Exemplaric Expressivity of Modal Logics

Ana Sokolova University of Salzburg

joint work with

Bart Jacobs Radboud University Nijmegen

It is about...

Coalgebras

$$c: X \to TX$$

with coalgebra homomorphisms

$$h: X \to Y$$

$$TX \xrightarrow{Th} TY$$

$$c \uparrow \qquad \uparrow d$$

$$X \xrightarrow{h} Y$$

Behaviour functor!

Generalized transition systems

• Modal logics

In a studied setting of dual adjunctions

Outline

• Expressivity:

logical equivalence = behavioral equivalence

- For four examples:
 - 1. Transition systems
 - 2. Markov chains
 - 3. Multitransition systems
 - 4. Markov processes

Boolean modal logic

Finite conjunctions ,,valuation" modal logic

Via dual adjunctions

Logical set-up

If L has an initial algebra of formulas

$$L: \textit{Form} \stackrel{\cong}{\longrightarrow} \textit{Form}$$

A natural transformation

$$\sigma: LP \Rightarrow PT$$

gives interpretations

for arbitrary coalgebra
$$\begin{array}{c} TX \\ \uparrow c \\ X \end{array}$$

$$L(\textit{Form}) \xrightarrow{L[\![-]\!]} LPX \\ \cong \begin{vmatrix} & & \downarrow \\ & & \downarrow \\ & & PTX \\ & & \downarrow Pc \\ & & Form - - _ - _ - \to PX \end{vmatrix}$$

Logical equivalence behavioural equivalence

The interpretation map yields a theory map

MIN.

ADTESSIVI;

which defines logical equivalence

$$x \equiv y \Leftrightarrow th(x) = th(y)$$

behavioural equivalence is given by

$$x \sim y \quad \Leftrightarrow \quad h_1(x) = h_2(y)$$

for some coalgebra homomorphisms h_1 and h_2

Expressivity

Bijective correspondence between

and

If and the transpose of the interpretation is componentwise abstract mono, then expressivity.

T preserves $\mathcal M$

Factorisation system on $\,\mathbb{C}\,$

 $(\mathcal{M}, \mathcal{E}), \ \mathcal{M} \subseteq Monos, \ \mathcal{E} \subseteq Epis$

with diagonal fill-in

Sets vs. Boolean algebras

unit
$$\eta: A \to \mathcal{P}\mathcal{F}_u(A)$$

 $\eta(a) = \{\alpha \in \mathcal{F}_u(A) \mid a \in \alpha\}$

contravariant powerset

Setsop

BA

standard correspondence

$$\frac{f: X \longrightarrow \mathcal{F}_{\!\!u}(A) \quad \text{in Sets}}{g: A \longrightarrow \mathcal{P}(X) \quad \text{in BA}}$$

via

$$\frac{a \in f(x)}{x \in g(a)}$$

 $\mathcal{F}_{\!\!u}$

Boolean algebras

ultrafilters

$$\begin{aligned} & \text{upsets } \alpha \subseteq A, \top \in \alpha \\ & a, b \in \alpha \Rightarrow a \wedge b \in \alpha \\ & \forall a \in A.a \in \alpha \text{ xor } \neg a \in \alpha \end{aligned}$$

Sets vs. meet semilattices

unit $\eta: A \to \mathcal{PF}(A)$ $\eta(a) = \{\alpha \in \mathcal{F}(A) \mid a \in \alpha\}$ contravariant powerset

Setsop

MSL

meet

semilattices

"the same" correspondence

$$f: X \longrightarrow \mathcal{F}(A)$$
 in Sets

$$g:A{\longrightarrow} \mathcal{P}(X)$$
 in **MSL**

via

$$a \in f(x)$$

$$x \in g(a)$$

filters

upsets
$$\alpha \subseteq A$$
, $\top \in \alpha$
 $a, b \in \alpha \Rightarrow a \land b \in \alpha$

FM Group Seminar, TU/e, Eindhoven 9.2.9

Measure spaces vs. meet semilattices

unit $\eta: A \to \mathcal{SF}(A)$ $\eta(a) = \{\alpha \in \mathcal{F}(A) \mid a \in \alpha\}$ maps a measure space to its σ -algebra

Measop

MSL

σ-algebra:

"measurable"

subsets

closed under

empty,

complement,

countable

union

"the same" correspondence

$$f:X{\longrightarrow} \mathcal{F}(A)$$
 in **Meas**

$$g: A \longrightarrow \mathcal{S}(X)$$
 in **MSL**

via

$$a \in f(x)$$

$$x \in g(a)$$

measure spaces

objects: pairs $(X, \mathcal{S}(X))$

arrows: measurable functions

$$\to Y$$
 with $f^{-1}(\mathcal{S}(Y)) \subseteq \mathcal{S}(X)$

by

Behaviour via coalgebras

Transition systems

 \mathcal{P}_f -coalgebras in Sets

Markov chains/Multitransition systems

 \mathcal{M}_f -coalgebras in Sets

Markov processes

G-coalgebras in **Meas**

Giry monad

What do they have in common?

They are instances of the same functor

Given $(M, +, 0, \leq)$ with $x \leq x + y$, $O \subseteq M$ - downward closed

$$V_O(X) = \{ \varphi : X \to O \mid \operatorname{supp}(\varphi) \text{ is finite} \}$$
 $V_O(f)(\varphi)(y) = (\varphi \circ f^{-1})(\{y\})$

Not cancellative

$$\mathcal{P}_f = V_O$$
 for $M = (\{0, 1\}, \vee, 0, \leq) O = M$

$$\mathcal{M}_f = V_O \text{ for } M = (\mathbb{N}, +, 0, \leq) \qquad O = M$$

$$\mathcal{D}_f = V_O \text{ for } M = (\mathbb{R}^{\geq 0}, +, 0, \leq) \quad O = [0, 1]$$

The Giry monad

$$(X, \mathcal{S}X) \mapsto (\mathcal{G}X, \mathcal{S}\mathcal{G}X)$$

countable union of pairwise disjoint

$$\mathcal{G}X = \{ \varphi : \mathcal{S}X \to [0,1] \mid \varphi() = 0, \varphi(\cup_i M_i) = \sum_i \varphi(M_i) \}$$

the smallest making

$$ev_M: \mathcal{G}X \to [0,1]$$
 $\varphi \mapsto \varphi(M)$

measurable

generated by

$$\{ \square_r(M) \mid r \in \mathbb{Q} \cap [0,1] \}$$

$$\Box_r(M) = \{ \varphi \in \mathcal{G}X \mid \varphi(M) \ge r \}$$

subprobability measures

Logic for transition systems

Modal operator

$$\Box(S) = \{ u \in \mathcal{P}_{f}(X) \mid u \subseteq S \}$$

models of boolean logic with fin.meet preserving modal operators

 \square induces \boxtimes : $L\mathcal{P} \Rightarrow \mathcal{P}\mathcal{P}_{\scriptscriptstyle f}$

$$\mathcal{P}_f$$
 \subseteq $\mathbf{Sets}^{\mathrm{op}}$ \mathcal{F}_u \wedge

componentwise mono to

$$\mathcal{P}_{\!\scriptscriptstyle f}\mathcal{F}_{\!\scriptscriptstyle u}\Rightarrow\mathcal{F}_{\!\scriptscriptstyle u}L$$

GV rgetful

Logic for Markov chains

Probabilistic modalities

$$\square_r(S) = \{ \varphi \in \mathcal{D}_{\scriptscriptstyle f}(X) \mid \sum_{x \in S} \varphi(x) \ge r \}$$

models of logic with fin.conj. and monotone modal operators

 \square induces \boxtimes : $K\mathcal{P} \Rightarrow \mathcal{P}\mathcal{D}_{f}$

 $\mathcal{D}_f \bigcirc \mathbf{Sets^{op}} \overset{\mathcal{P}}{\overbrace{\mathcal{F}}} \mathsf{MSL} \bigcirc K$

componentwise mono to

 $\mathcal{D}_{\!\scriptscriptstyle f}\mathcal{F}\Rightarrow\mathcal{F}K$

 ho_{rHV}

Logic for multitransition ...

Graded modal logic modalities

$$\Diamond_k(S) = \{ \varphi \in \mathcal{M}_f(X) \mid \sum_{x \in S} \varphi(x) \ge k \}$$

models of logic with fin.conj. and monotone modal operators

 \diamond induces $\boxtimes : K\mathcal{P} \Rightarrow \mathcal{PM}_f$

 $\mathcal{M}_f \bigcirc \mathbf{Sets^{op}} \overset{\mathcal{P}}{\overbrace{\mathcal{F}}} \mathsf{MSL} \supset K$

componentwise mono tra

a. Pressivity

$$\mathcal{M}_f \mathcal{F} \Rightarrow \mathcal{F} K$$

 $J_{\gamma HV}$ getful

Logic for Markov processes

General probabilistic modalities

$$\Box_r(M) = \{ \varphi \in \mathcal{G}(X) \mid \varphi(M) \ge r \}$$

models of logic with fin.conj. and monotone modal operators

 \square induces \boxtimes : $KS \Rightarrow SG$

 \mathcal{G} Meas op \mathcal{F} MSL \mathcal{K}

componentwise abs.mon

 $\overline{\boxtimes}$: $\mathcal{GF} \Rightarrow \mathcal{F}K$

ne K

Discrete to indiscrete

• The adjunctions are related:

forgetful functor

MSL

Hence $\mathcal{F} \dashv \mathcal{P}$ via

 $U\mathcal{F} \dashv \mathcal{S}D$

by composition

Discrete to indiscrete

Markov chains as Markov processes

via an embedding natural transformation $\rho: \mathcal{D}_{f}U \Rightarrow U\mathcal{G}$

$$\rho(\varphi) = \left[M \mapsto \sum_{x \in M} \varphi(x) \right]$$

Discrete to indiscrete

So we can translate chains into processes

Or directly ...

$$\varphi \in \Box^{\mathcal{D}_f}_r(S) \Leftrightarrow
ho(\varphi) \in \Box^{\mathcal{G}}_r(S)$$

$$\varphi \in \mathcal{D}_f(X)$$
 $S \in \mathcal{P}(X) = \mathcal{S}(DX)$

$$\boxtimes^{\mathcal{D}_f} = \mathcal{P}(\rho) \circ \mathcal{F}$$
 and

$$\overline{\boxtimes}^{\mathcal{D}_f} = U(\overline{\boxtimes}^{\mathcal{G}}) \circ \rho \mathcal{F}$$

Expressivity for chains follows from $\rho \mathcal{F} \colon \mathcal{D}_f U \mathcal{F} \Rightarrow U \mathcal{G} \mathcal{F} \text{ is } \mathcal{C}$ ise mono

Conclusions

- Expressivity
- For four examples:

Boolean modal logic

- 1. Transition systems
- 2. Multitransition systems
- 3. Markov chains
- 4. Markov processes

Finite conjunctions ``valuation'' modal logic

in the setting of dual adjunctions!