Determinizations and non-determinizations for semantics

Ana Sokolova University of Salzburg

Shonan NII Meeting on Coinduction, 9.10.2013

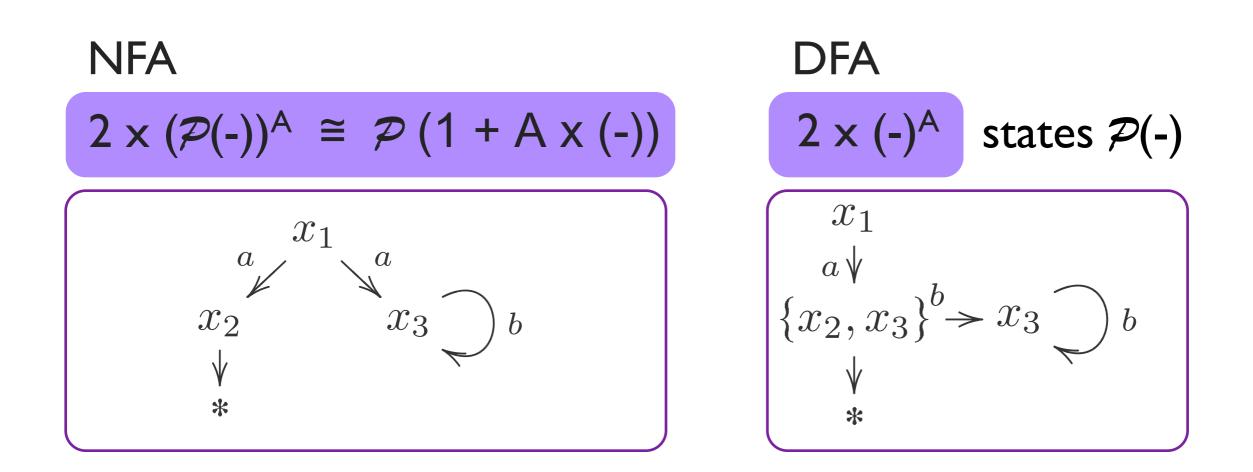
Two parts

I. Categorical treatment of determinizations joint work with Bart Jacobs and Alexandra Silva CMCS 2012 / JSS in preparation

2. Non-determinization of probabilistic automata for verification very early-stage work with Filippo Bonchi and Alexandra Silva

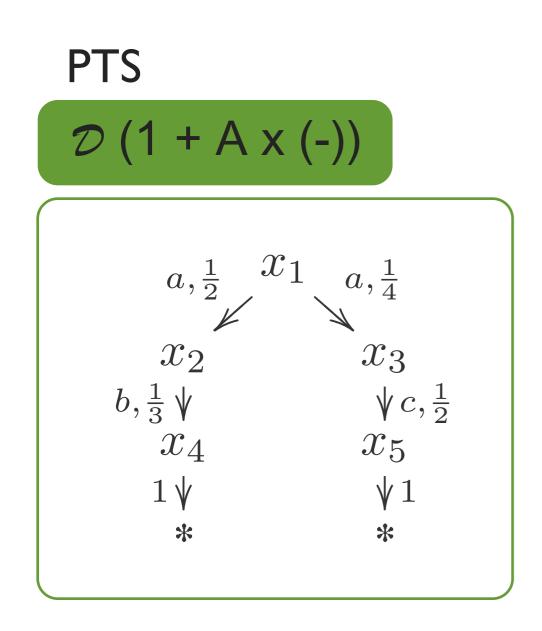
Ana Sokolova University of Salzburg

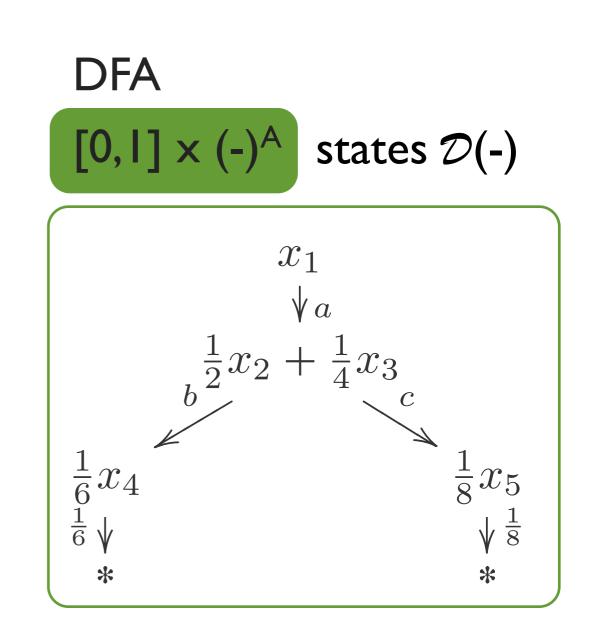
Determinization of NFA



Ana Sokolova University of Salzburg

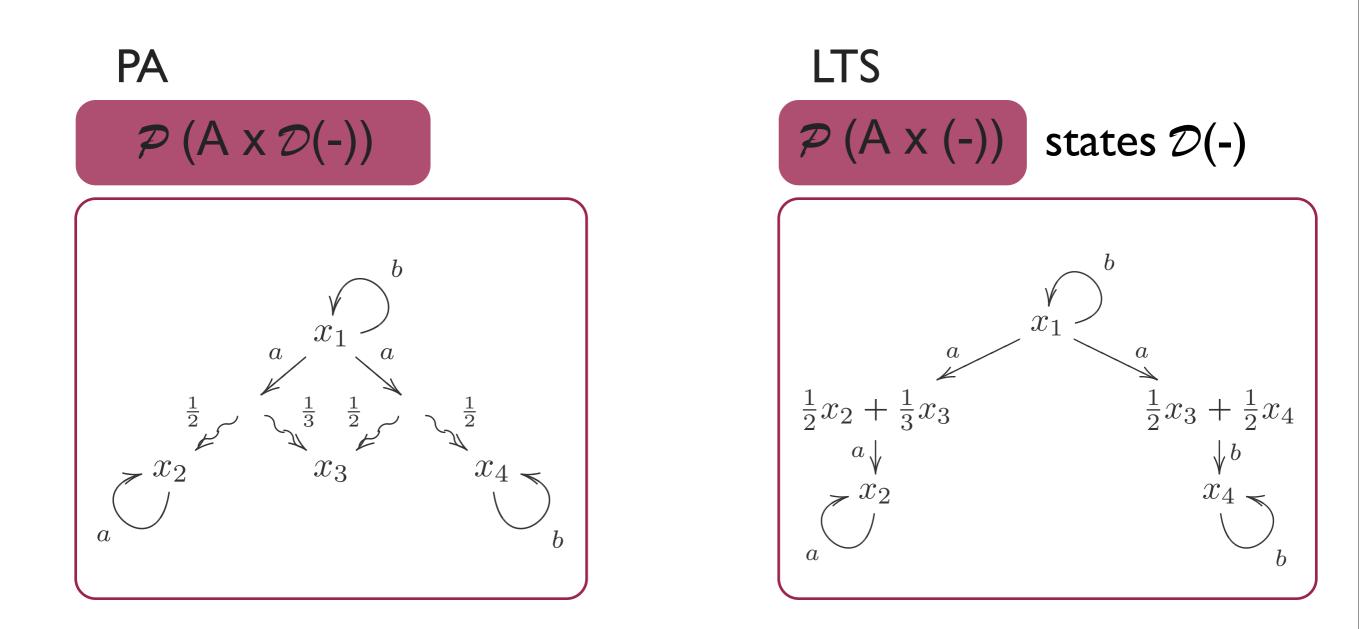
Determinization of PTS





Ana Sokolova University of Salzburg

Non-determinization of PA



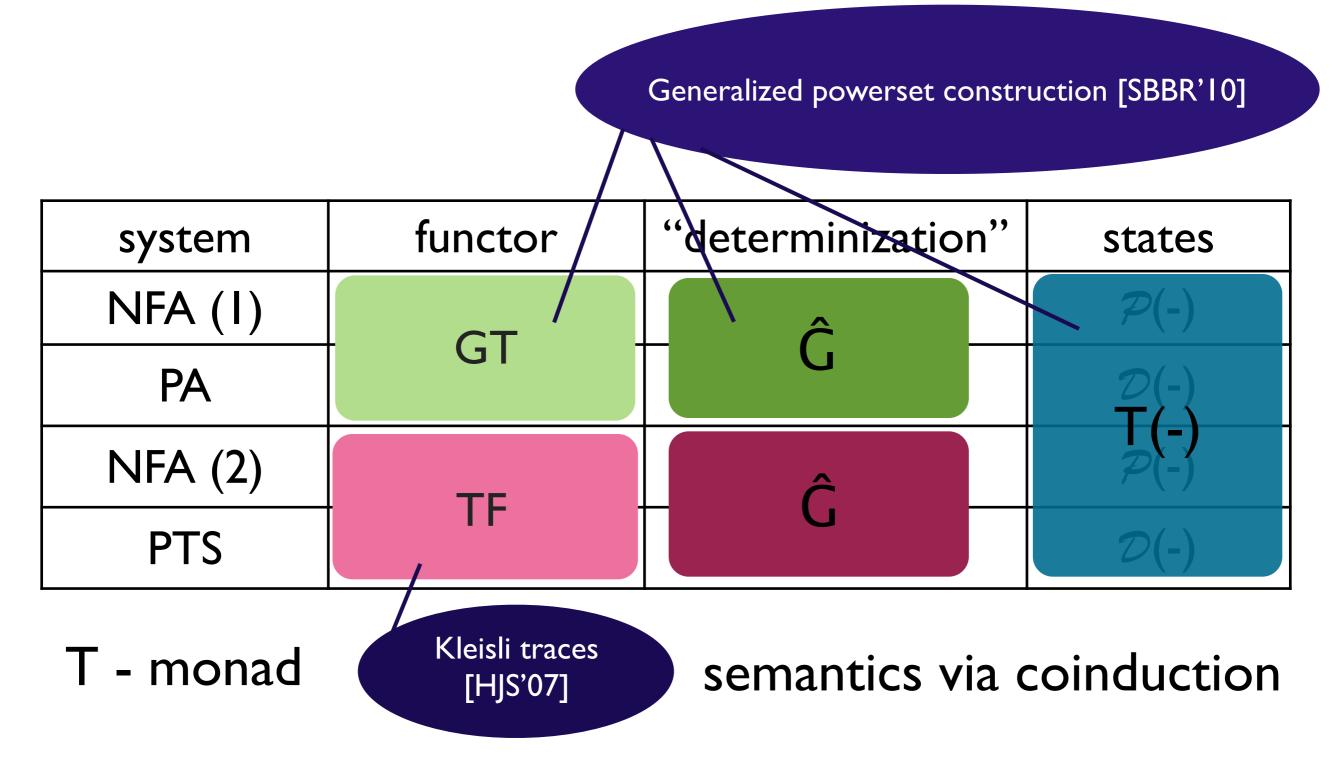
Ana Sokolova University of Salzburg

The functors / monads

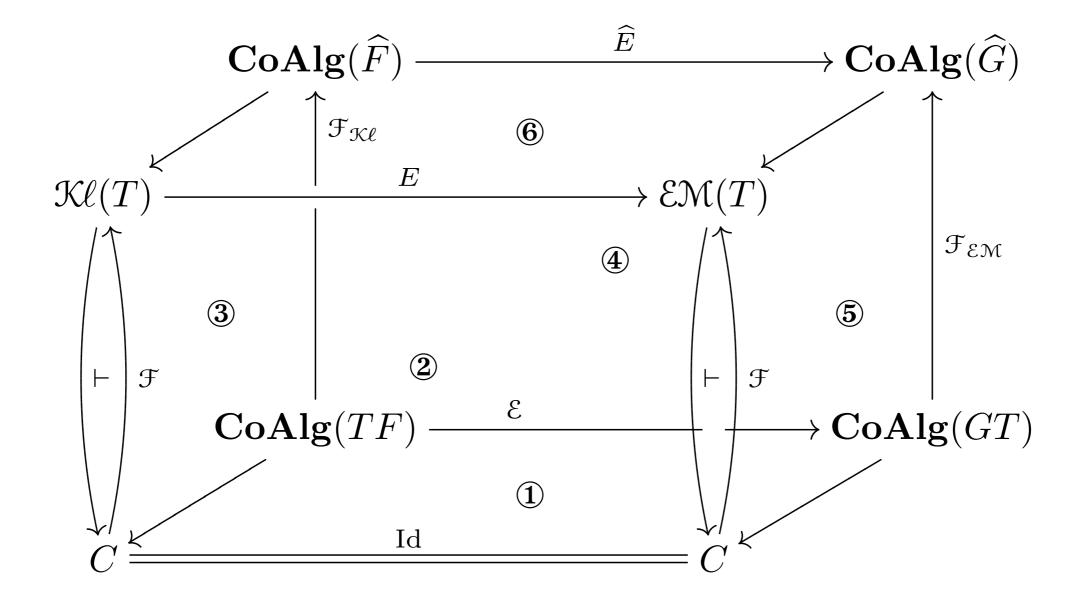


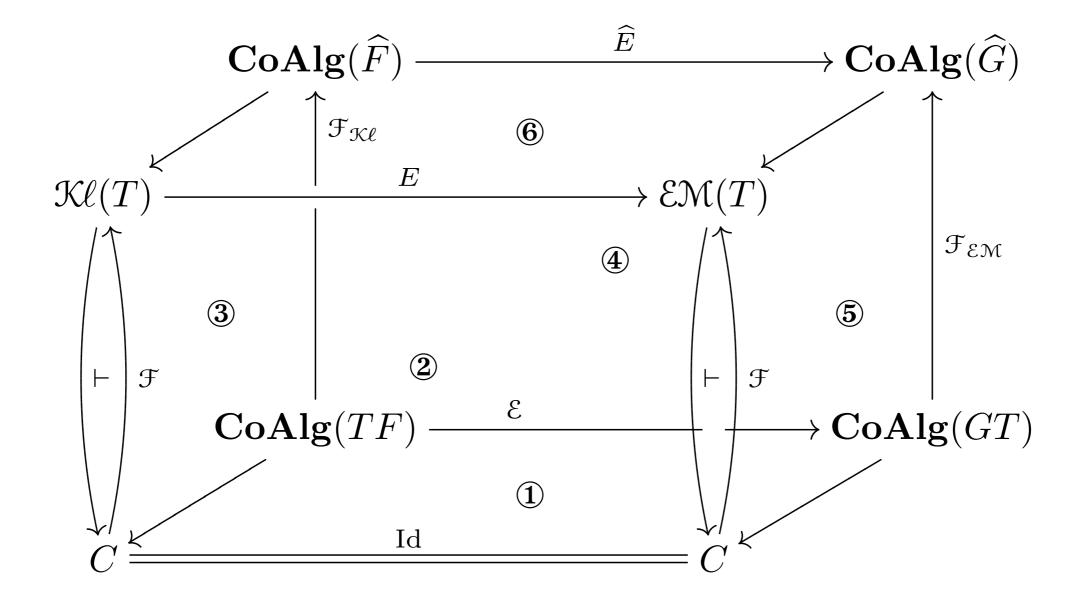
Ana Sokolova University of Salzburg

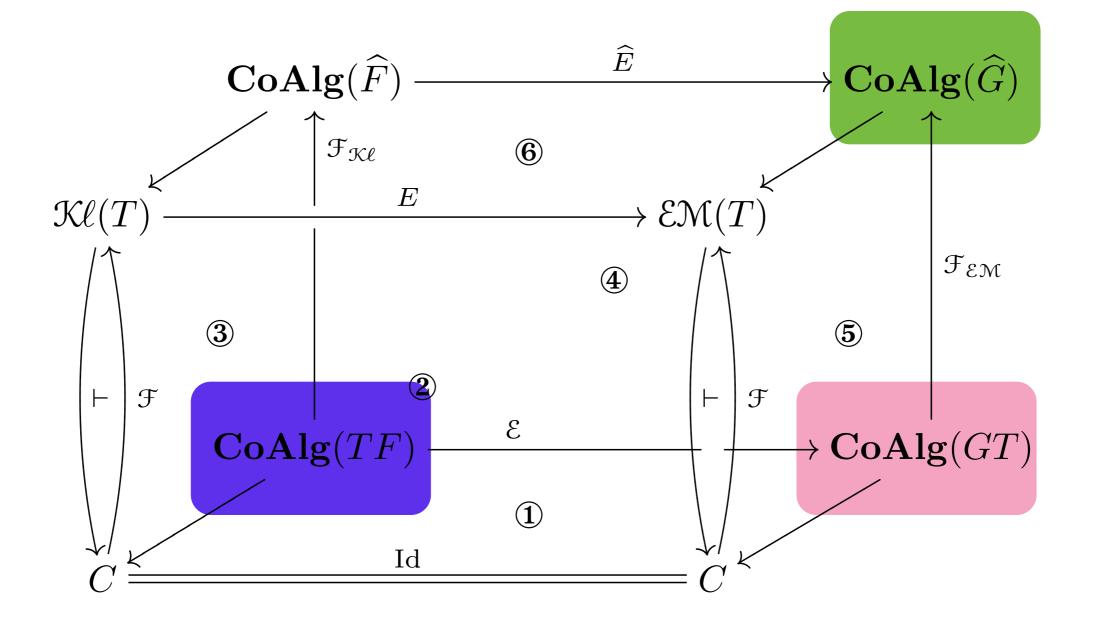
The functors / monads

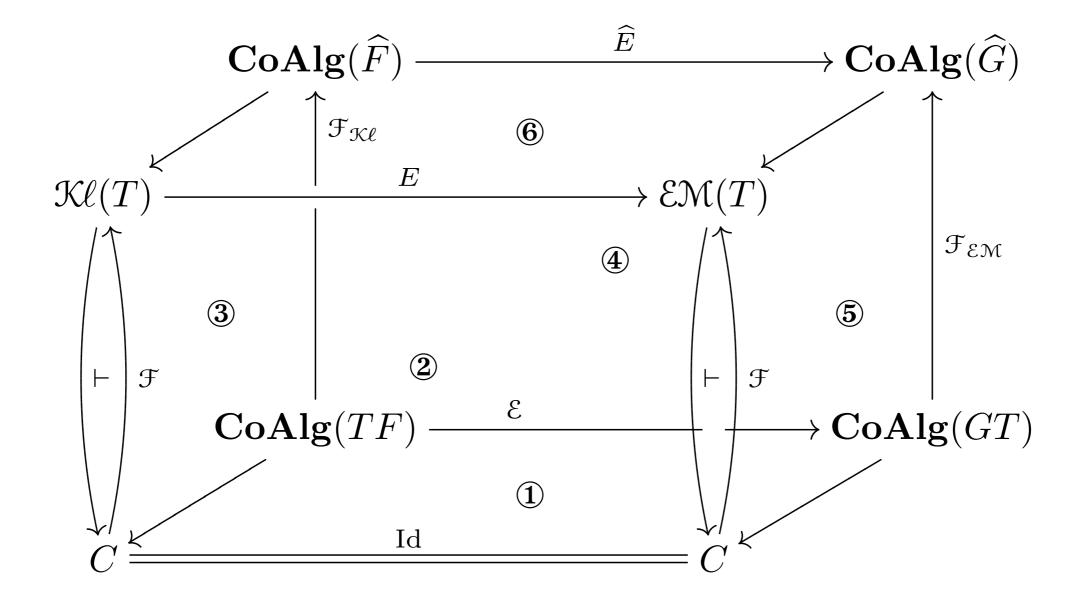


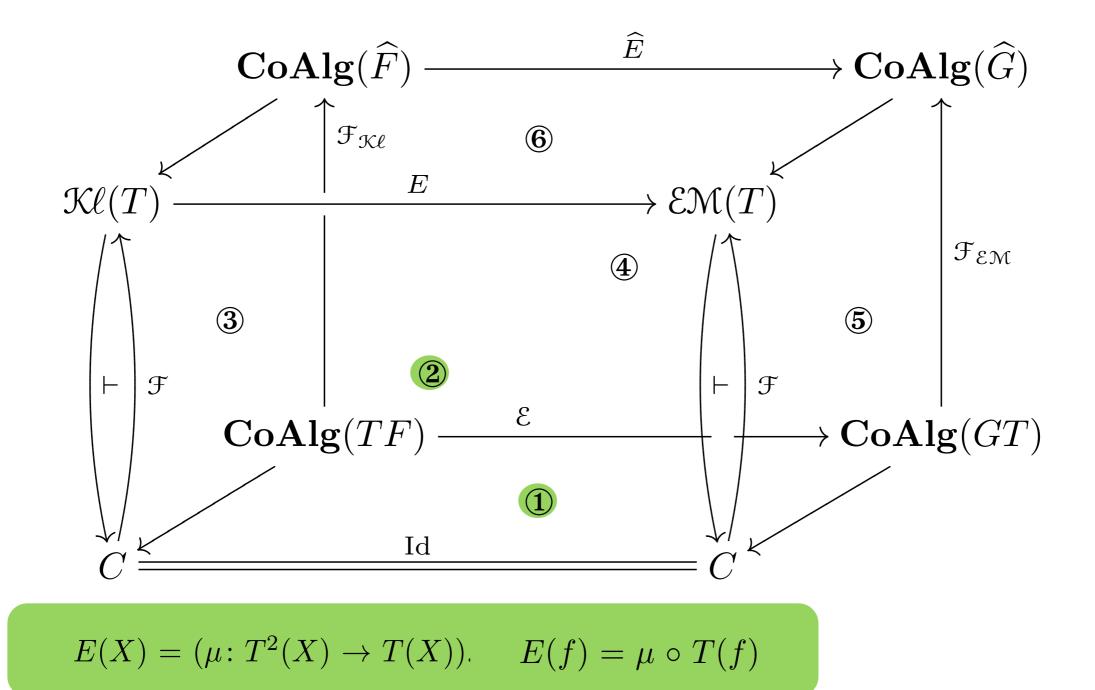
Ana Sokolova University of Salzburg

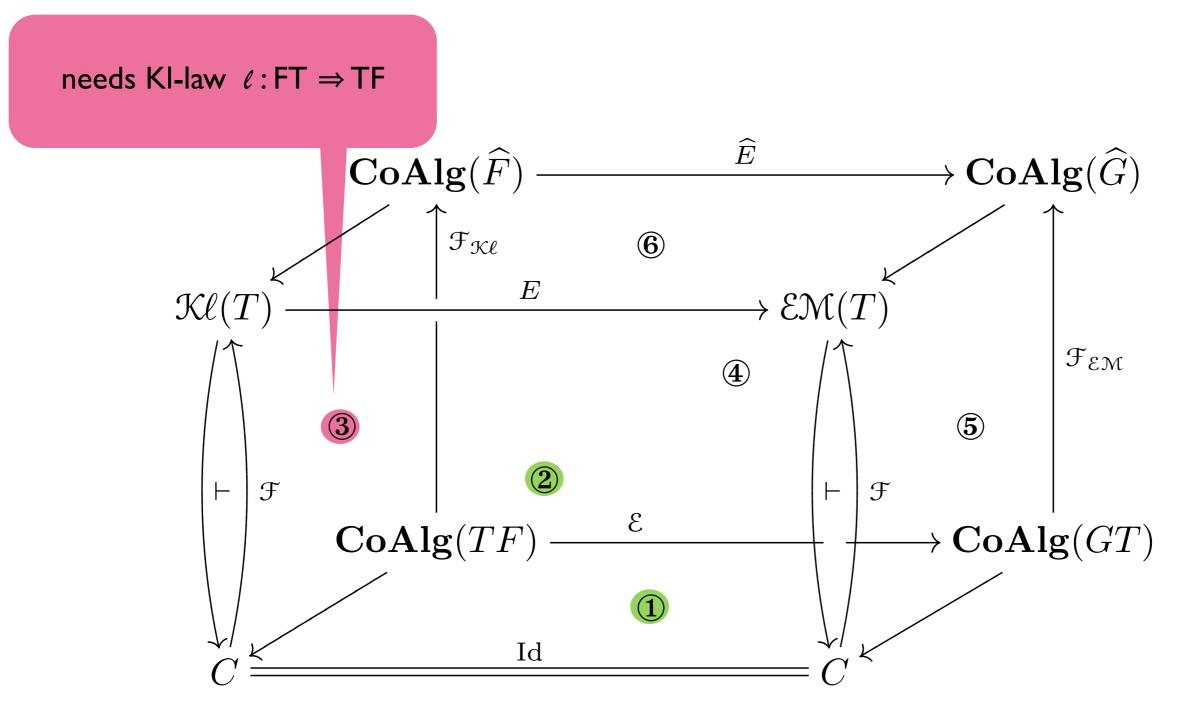




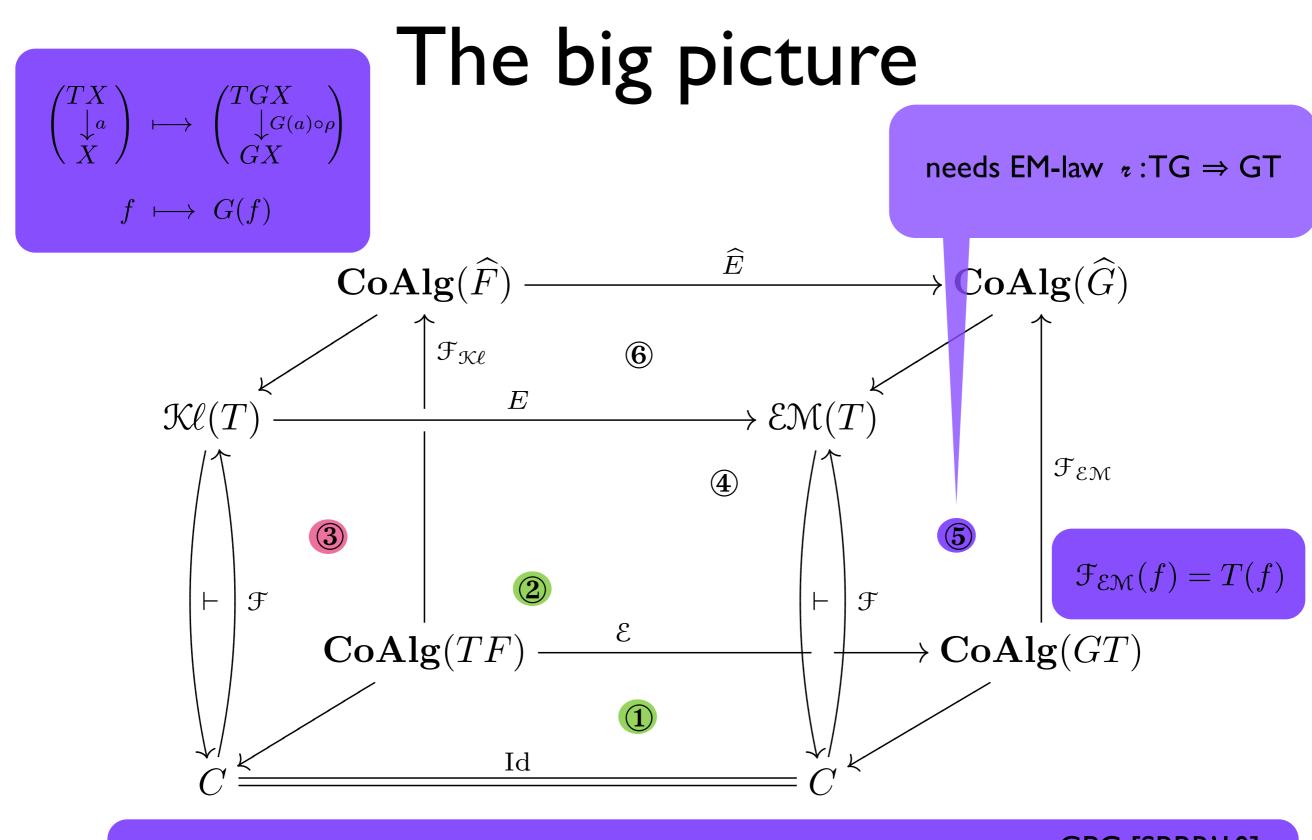






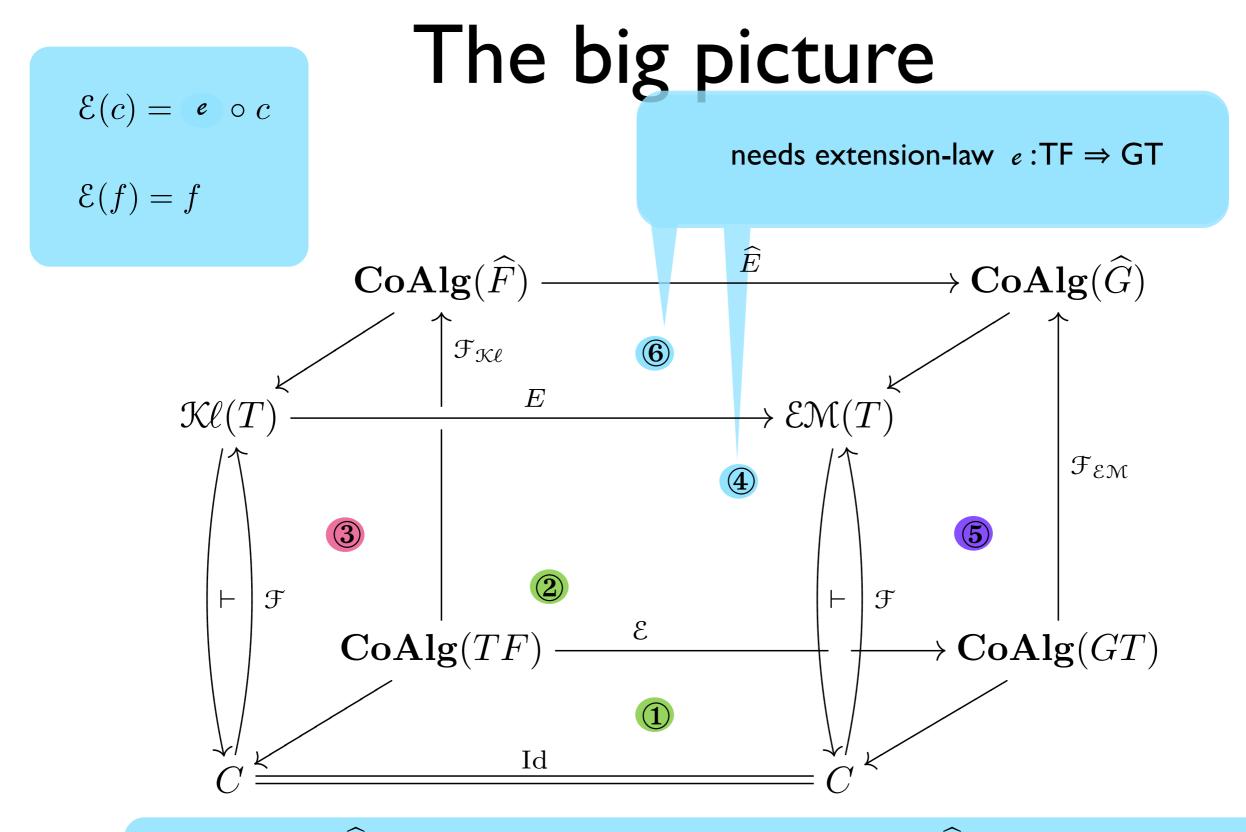


 $\mathfrak{F}(X) = X \quad \mathfrak{F}(f) = \eta \circ f \qquad \qquad \mathfrak{F}_{\mathcal{K}\!\ell} \text{ - identity on objects } \quad \mathfrak{F}_{\mathcal{K}\!\ell}(f) = \eta \circ f.$

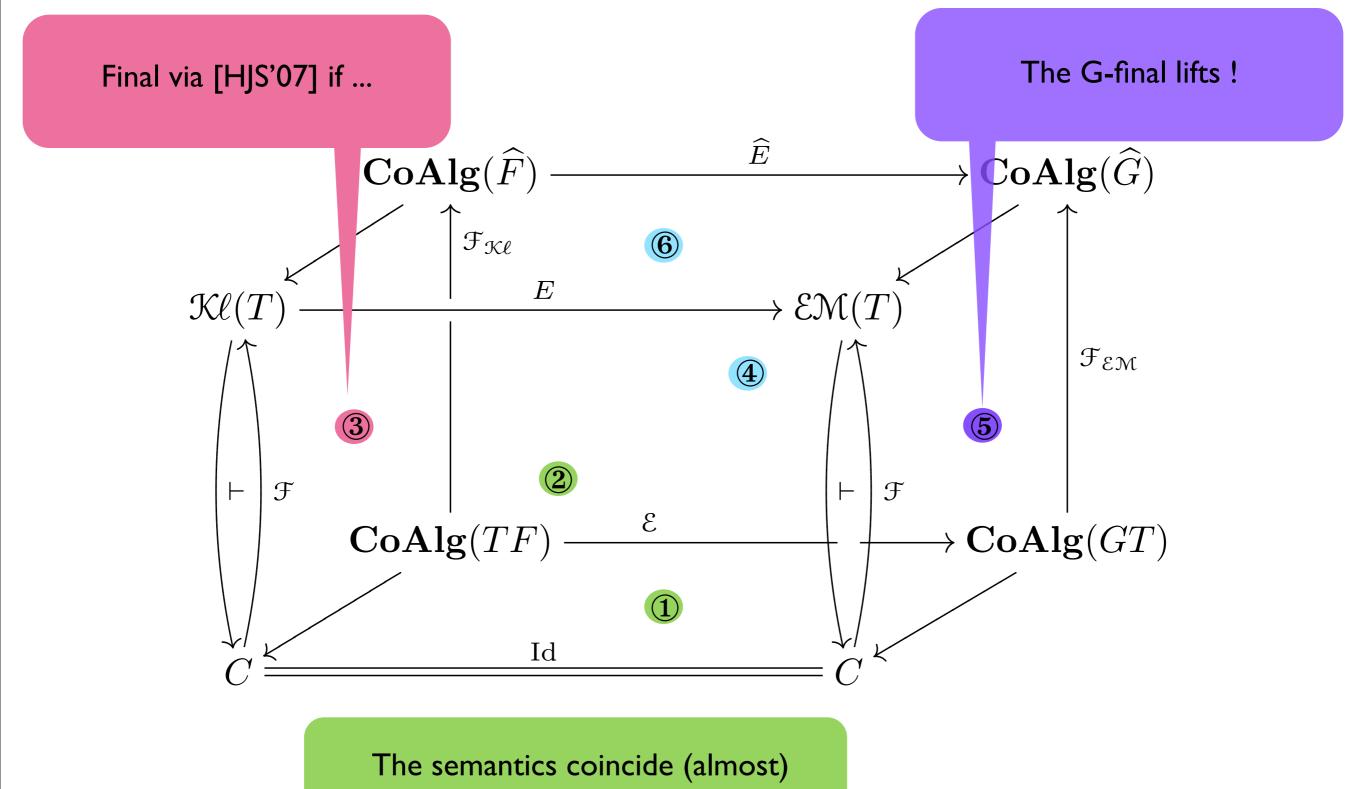


 $\mathcal{F}_{\mathcal{EM}}\left(X \xrightarrow{c} GTX\right) = \left(TX \xrightarrow{T(c)} TGTX \xrightarrow{\rho_{TX}} GT^2X \xrightarrow{G(\mu)} GTX\right)$

GPC [SBBR'10] determinization



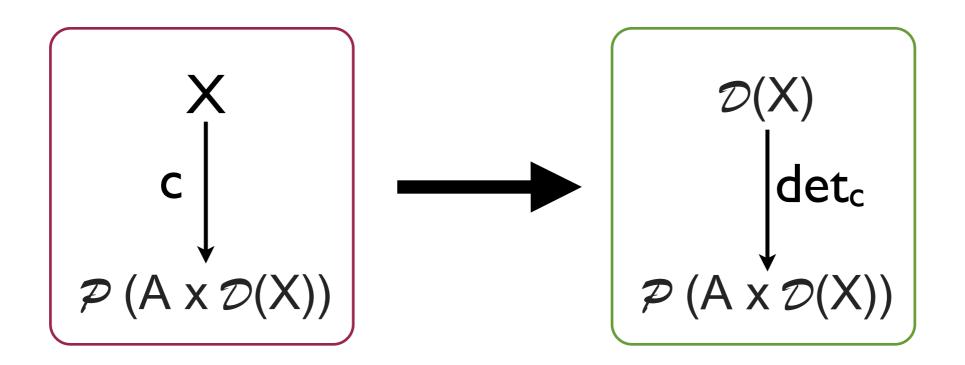
 $\left(X \xrightarrow{c} \widehat{F}X\right) \xrightarrow{\widehat{E}} \left(TX \xrightarrow{T(c)} T^2 FX \xrightarrow{\mu} TFX \xrightarrow{\mathfrak{e}} GTX\right) \quad f \xrightarrow{\widehat{E}} E(f) = \mu \circ T(f)$



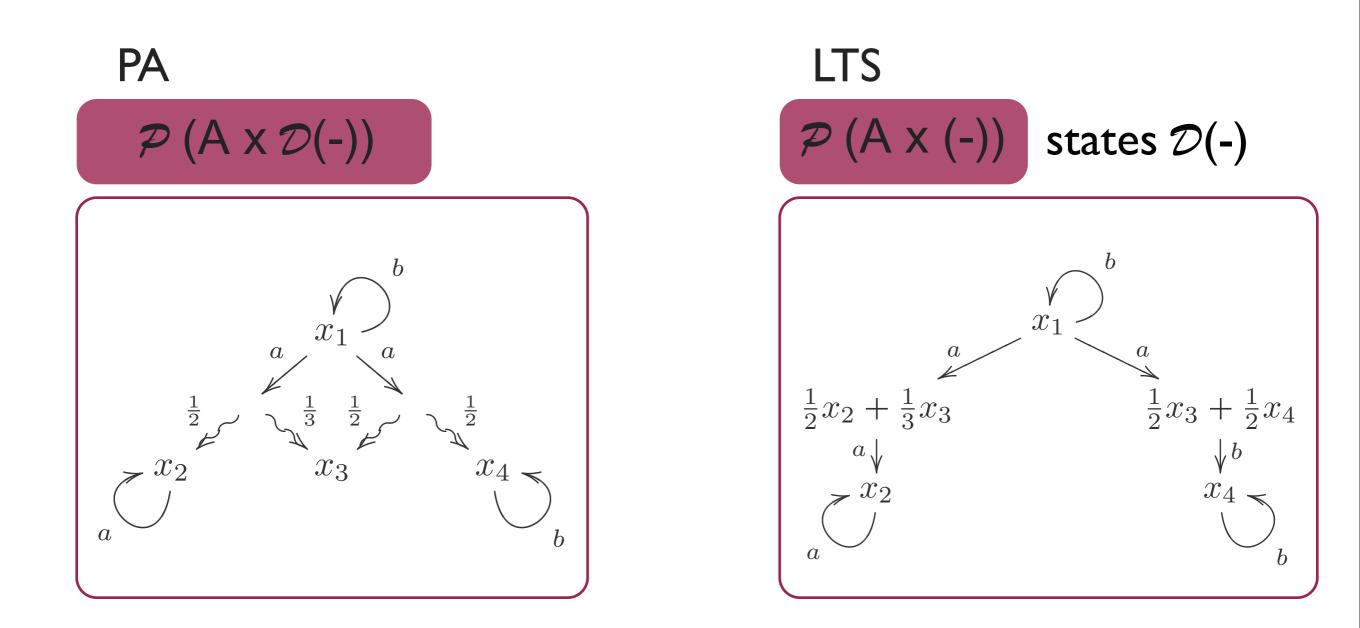
End of story?

(Un)fortunately not!

Wanted: good non-determinization for PA



A non-determinization of PA



Ana Sokolova University of Salzburg

Another one... [DvGHMZ'07]

Let $\mathcal{R} \subseteq S \times \mathcal{D}(S)$ be a relation from states to distributions. We lift it to a relation $\overline{\mathcal{R}} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ by letting $\Delta_1 \overline{\mathcal{R}} \Delta_2$ whenever

(i) $\Delta_1 = \sum_{i \in I} p_i \cdot \overline{s_i}$, where *I* is a finite index set and $\sum_{i \in I} p_i = 1$

(ii) For each $i \in I$ there is a distribution Φ_i such that $s_i \mathcal{R} \Phi_i$

(iii) $\Delta_2 = \sum_{i \in I} p_i \cdot \Phi_i.$

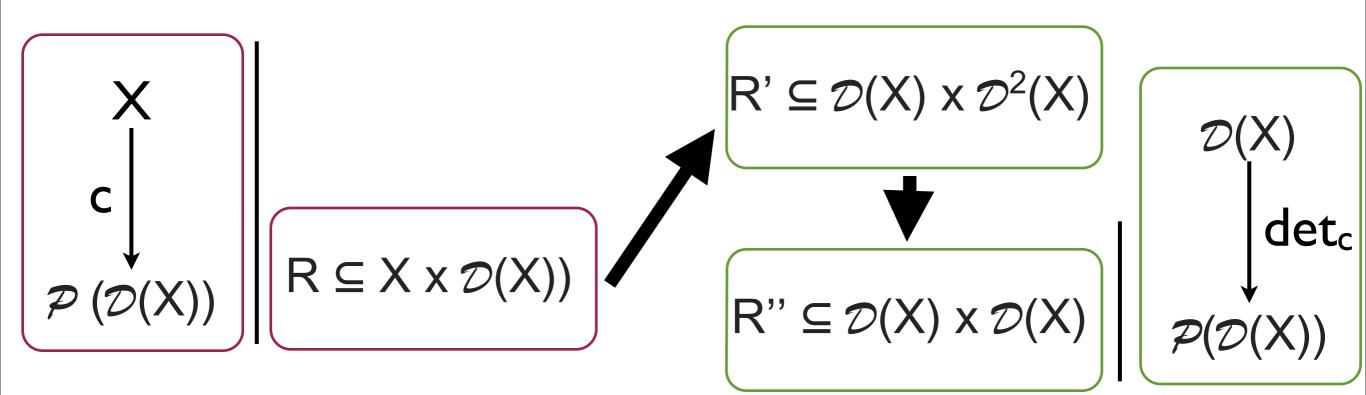
Another one... [DvGHMZ'07]

Let $\mathcal{R} \subseteq S \times \mathcal{D}(S)$ be a relation from states to distributions. We lift it to a relation $\overline{\mathcal{R}} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ by letting $\Delta_1 \overline{\mathcal{R}} \Delta_2$ whenever

(i) $\Delta_1 = \sum_{i \in I} p_i \cdot \overline{s_i}$, where *I* is a finite index set and $\sum_{i \in I} p_i = 1$

(ii) For each $i \in I$ there is a distribution Φ_i such that $s_i \mathcal{R} \Phi_i$

(iii) $\Delta_2 = \sum_{i \in I} p_i \cdot \Phi_i.$



Does it fit? Yes and no

