R)◦ v (6.2)

= {〈u, v〉 | ∃u′, v′ : u v u′, 〈u′, v′〉 ∈ Rel(F)(R), v′ v v} (6.3)

= {〈u, v〉 | ∃r ∈ FR : u v F(π1)(r),F(π2)(r) v v}. (6.4)

Just like bisimulation can be defined via relation liftings (see Lemma 3.6.4), a
simulation is defined via the lax relation liftings.

Definition 6.1.5. Let F be a Set endofunctor, with an order v. A relation
R ⊆ S × T is a simulation between the F coalgebras 〈S, α〉 and 〈T, β〉 if and
only if

〈s, t〉 ∈ R =⇒ 〈α(s), β(t)〉 ∈ Relv(F)(R). (6.5)

This simple change from the definition of bisimulation to the definition of sim-
ulation suffices to obtain the expected properties of simulations and similarity
for any coalgebra. In order to instantiate Definition 6.1.5 to concrete systems,
one needs to provide an order on the functor. For example, for the powerset
functor P, it is not hard to see that the inclusion order ⊆S on PS provides an
order ⊆ on P. In general, the following holds.

Lemma 6.1.6. If F has an order v and G is any functor, than FG inherits an
order v′ from F defined by v′

S =vGS. �

We shall denote the inherited order the same as the original order. When
Definition 6.1.5 is instantiated to LTS, functor P(A×Id) one uses the inclusion
order ⊆ and obtains the usual notion of simulation (Definition 6.1.1). Namely,
a relation R ⊆ S × T is a simulation between the LTS 〈S, α〉 and 〈T, β〉 if and
only if 〈s, t〉 ∈ R implies that there exist X ⊆ A× S and Y ⊆ A× T such that

α(s) ⊆ X, 〈X,Y 〉 ∈ Rel(P(A× Id))(R), Y ⊆ β(t)

which by the the definition and properties of relation lifting (see Section 3.6.1
and Section 3.6.2) can easily be seen to be equivalent to the condition from
Definition 6.1.1.

In [JH03] besides the LTS many other examples are discussed, but among them
there are no probabilistic systems.

We will instantiate this coalgebraic definition of simulation from [JH03] to some
probabilistic systems, in fact to the simple Segala systems and the generative
probabilistic systems mentioned above.
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For the simple Segala systems, functor P(A×D), we again use the inclusion order
⊆ just like for LTS. Therefore, it is no surprise that the transfer condition (6.5)
instantiated to P(A × D) with an order ⊆, amounts to the transfer condition
from Definition 6.1.2.

In order to derive a notion of simulation for the generative probabilistic systems,
functor D(A× S) + 1, we first need a definition of an order on D, or rather on
D + 1. Actually, any order v on D can be extended to an order on D + 1 in a
trivial way by adding 〈∗, ∗〉 to the order. One order on D can be obtained by
the following lemma.

Lemma 6.1.7. If there is an order v on a functor F , and a functor G is such
that there is a natural transformation τ : G =⇒ F , then v induces an order on
G, denoted also by v. For u, v ∈ GX we have

u v v ⇐⇒ τX(u) v τX(v).

�

There is a natural transformation supp : D =⇒ P mapping any distribution to
its support set, i.e., suppX(µ) = supp(µ) = {x ∈ X | µ(x)>0} for any µ ∈ DX.
Hence, from Lemma 6.1.7, we get an order ⊆ on D, induced by the inclusion
order on P. For µ, ν ∈ DX , it is defined by

µ ⊆ ν ⇐⇒ supp(µ) ⊆ supp(ν).

We can extend this order to an order on D + 1 as mentioned before.

From condition (6.5) and equation (6.3), we get that a relation R ⊆ S × T is
a ⊆-simulation between the generative probabilistic systems 〈S, α〉 and 〈T, β〉
if and only if 〈s, t〉 ∈ R implies that, either both α(s) = ∗ and β(t) = ∗, or
α(s) = µ, β(t) = ν and

∃µ′, ν′ : supp(µ) ⊆ supp(µ′), µ′ ≡R,A ν′, supp(ν′) ⊆ supp(ν). (6.6)

Without deriving equivalent conditions for ⊆-simulations, we note that the no-
tion of ⊆-simulation is rather general, perhaps too general. Note that given
two coalgebras on the same set of states S, any reflexive relation R on S that
satisfies

〈s, t〉 ∈ R =⇒ (α(s) = β(t) = ∗) ∨ (α(s) = µ ∧ β(t) = ν ∧ supp(µ) ⊆ supp(ν))

is an ⊆-simulation. Indeed, if 〈s, t〉 ∈ R, α(s) = µ, β(t) = ν, and supp(µ) ⊆
supp(ν), then by taking µ′ = ν′ = µ we have satisfied condition (6.6).

The simulations from Definition 6.1.3 can also be obtained from the coalgebraic
definition. Consider, for any set X, the order vX on (D + 1)X ∼= DX + 1,
defined by

x vX y ⇐⇒ x = y ∈ DX ∨ x = ∗.
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Hence, vX is simply the equality on distributions and ∗ is added as the smallest
element. The collection v of all vX forms an order of the functor D + 1. The
corresponding v-simulation relations satisfy exactly the same transfer condition
as the one from Definition 6.1.3.

Another definition of simulation for generative probabilistic systems can be ob-
tained if we change the distribution functor D to the sub-probability distribution
functor D≤. This functor is defined following the same lines as for D only there
is no requirement that the sum of the probabilities equals 1. Instead, the sum
should be less than or equal to 1. This functor has attracted some attention
lately (e.g. [HJ05a]). The generative probabilistic systems, including the pos-
sibility of termination, can be modelled as coalgebras of type D≤(A × Id). A
non-trivial point-wise order ≤ exists on D≤, defined for µ, ν ∈ D≤X by

µ ≤ ν ⇐⇒ ∀x ∈ X : µ(x) ≤ ν(x)

where ≤ on the right-hand side denotes the ordering of the real numbers. Using
this order, from (6.5) and (6.4) a relation R ⊆ S×T is an ≤-simulation between
the generative systems 〈S, α〉 and 〈T, β〉 if and only if 〈s, t〉 ∈ R and α(s) = µ,
β(t) = ν implies that

∃ρ ∈ D≤R : D≤π1(ρ) ≥ µ ∧ D≤π2(ρ) ≤ ν

which is equivalent to

∃ρ ∈ D≤R :
∑

y

ρ(x, y) ≥ µ(x) ∧
∑

x

ρ(x, y) ≤ ν(y).

Hence, different possibilities for orders on a functor exist. They lead to different
notions of simulation relations. It might be interesting to study whether some
orders are in any sense better than others. A related question is the one of
existence of a canonical order on a given functor. For example, for the power
set functor P, the inclusion order seems to be canonical.

Investigating weak simulations in the context of Chapter 5 and [JH03] is also
an interesting open question.

6.2 Colored transitions

A coincidence result for bisimilarity and so-called colored trace equivalence
for LTS was given by van Glabbeek and Weijland [GW96]. Andova and
Willemse [AW05] extended the notion of colored trace equivalence to one type of
probabilistic systems, the alternating systems of Hansson [Han91, HJ94]. The
same authors showed that bisimilarity for the alternating systems coincides with
the colored trace equivalence.

In an LTS, two states are colored trace equivalent if and only if they are colored
the same by some consistent coloring of the states of the system. A coloring
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of the states of a system is called consistent if two states are colored the same
only when their colored traces are the same. Colored trace equivalence coincides
with bisimilarity [GW96].

It is easy to see, in the case of LTS and in the case of the alternating probabilistic
systems, that a coloring is consistent if and only if two states are colored the
same only when their transitions are colored the same i.e. they have the same
colored traces of length 1.

Here we demonstrate that bisimilarity on any coalgebra of type F , for F pre-
serving weak pullbacks, is characterized via colored transitions. The character-
ization is a trivial reformulation of already known notions and facts which we
present in the sequel. We stress that we straightforwardly generalize the notions
of colored transition and consistent coloring (in terms of colored transition) from
[GW96] to coalgebras.

Let 〈S, α〉 be an F coalgebra. Let C be a set of colors. A coloring of the system
〈S, α〉 is any function col : S → C. Note that, by applying the functor F , any
coloring (of states) function col : S → C extends to a coloring of transitions
F col : FS → FC.

An element 〈c, αc〉 ∈ C×FC is a colored transition of 〈S, α〉 if and only if there
exists a state s ∈ S such that

(col×F col)(〈s, α(s)〉) = 〈col(s),F col(α(s))〉 = 〈c, αc〉.

Definition 6.2.1. A coloring col of the system 〈S, α〉 is consistent if and only
if two states are colored the same only when their transitions are colored the
same, i.e.,

col(s) = col(t) =⇒ F col(α(s)) = F col(α(t)). (6.7)

It turns out that consistent coloring is nothing else but a coalgebraic homomor-
phism.

Lemma 6.2.2. A function col : S → C is a consistent coloring of the system
of type F , 〈S, α〉 if and only if a system 〈C,αC〉 of type F can be defined such
that col is a coalgebra homomorphism from 〈S, α〉 to 〈C,αC〉, as shown in the
next diagram:

S
col //

α

��

C

∃αC

���
�
�

FS
F col // FC

Proof Assume αC exists such that col : S → C is a homomorphism from 〈S, α〉
to 〈C,αC〉. Then

col(s) = col(t) =⇒ αC(col(s)) = αC(col(t))

=⇒ F col(α(s)) = F col(α(t)).
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where the last implication holds by the homomorphism assumption. Hence, col
is consistent.

For the opposite, assume col : S → C is a consistent coloring of the F coalgebra
〈S, α〉. We can assume that the coloring is surjective, since the color set C
can always be restricted to a smaller set of used colors without affecting the
consistency condition. Let c ∈ C. Put

αC(c) = F col(α(s))

for some s ∈ col−1(c). We need to check that αC is well defined. Let s, t ∈
col−1(c). Then col(s) = col(t) and by the consistency condition F col(α(s)) =
F col(α(t)), i.e. αC is determined independently of the choice of representative
in col−1(c). Furthermore, col is a homomorphism by the definition of αC , i.e.

αC ◦ col = F col ◦ α

which completes the proof. �

Next we define a relation colored transition equivalence, on the states of a system
of type F .

Definition 6.2.3. Let 〈S, α〉 be an F coalgebra. The states s and t in S are
colored transition equivalent, notation s ≡C t, if and only if s and t are colored
with the same color by some consistent coloring of 〈S, α〉.

The next lemma shows that bisimilarity coincides with colored transition equiv-
alence, for coalgebras of weak pullback preserving functors.

Lemma 6.2.4. Let 〈S, α〉 be an F coalgebra and let s, t ∈ S be two states. If
F preserves weak pullbacks, then

s ∼ t ⇐⇒ s ≡C t.

Proof Assume s ∼ t. Since F preserves weak pullbacks, there exists an equiv-
alence bisimulation R such that 〈s, t〉 ∈ R. Consider the coloring c : S → S/R
“coloring” each state with its R-equivalence class. According to [Rut00, Propo-
sition 5.8] there exists a transition structure αS/R on S/R making c a homo-
morphism from 〈S, α〉 to 〈S/R, αS/R〉. Now by Lemma 6.2.2, c is consistent and
furthermore c(s) = c(t). Therefore s ≡C t.

For the opposite, assume s ≡C t. Let col be a consistent coloring of 〈S, α〉 such
that col(s) = col(t). By Lemma 6.2.2, we have that there exists a transition
structure αC on C such that col : S → C is a homomorphism. Consider the
(equivalence) relation R on S defined as the kernel of col, i.e.,

R = ker(col) = {〈s, t〉 | col(s) = col(t)}.

Since the functor F preserves weak pullbacks and R is a kernel of a homomor-
phism, we get that R is a bisimulation (see [Rut00, Proposition 5.7]). From
〈s, t〉 ∈ R we have s ∼ t. �
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It is obvious that ≡C is reflexive (the identity coloring is consistent) and sym-
metric, simply by definition. By Lemma 6.2.4, for coalgebras of weak pullback
preserving functors, the name colored transition equivalence is justified, i.e. ≡C

is an equivalence indeed, since bisimilarity is an equivalence. However, the
colored transition equivalence is an equivalence even if the bisimilarity is not,
since it coincides with behavior equivalence. Recall that we denoted behavioral
equivalence by ≈ (see Chapter 4, Definition 4.3.1).

Lemma 6.2.5. Let 〈S, α〉 be an F coalgebra and let s, t ∈ S be two states. Then

s ≈ t ⇐⇒ s ≡C t.

Before we give the proof, we note that the same property in a different formu-
lation is a known characterization of behavior equivalence on a coalgebra (see,
e.g., [Pat03, Proposition 2.3.3]).

Proof (of Lemma 6.2.5) It is clear that colored transition equivalence implies be-
havior equivalence, since if s ≡C t via a consistent coloring col, then 〈C, col, col〉
is a cocongruence on 〈S, α〉 that identifies s and t.

Assume s ≈ t, and further assume that the cocongruence 〈U, u1, u2〉 identifies
them, i.e. u1(s) = u2(t). Since 〈U, u1, u2〉 is a cocongruence, 〈〈U, γ〉, u1, u2〉
is a cospan in CoalgF . Moreover, since u1 and u2 have the same domain,
〈〈S, α〉, u1, u2〉 is a span in CoalgF . Take the pushout 〈〈C,αC〉, p1, p2〉 of
〈〈S, α〉, u1, u2〉. We have the commuting diagram

〈S, α〉
u1

yyrrrrr u2

%%LLLLL

〈U, γ〉

p1 %%LLLLL
〈U, γ〉

p2yyrrrrr

〈C,αC〉

The pushout exists since all colimits exist in CoalgF . Moreover it is obtained
from the pushout 〈C, p1, p2〉 of 〈S, u1, u2〉 in Set and equipped with the unique
corresponding transition structure αC . From the construction of the pushout in
Set we have that C = U/θ for θ being the smallest equivalence on U generated
by the pairs {〈u1(s), u2(s)〉 | s ∈ S}, and p1, p2 are in this case a single map,
the canonical projection mapping each element to its θ-class.

Since u1(s) = u2(t) we get that both 〈u2(t), u2(s)〉 ∈ θ and 〈u1(t), u1(s)〉 ∈ θ.
Hence p1 ◦ u1(s) = p1 ◦ u1(t), i.e. for the map col = p1 ◦ u1 = p2 ◦ u2 we have
col(s) = col(t). Moreover, col is a homomorphism from 〈S, α〉 to 〈C,αC〉 and
hence a consistent coloring which gives us s ≡C t. �

We obtained that two states are behavior equivalent if and only if there exists a
consistent coloring that colors them the same. So, the colored transition equiv-
alence is just another way of defining behavior equivalence and the presented
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material of this section provided another way to prove that behavior equivalence
and bisimilarity coincide for weak pullback preserving functors.

Furthermore, studying the connection between consistency of colorings and re-
lation liftings might bring some more insight. Consider the condition (6.7), i.e.,
the consistency condition of a coloring. The condition can be restated into

〈s, t〉 ∈ ker(col) =⇒ 〈α(s), α(t)〉 ∈ ker(F col). (6.8)

It is also worth stating that the behavior equivalence ≈ on an F-coalgebra
satisfies

≈ =
⋃

col:〈S,α〉→〈C,αC〉

ker(col) (6.9)

for any homomorphism col to any other F coalgebra. Then the condition (6.8)
is something like a transfer condition for cocongruences, if we consider them as
relations, i.e. as sets of pairs of states that they identify.

6.3 Composition of coalgebras

Consider a transition system 〈S, α : S → PS〉 with s, t, u ∈ S. The outgoing
transitions from the state s are shown in the left diagram below.

〈S, α〉 s

����
��

��

��<
<<

<<
<

t u

〈S, β〉 t

����
��

��

��;
;;

;;
;

t s

Moreover, assume that there is a TS 〈S, β : S → PS〉 (β = α is possible)
in which the state t allows the transitions shown in the right diagram above,
and the state u is terminating. Transitions that correspond to the sequential
composition of 〈S, α〉 and 〈S, β〉 from the state s are as shown below.

〈S, α · β〉 s

����
��

��

��<
<<

<<
<

t s

In this case, we compose by composing the transition relation −→ . Similarly,
in the case of LTS, we consider 〈S, α〉 and 〈S, β〉 with the transitions from s and
t in the two systems as below, and u a terminating state.

〈S, α〉 s
a

����
��

�� b

��<
<<

<<
<

t u

〈S, β〉 t
b

����
��

�� c

��;
;;

;;
;

t s
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The composition in state s is then described by the following transitions (now
with labels from A2).

〈S, α · β〉 s
ab

����
��

�� ac

��<
<<

<<
<

t s

In general, if two systems 〈S, α : S → FS〉 and 〈S, β : S → FS〉 are given, then
we wonder which system (on S) behaves as if a step from 〈S, α〉 is followed by
a step from 〈S, β〉. We wish to define such a system 〈S, α · β〉. We could always
define this composition to be of type FF , by α · β = Fβ ◦ α, i.e.

S
α
−→FS

Fβ
−→FFS. (6.10)

However, in the case of transition systems we get a composed system of type
P and not PP, and in the case of LTS we get a composed system of type
P(A2 × Id) and not of type P(A × Id)P(A × Id). This is due to the richer
structure of P, namely it is a monad. Moreover there is a distributive law
π : (A×Id)P =⇒ P(A×Id). Distributive laws have various applications in the
theory of coalgebras (c.f. [Bar04]). In this section we shall see how composition
of systems can be defined for systems of type T F where T is a monad, with a
distributive law λ : FT =⇒ T F .

6.3.1 Monads and distributive laws

We start by introducing the notions that we need for the sequel.

Definition 6.3.1. A monad in a category C is a triple 〈T, η, µ〉 where T is a
C endofunctor, and η : Id =⇒ T , µ : T ◦ T =⇒ T are natural transforma-
tions, called the unit and the multiplication, respectively, such that the following
diagrams commute.

T
T η +3

id
.6

(unit T )

T 2

µ

��
(unit T )

T
ηTks

id
hp

T 3
T µ +3

µT

��
(mult.T )

T 2

µ

��
T T 2

µ
+3 T

The two parts of the left diagram are the unit laws, and the right diagram is the
multiplication law, or the associativity, of the monad.

Example 6.3.2. A typical example of a monad in Set is the powerset monad
〈P , {},

⋃

〉 where {} : Id =⇒ P is the singleton natural transformation given by
{}X(x) = {x}, and

⋃

: P2 =⇒ P is the union natural transformation given by
⋃

X(Y ) =
⋃

Z∈Y Z for any Y ∈ PPX.

The distribution functor can also be equipped with a monad structure, namely
〈D, η, µ〉 is a monad for η : Id =⇒ D being the Dirac natural transformation



168 Chapter 6 Simulation, coloring, composition, and paths

given by ηX(x) = µ1
x, and the multiplication µ : D2 =⇒ D is given by µX(ν) = ν̄

for ν ∈ DDX and ν̄ ∈ DX defined by

ν̄(x) =
∑

ξ∈DX

ν(ξ) · ξ(x).

Simple derivations suffice to check that the unit and the multiplication laws
hold in this case as well.

Let F and G be any endofunctors on a category C. A distributive law of F
over G is a natural transformation λ : FG =⇒ GF . For the sequel we will use
distributive laws of a functor over a monad, whose definition we give next.

Definition 6.3.3. Let F be a functor and T a monad. A plain distributive law
of F over T is a distributive law of F over the functor T . A distributive law of
F over the monad T is a natural transformation λ : FT =⇒ T F that preserves
the monad structure, i.e., the following diagrams commute.

FX
FηX //

ηFX ,,

(a)

FT X

λX

��

FT T X
λT X //

FµX

��
(b)

T FT X
T λX // T T FX

µFX

��
T FX FT X

λX // T FX

Example 6.3.4. Let F = A×Id and T = D be the distribution monad. Then
there exists a distributive law λ : FT =⇒ T F i.e. λ : A × D =⇒ D(A × Id),
given by

λX(〈a, µ〉)(〈b, s〉) =

{

µ(s) a = b
0 otherwise.

This distributive law preserves the monad structure. Note that λX(〈a, µ〉) =
µ1

a×µ, for × denoting the product of distributions, and µ1
a the Dirac distribution

for a ∈ A. We already used this natural transformation in Chapter 4 (page 109).

When dealing with the powerset monad, a distributive law comes for free, as in
the next lemma.

Lemma 6.3.5. ([Jac04, HJ05b]) Let F be any weak pullback preserving functor.
Then there exists a distributive law π : FP =⇒ PF of F over the powerset
monad P, called a power law. The power law π is given by

πX(v) = {u ∈ FX | 〈u, v〉 ∈ Rel(F)(∈X)} (6.11)

for any set X and v ∈ FPX. �

Example 6.3.6. In particular, for F = A×Id, Lemma 6.3.5 provides us with a
power law π : A×P =⇒ P(A×Id) which according to the definition of relation
lifting for A× Id is given by

πX(〈a,X ′〉) = {〈a, x〉 | x ∈ X ′} (6.12)

for any a ∈ A and any X ′ ⊆ X.
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Recently, Hasuo and Jacobs [HJ05a] have shown existence of a distributive law
δ : FD =⇒ DF for polynomial functors F , providing a generalization of Exam-
ple 6.3.4 in the sense of Lemma 6.3.5.

Assume T is a monad, F a functor, and assume there exists a (plain) dis-
tributive law λ : FT =⇒ T F . Following [Jac04] we define families of maps
λn

X : FnT X → T FnX, indexed by sets, for all n ∈ N by

λ0
X = idT X , λn+1

X = λFnX ◦ Fλn
X (6.13)

i.e.

Fn+1T X
λn+1

X //

Fλn
X $$J

JJJJJJJJ

(6.13)

T Fn+1X

FT FnX

λFnX

::ttttttttt

Lemma 6.3.7. Let λ : FT =⇒ T F be a (plain) distributive law. For all n ∈ N,
from (6.13) we get a (plain) distributive law

λn : FnT =⇒ T Fn.

Proof We first show the naturality of λn for n ∈ N, by induction. For n = 0
the statement is trivial saying that id : T =⇒ T . For n = 1 the statement is
the naturality of λ. Assume λn is natural, and let f : X → Y . Then we have
that the following diagram commutes

Fn+1T X
Fn+1T f//

Fλn
X

��
F(nat.λn)

Fn+1T Y

Fλn
Y

��
FT FnX

FT Fnf//

λFnX

��
(nat.λ)

FT FnY

λFnY

��
T Fn+1X

T Fn+1f// T Fn+1Y

giving the naturality of λn+1. It remains to show that if λ preserves the monad
structure of T , then λn also does. We show this also by induction on n. Again,
the case n = 0 is trivial, and the case n = 1 is the statement for λ. We need to
show that both (a) and (b) from Definition 6.3.3 are satisfied for λn+1 assuming
that they are for λi if i ≤ n. We obtain (a) from the following diagram

Fn+1X
Fn+1ηX //

FηFnX &&LLLLLLLLLL

η
Fn+1X 11

F((a)λn)

((a)λ)

Fn+1T X

Fλn
Xxxpppppppppp

λn+1
X

��

FT FnX

λFnX &&NNNNNNNNNN
(def.λn+1)

T Fn+1X
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and (b) from the diagram below

Fn+1T T X
λn+1
T X //

Fλn
T X

((QQQQQQQQ

Fn+1µX

��

(def.λn+1)

T Fn+1T X
T λn+1

X //

T Fλn
X

((QQQQQQQQ
T (def.λn+1)

T T Fn+1X

µ
Fn+1X

��

FT FnT X

FT λn
X

((QQQQQQQQ

λFnT X

66mmmmmmmm
(nat.λ) T FT FnX

T λFnX

66mmmmmmmm

F((b)λn)
FT T FnX

λT FnX

66mmmmmmmm

FµFnX��
((b)λ)

FT FnX
λFnX

,,XXXXXXXXXXXXXXXXXX

Fn+1T X

Fλn
X

22ffffffffffffffffff

λn+1
X

//(def.λn+1)

T Fn+1X

which completes the proof. �

Lemma 6.3.8. For λk defined by (6.13) and for all natural numbers n,m ∈ N,
it holds that

λn+m
X = λn

FmX
◦ Fnλm

X . (6.14)

Proof We prove the property by induction on n. We have

λ0+m
X = λm

X = id ◦ λm
X = λ0

FmX
◦ F0λm

X .

We show that if it holds for the pair 〈n,m〉, then it does for 〈n+ 1,m〉, by the
commutativity of the following diagram.

Fn+m+1T X
λn+m+1

X //

Fλn+m
X ((PPPPPPPPPPPP

Fn+1λm
X ..

(F(IH))

(def.λn+m+1)

T Fn+m+1

FT Fn+mX

λ
Fn+mX

77nnnnnnnnnnnn

(def.λn+1)

Fn+1T FmX

Fλn
FmX

OO

λn+1
FmX

PP

�

Example 6.3.9. Consider again the setting of Example 6.3.6, and the given
power law π : FP =⇒ PF for F = A× Id. Since

(A× Id)n ∼= An × Id,

from Lemma 6.3.8, we get n-fold power law πn : An × P =⇒ P(An × Id), for
each n ∈ N. According to Equation (6.13), we can derive that it is given by

πn
X(〈w,X ′〉) = {〈w, x〉 | x ∈ X ′}

for w ∈ An and X ′ ⊆ X.
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6.3.2 Composition

We can now define composition of coalgebras of type T F for a monad T with
a distributive law λ : FT =⇒ T F .

Let S be a given set. We consider the set of all systems with carrier set S
of type T Fn, for some n ∈ N. Let 〈S, α〉 and 〈S, β〉 be two such systems,
α : S → T FkS, β : S → T FmS. We define

〈S, γ〉 = 〈S, α〉 · 〈S, β〉

for γ : S → T Fk+mS as given by the following diagram

S
α //

γ

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY T FkS
T Fkβ// T FkT FmS

T λk
FmS // T 2Fk+mS

µ
Fk+mS

��
T Fk+mS

(6.15)

The system 〈S, γ〉 is called the composition of 〈S, α〉 and 〈S, β〉. When the carrier
set is clear from the context, we shall often just write γ = α · β. Note that if
T is the identity monad, then one obtains the obvious definition of composition
as in (6.10).

The next lemma shows that the composition is a monoid operation.

Lemma 6.3.10. Let T be a monad, F a functor, and assume that there exists
a distributive law λ : FT =⇒ T F . The following hold.

(i) The composition of systems is associative.

(ii) The system 〈S, ηS : S → T S〉 is a unit for the composition of systems.

Proof

(i) Let 〈S, α〉, 〈S, β〉 and 〈S, γ〉 be such that α : S → T FkS, β : S → T FmS
and γ : S → T F lS. By the definition of the composition we have

(α · β) · γ = (µFk+mS ◦ T λk
FmS

◦ T Fkβ ◦ α) · γ

= µFk+m+lS ◦ T λk+m
FlS

◦ T Fk+mγ ◦ µFk+mS ◦ T λk
FmS

◦ T Fkβ ◦ α

and

α · (β · γ) = α · (µFm+lS ◦ T λm
FlS

◦ T Fmγ ◦ β)

= µFk+m+lS ◦ T λk
Fm+lS

◦ T FkµFm+lS ◦ T FkT λm
FlS

◦T FkT Fmγ ◦ T Fkβ ◦ α
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Hence, the associativity is a consequence of the commutativity of the
following diagram.

T FkT FmS
T λk

FmS //

T FkT Fmγ

��

T (nat.λk)

T 2Fk+mS
µ
Fk+mS //

T 2Fk+mγ

��

(nat.µ)

T Fk+mS

T Fk+mγ

��
T FkT FmT F lS

T λk

FmT FlS //

T FkT λm

FlS

��

T (nat.λk)

T 2Fk+mT F lS
µ
Fk+mT FlS//

T 2λk+m

FlS
T (6.13)

��

T 2Fkλm

FlS

yyrrrrrrrrrrrrrrr

(nat.µ)

T Fk+mT F lS

T λk+m

FlS

��
T FkT 2Fm+lS

T λk

T Fm+lS//

T Fkµ
Fm+lS

��

T ((b)λk)

T 2FkT Fm+lS
T 2λk

Fm+lS// T 3Fk+m+lS
µ
T Fk+m+lS//

T µ
Fk+m+lS

��

(mult.T )

T 2Fk+m+lS

µ
Fk+m+lS

��
T FkT Fm+lS

T λk

Fm+lS // T 2Fk+m+lS
µ
Fk+m+lS// T Fk+m+lS

(ii) Let 〈S, α〉 be such that α : S → T FkS. The system 〈S, ηS〉 is a right unit
since

S
α //

α·ηS 33

T FkS
T FkηS//

T η
FkS

11

T ((a)λk)

id

(unit T )

..

T FkT S

T λk
S

��
T 2FkS

µ
FkS

��
T FkS

and it is a left unit since

S
ηS //

α

��
(nat.η)

ηS ·α

��

T S

T α

��
(def.com.)

T FkS
η
T FkS//

id

(unit T )

::T 2FkS
µ
FkS // T FkS

�

Exponentiation of systems can also be defined, in the usual way: Let 〈S, α〉 be
a system of type T Fn. Then α0 = ηS and αn+1 = αn · α. By the associativity
of the composition we have αn+m = αn · αm, for any n,m ∈ N.
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Remark 6.3.11. We note that the definition of composition as well as
Lemma 6.3.10 are related to Kleisli categories. For a monad T = 〈T , η, µ〉,
by SetT we denote the Kleisli category associated to T . Its objects are sets and
morphisms f : X →T Y are functions f : X → T Y . The identity morphism
is then ηX for any set X and two morphisms f : X →T Y and g : Y →T Z
compose to a morphism g ◦T f : X →T Z given by

g ◦T f = µZ ◦ T g ◦ f.

Given a Set endofunctor F with a distributive law λ : FT =⇒ T F , we can lift
F to an endofunctor FT on the Kleisli category which acts as follows

FT (X) = FX FT (f) = λY ◦ Ff

for f : X →T Y a morphism in SetT . By Lemma 6.3.7 and Lemma 6.3.8
also Fk lifts to a functor Fk

T on the Kleisli category. Then the composition of
coalgebras α ·β corresponds to composing some morphisms in SetT in particular
α · β = Fk

T β ◦T α. Hence, the proof of Lemma 6.3.10 could also be given via
the Kleisli category. There is only an obligation to prove that Fk lifts in SetT
to the exponent of the lifting of F , i.e.

Fk
T = (FT )k

which can be done by induction, by the definition of λk and by Lemma 6.3.8.

We next provide examples that show how the composition is defined for LTSs
and for generative probabilistic systems.

Example 6.3.12. The functor defining the LTSs is of a form T F for T = P,
the powerset monad, and F = A × Id. By Lemma 6.3.5 the composition (and
exponentiation) is defined for LTSs. Moreover, since

(Ak × Id) ◦ (Am × Id) ∼= (Ak+m × Id) (6.16)

if 〈S, α : S → P(Ak × Id)〉 and 〈S, β : S → P(Am × Id)〉, then 〈S, α · β : S →
P(Ak+m × Id)〉. Some derivations suffice to see that

(α · β)(s) = {〈uv, t〉 | ∃r ∈ S : 〈u, r〉 ∈ α(s), 〈v, t〉 ∈ β(r)}

i.e., s
uv
−→ t in 〈S, α · β〉 if and only if there exists r ∈ S such that s

u
−→ r

in 〈S, α〉 and r
v
−→ t in 〈S, β〉, for arbitrary state s ∈ S and arbitrary words

u ∈ Ak, v ∈ Am.

Example 6.3.13. The generative probabilistic systems are defined by the func-
tor D(A × Id) i.e., by a functor T F for F as in the previous example, and
T = D being the distribution monad. Example 6.3.4 provides also a dis-
tributive law of F over the monad T . Hence, composition and exponenti-
ation of generative probabilistic systems is also defined. Using the isomor-
phism (6.16), and the definition of composition, after some derivations we
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get that if 〈S, α : S → D(Ak × Id)〉 and 〈S, β : S → D(Am × Id)〉, then
〈S, α · β : S → D(Ak+m × Id)〉 is given by

(α · β)(s)(uv, t) =
∑

r∈S

α(s)(u, r) · β(r)(v, t)

for u ∈ Ak, v ∈ Am and s, t ∈ S.

6.3.3 Relation to traces and other semantics

The interest in compositions was already invoked when considering weak bisim-
ulations. It was an important issue to know what does it mean to perform
several consecutive steps from a state. Later, the work of Jacobs [Jac04] on
trace semantics for coalgebras of type PF for F a polynomial functor drew the
author’s attention to monads and distributive laws and made it easy to define
composition of coalgebras of type T F with T a monad and a corresponding
distributive law. The author’s ambition was to extend the results on traces for
other coalgebras but of type PF . The definition of composition is a small step in
this direction. In a recent work, Hasuo and Jacobs [HJ05b] proposed a different
treatment of (finite) traces for PF coalgebras. More recently, the same authors
also obtained traces for coalgebras of type D≤F [HJ05a]. The trace map in this
new result is defined in terms of composition i.e. exponentiation of coalgebras.
The same can be done for the trace map from [HJ05b]. The compositions are
not an essential part of the results, but they do provide a nice presentation.
Generalizing the traces result i.e. obtaining traces for more general coalgebras,
for example of type T F for any monad T , a polynomial functor F , with a
corresponding distributive law, is an interesting direction for future work.

Coming back to weak bisimulations, we believe that compositions might also
help in obtaining ∗-extensions (see Chapter 5). For example, given an LTS
coalgebra 〈S, α : S → P(A× S)〉, the ∗-extension 〈S, α∗ : S → P(A∗ × S)〉 can
be expressed in terms of compositions by

α∗(s) =
⋃

n∈N

αn(s)

where αn denotes the n-th exponent of the coalgebra 〈S, α〉. There might be
similar connections between exponents and ∗-extensions for general coalgebras
as well.

6.4 Paths in coalgebras

In this section we investigate possible definitions of paths for coalgebras. The
case of LTS makes us believe that having a good definition of paths brings
possibilities of defining various semantic relations.
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Assume we have a system 〈S, α〉 of type F . A (finite) path could be a sequence
of transitions

s0 α(s0) s1 α(s1) s2 · · · sn−1 α(sn−1) sn (6.17)

where, each si is “reachable” from α(si−1) for i ≥ 1. In case of transition
systems, i.e. the powerset functor, it is intuitively clear that reachable means
“belongs to” i.e. we require si ∈ α(si−1).

Still, the usual notions of paths for TS and LTS are linear, being sequences of
states and actions, unlike those from (6.17). In an LTS a path is an alternating
sequence of states and actions, usually represented as

s0
a1−→ s1

a2−→ s2 · · · sn−1
an−→ sn.

Similarly, in a transition system a path is only a sequence of states

s0 → s1 → s2 · · · → sn.

Moreover, in a simple Segala system [Seg95b], a path is a sequence

s0
a1−→µ1 s1

a2−→µ2 s2 · · · sn−1
an−→µn sn

where si ∈ supp(µi). This definition of a path is semi-linear. On the one hand,
it exploits the similarity with LTS and therefore shows linearity and, on the
other hand, it involves whole distributions over states.

For generative probabilistic systems the usual notion of a path (see e.g. Chap-
ter 5) is also linear. A path in a generative system is an alternating sequence

s0
a1−→ s1

a2−→ s2 · · · sn−1
an−→ sn

such that the probability of performing each transition si−1
ai−→ si is greater

than 0, for i ≥ 1. This is very much different than what comes out of (6.17).
The advantage of the used definition is that it is indeed linear, the disadvantage
is that it looses probabilistic information. The behavior of the state is no longer
determined by the set of paths, nor by the set of paths of length one, in contrast
to the LTS case.

In this section we will present some general observations that show, for example,
the general principles that lead to this linear but incomplete definition of paths
for generative systems.

Jacobs [Jac04] defines paths in a semi-linear fashion for systems of type PF ,
where F preserves weak pullbacks, as sequences

〈u0, u1, . . . , un〉 ∈
n

∏

i=0

F iS

such that for i ≥ 0 we have

〈ui+1, ui〉 ∈ Rel(F)i((id× α)−1∈FS). (6.18)
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Jacobs’ definition of a path implicitly uses the existing power law and the fact
that ∈X is the reachability relation.

In general, let T be a monad and F a functor, with a distributive law λ :
FT =⇒ T F . Moreover, let a family of reachability relations be givenR = {RX}
where RX ⊆ X × T X for any set X. Intuitively, this is how we form paths of
〈S, α : S → T FS〉 w.r.t. R: We pick up a first element u0 ∈ S. We apply
the transition function to it and get α(u0) ∈ T FS. We pick up a next element
u1 ∈ FS such that 〈u1, α(u0)〉 ∈ RFS . Then we continue from u1, we apply
now Fα to it in order to get its transitions and we land in Fα(u1) ∈ FT FS.
An application of the distributive law gets us back on the right track, and we
have λFS(Fα(u1)) ∈ T F

2S. At this point we are in position to again pick up a
next element for our path. We choose u2 ∈ F

2S such that 〈u2, λFS(Fα(u1))〉 ∈
RF2S . Proceeding this way, we build possible paths.

Hence, paths for systems of type T F with T being a monad and a corresponding
distributive law, w.r.t a family R are sequences

〈u0, u1, . . . , un〉 ∈
n

∏

i=0

F iS

such that for all i = 0, . . . , n− 1 we have

〈ui+1, ui〉 ∈ (id× λi
FSF

iα)−1RFi+1S = Rα,i. (6.19)

Remark 6.4.1. We note that Jacobs’ paths are indeed paths according to (6.19)
in case of the powerset monad and the membership relations. Let T = P, πn

the n-fold power law, and RX = ∈X . Moreover, let 〈S, α〉 be a PF coalgebra,
for a weak pullback preserving functor F . Then

Rel(F)i(∈FS) = (id× πi
FS)−1(∈Fi+1S) (6.20)

as can be derived from [Jac04, Lemma 4.2]. This implies that

Rel(F)i((id× α)−1(∈FS))
(∗)
= (id×F iα)−1 Rel(F)i(∈FS)

(6.20)
= (id×F iα)−1(id× πi

FS)−1(∈Fi+1S)

= (id× πi
FSF

iα)−1(∈Fi+1S)

where the equality (∗) holds by the properties of relation liftings (see Sec-
tion 3.6.1).

Hence, both notions of paths coincide for LTS, and they also correspond to the
usual notion of paths for LTS, as shown in the next example.

Example 6.4.2. Let T = P, F = A × Id and RX = ∈X . Let πn be the
distributive laws from Example 6.3.9. A sequence 〈u0, . . . , un〉 is a path, ui ∈
Ai × S if for all i ≥ 0

〈ui+1, ui〉 ∈ (id× πi
FSF

iα)−1RFi+1S .
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i.e.
ui+1 ∈ π

i
FS((Ai × α)(ui)).

Now, since ui = 〈wi, si〉 ∈ A
i × S, and (Ai × α)(ui) = 〈wi, α(si)〉, from Exam-

ple 6.3.9, we get

πi
FS(〈wi, α(si)〉) = {〈wi, u〉 | u ∈ α(si)}

= {〈wi, 〈a, s
′〉〉 | 〈a, s′〉 ∈ α(si)}

∼= {〈wi · a, s
′〉 | s

a
−→ s′}.

Hence, 〈u0, . . . , un〉 is a path, ui = 〈wi, si〉 ∈ A
i × S if and only if for all i ≥ 0

it holds that wi+1 = wi · a for some a ∈ A and si
a
−→ si+1.

The definition of paths for systems of type T F depends on a family of relations
R. We do not know what characterizes a good family R = {RX ⊆ X × T X}
of relations for reachability. In any case, every such family of relations should
satisfy the following condition. For any natural number n, any system 〈S, α〉 of
type T F and any state s ∈ S

(id× αn)−1(RFnS) ∩ FnS × {s} = Rα,n
◦ · · · ◦Rα,1 ∩ FnS × {s} (6.21)

The condition provides a link between the notion of composition of systems and
the notion of a path. It can be rewritten to

{u | 〈u, αn(s)〉 ∈ RFnS} =

{u | ∃u1, . . . , un−1 : 〈s, u1, . . . , un−1, u〉 is a path in 〈S, α〉 w.r.t RX}

expressing that reachable elements from αn(s) are exactly those that can be
reached by a path of length n.

We next show that for T being a submonad of P in the sense that there exists
a natural transformation σ : T =⇒ P, families of reachability relations come
naturally.

6.5 Paths for submonads of P

Since the powerset monad, together with the family of membership relations,
seems to play a special role in defining paths of systems, it makes sense to study
in more detail submonads of P i.e. monads that can be naturally mapped to
the powerset monad. In order to limit the size of this section we shall skip or
present only sketches of proofs. The complete proofs can be found in [Sok05].

Lemma 6.5.1. The following are equivalent:

(i) The monad T is submonad of P, i.e. there exists a natural transformation
σ : T =⇒ P.
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(ii) There exists a family R = {RX ⊆ X × T X} of relations indexed by sets
such that for all sets X, Y and all f : X → Y

(f × id)RX = (id× T f)−1RY . (6.22)

Proof (sketch) Assume (i) holds and σ : T =⇒ P. Then we can define a family
of relations R = {RX} by

RX = (id× σX)−1(∈X) ⊆ X × T X (6.23)

which satisfies (6.22).

For the opposite, ff R = {RX ⊆ X × T X} is a family of relations with the
property (6.22), then we define a family of maps {σX} by

σX : T X → PX, σX(u) = {x ∈ X | 〈x, u〉 ∈ RX}. (6.24)

and they form a natural transformation σ : T =⇒ P. �

In the proof above, if σ satisfying (6.22) exists, then we call the family of rela-
tions RX defined by (6.23), the family associated to σ. Conversely, if RX exists
satisfying (6.22), then we say that the natural transformation σ from (6.24) is
associated to the family. These assignments are inverses to each other. More-
over, the condition (6.22) implies that

(f × T f)RX ⊆ RY

which is equivalent to the condition that the family R = {RX} is functorial, i.e.
R determines a functor making the following diagram commute.

Rel

U
��

Set

R

77pppppppppppp Id×T // Set× Set

The next lemma shows that a family of relations associated to a submonad of
P can be used instead of the membership family in case the submonad natural
transformation is a monad map. We first define the notion of a monad map.

Definition 6.5.2. Let 〈T , ηT , µT 〉 and 〈M, ηM, µM〉 be two monads. A monad
map from T to M is a natural transformation λ : T =⇒ M such that it
preserves the monad structures, i.e., the following two diagrams commute.

X
ηT

X //

ηM
X

++

(c)

T X

λX

��

T T X
λT X //

µT
X

��
(d)

MT X
MλX //MMX

µM
X

��
MX T X

λX //MX
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Lemma 6.5.3. Let σ : T =⇒ P be a monad map and let R be the family asso-
ciated to σ, i.e. RX = (id × σX)−1(∈X). Let λ : FT =⇒ T F be a distributive
law. Then R satisfies condition (6.21). �

Example 6.5.4. We have a natural transformation supp : D =⇒ P mapping
any distribution to its support set, i.e., suppX(µ) = supp(µ) = {x ∈ X | µ(x)>
0} for any µ ∈ DX. The associated family of relations with the property (6.22),
by (6.23) is

RX = (id× suppX)−1(∈X)

= {〈x, µ〉 | 〈x, supp(µ)〉 ∈ ∈X}

= {〈x, µ〉 | x ∈ supp(µ)}.

We now show that, under a reasonable assumption, ifR is the family of relations
associated to a natural transformation σ : T =⇒ P, then one can define paths
via (6.19) or via (6.18) with R instead of ∈ obtaining the same notion. For
this we introduce first the notion of a map of distributive laws. We say that
σ : T =⇒ P is a map of the distributive laws λ and π, notation σ : λ =⇒ π, if
the next diagram commutes.

FT X
FσX //

λX

��

FPX

πX

��
T FX

σFX // PFX

(6.25)

In a sense, a map of distributive laws shows that two distributive laws are
compatible, or imitate each other along the natural transformation σ.

Lemma 6.5.5. Let T be a monad, F a functor, λ : FT =⇒ T F a (plain)
distributive law, and π : FP =⇒ PF the power law. Moreover, let σ : λ =⇒ π
and let R = {RX} be the associated family of relations. Then

(id× λi
X)−1(RFiX) = Rel(F)i(RX). (6.26)

�

It can easily be seen, as in Remark 6.4.1, that Equation (6.26) implies equiva-
lence of the Conditions (6.19) and (6.18).

Maps between distributive laws exist in the nature, as the following example
demonstrates.

Example 6.5.6. Let λ : A × D =⇒ D(A × Id) and π : A × P =⇒ P(A ×
Id) be defined as in Example 6.3.4 and Example 6.3.6, respectively. Consider
the support natural transformation supp : D =⇒ P. Then supp is a map of
distributive laws, supp : λ =⇒ π, since one can directly verify that

πX ◦ F suppX = suppFX
◦λX .
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Hence, for generative probabilistic systems there is one notion of a path with
respect to the support relations. Moreover, it can be seen that this one notion
corresponds to the usual linear notion of a path for generative systems.

The following result suggests that in the case of the powerset monad, the family
of membership relations deserves to be called the family of reachability relations.

Lemma 6.5.7. There exist exactly two families of relations RX that sat-
isfy (6.22), associated to the powerset monad P. These are RX = ∅ for all
sets X, and RX = ∈X . �

We next point that for any submonad of P there is a largest natural trans-
formation that witnesses the submonad property. It corresponds to a largest
family of relations. First we order the families of relations and the natural
transformations. Let R = {RX ⊆ X × T X} and Q = {QX ⊆ X × T X}. We
define

R ≤ Q ⇐⇒ RX ⊆ QX

for all sets X. Furthermore, let λ : T =⇒ P and τ : T =⇒ P. Define

λ ≤ τ ⇐⇒ λX(u) ⊆ τX(u)

for all sets X and all u ∈ T X. One directly verifies that if R,Q are the
families of relations associated to the natural transformations λ, τ from T to P,
respectively, then

R ≤ Q ⇐⇒ λ ≤ τ.

For any monad T , there exists the empty natural transformation ε : T =⇒ P
given by εX(u) = ∅ for all sets X and all u ∈ T X. Furthermore, if {Ri | i ∈ I} is
a collection of families of relations that satisfy (6.22), then R with components
RX =

⋃

i∈I R
i
X also satisfies (6.22), and Ri ≤ R for all i ∈ I. As a consequence

we get the following property.

Lemma 6.5.8. For any monad T , there exists a largest family of relations
R = {RX ⊆ X × T X} with the property (6.22), and a corresponding largest
natural transformation σ : T =⇒ P. �

Example 6.5.9. The family R corresponding to the support natural transfor-
mation supp : D =⇒ P is the largest family of relations that satisfies (6.22).

In the last two sections we studied ways to define paths in coalgebras. We are
not yet convinced whether it is reasonable to define notions of linear behavior,
such as paths, for general coalgebras. The most general definition given by
condition (6.17) does not seem to reflect intuition of what a linear path should
be. Moreover, there is the question of how to pick next states, i.e. which states
are “reachable” from a transition α(s).

Therefore, we discussed subclasses of coalgebras for which a definition of a
path is possible. Such are the coalgebras of a monad, the coalgebras of type
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PF [Jac04], and, as we have seen, also coalgebras of type T F for T being a
submonad of P. An example of such coalgebras are the generative probabilistic
systems, and for them we obtain the usual notion of a path. While studying
the possibility of defining paths, we have come to some interesting observations
for the submonads of P. Still, we are not convinced that defining paths by
“forgetting” parts of the behavior, as in the case of generative systems is a good
idea. Application of these notions of paths for obtaining semantic relations
remains an issue for future research. It could be a way to evaluate the notions
of paths that we have discussed.

Moreover, a notion of paths plays a significant role in the definition of open
maps bisimulation [FCW99] where bisimulation is characterized by a category
of paths. We leave the investigation of the connection between open maps and
our notions of paths for future work.
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Samenvatting (Dutch summary)

Dit proefschrift verzamelt verscheidene theoretische resultaten, waardoor twee
onderzoeksgebieden in de theoretische informatica verbonden worden: de theo-
rie van coalgebra’s en het probabilistisch modelleren voor verificatie doeleinden.
De theorie van coalgebra’s, enerzijds, biedt een generiek, categorisch, abstract
raamwerk dat vele concrete noties van transitiesystemen afdekt. Anderzijds
biedt de bestaande literatuur over probabilistisch modelleren een grote verschei-
denheid aan probabilistische typen transitiesystemen.

Daar, waar transitiesystemen beschouwd worden als modellen van programma’s,
processen of systemen, teneinde te kunnen redeneren over het gedrag van het
systeem in een toestand, is een notie van toestandsequivalentie nodig. Een al-
gemeen bekende gedragsequivalentie is bisimilariteit, gebaseerd op de notie van
bisimulatie. Een bisimulatie is een relatie op de toestandsruimte van transi-
tiesystemen, die toestanden met hetzelfde stap-voor-stap gedrag identificeert.
Een generieke notie van bisimulatie is één van de belangrijke bijdragen van de
theorie van coalgebra’s. Verschillende concrete noties van bisimulatie bestaan
voor de verscheidene probabilistische transitiesystemen.

Een wezenlijk deel van dit proefschrift is gewijd aan een gedetailleerde studie
naar en vergelijking van de bestaande concrete typen probabilistische systemen.
De uitdrukkingskracht van deze verschillende transitiesystemen met betrekking
tot de semantiek van bisimulatie wordt vergeleken. Een type wordt hoogstens zo
expressief als een ander type beschouwd, als er een manier is om ieder systeem
van het eerste type te transformeren tot een systeem van het tweede type, op
een wijze zodat twee toestanden bisimilair zijn in het getransformeerde systeem
dan en slechts dan als ze bisimilair zijn in het originele systeem. Op deze wijze
kunnen de verschillende typen probabilistische systemen geordend worden in een
hierarchie van expressiviteit. Voor de presentatie van de systemen en het bewijs
van deze hierarchie wordt een beroep gedaan op de theorie van coalgebra’s. Een
coalgebräısch resultaat dat aantoont dat zulke vertalingen verkregen kunnen
worden uit injectieve natuurlijke transformaties wordt bewezen. Dit leidt tot
een elegant bewijs van de hierarchie stelling. Voor zover bekend is dit de eerste
toepassing van de theorie van coalgebra’s op deze wijze.

Hiernaast richt dit proefschrift zich op een andere vorm van toestandsequi-
valentie, te weten zwakke bisimulariteit, welke gebaseerd is op de notie van
zwakke bisimulatie. In de literatuur over concrete systemen is zwakke bisimu-
latie een bekend begrip. Ook voor probabilistische systemen bestaan verschil-
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lende voorstellen voor zwakke bisimulatie. Echter, iets dergelijks ontbreekt
in de theorie van coalgebra’s. Een gedeeltelijke oplossing voor dit probleem
voor actie-type coalgebra’s wordt gepresenteers en wordt verantwoord door een
correspondentieresultaat zowel voor standaard gelabelde transitiesystemen als
voor één type probabilistische systemen te bewijzen.

Ten slotte worden een aantal onderwerpen verwant aan andere semantische
relaties voor coalgebra’s behandeld, te weten: simulatie, gekleurde transitie-
semantiek, compositie van coalgebra’s en manieren om paden in coalgebra’s te
definiëren. Probabilistische transitiesystemen worden hier gebruikt als leidende
voorbeelden.



Curriculum Vitae

Ana Sokolova was born on 30th of May 1971 in Skopje, Macedonia.

She received her B.Sc. and her M.Sc. in computer science from Ss. Cyril and
Methodius University in Skopje, Macedonia in 1994 and in 1999, respectively.

From 1995 until 2001 she worked as a teaching and research assistant within
the Institute of Informatics, Faculty of Natural Sciences and Mathematics, at
the Ss. Cyril and Methodius University in Skopje, Macedonia.

In June 2001 she became a Ph.D student at the Formal Methods Group, Depart-
ment of Computer Science, Eindhoven University of Technology, The Nether-
lands.

From October 2005 she works as a postdoc researcher within the Security of Sys-
tems Group, Institute for Computing and Information Sciences, at the Radboud
University Nijmegen.

201



Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-

cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-

opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-

grams: Models, Methods, and Implementa-

tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local

Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation

of Functional Languages on Parallel Ma-

chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for

Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Syn-

chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and

Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Semantics

and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-
09

A.M.G. Peeters. Single-Rail Handshake

Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering

Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type

Inference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and

Partition Refinement for Model Checking.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities

in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs

of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-

mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of

Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-

ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for

Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-

gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional

Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal

Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A

Discrete-Event Simulator for Systems Engi-

neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-

tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03



J.S.H. van Gageldonk. An Asynchronous

Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten. In Terms of Nets: System

Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with

Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic

Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-

tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative

Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a

Study on Indecisiveness in Sample Selec-

tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization

in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:

Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to

satisfiability problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial Pro-

tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata

for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10
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