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2 x (P(-))A  ≅  P (1 + A x (-)) 2 x (-)A states P(-)



Determinization of PTS 
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Non-determinization of PA
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system functor “determinization” states

NFA (1) 2 x (P(-))A 2 x (-)A P(-)

PA P (A x D(-)) P (A x (-)) D(-)

NFA (2) P (1 + A x (-)) 2 x (-)A P(-)

PTS D (1 + A x (-)) [0,1] x (-)A D(-)

The functors / monads
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T - monad

Generalized powerset construction [SBBR’10]
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!
!

GX               GZ

Kleisli traces 
[HJS’07] semantics via coinduction
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The big picture

CoAlg( bF )

yyssssssss

bE //
CoAlg( bG)

yyssssssss

K`(T )

`

✓✓

E // EM(T )

`

✓✓
¨

≠
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∞
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CoAlg(TF )

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT )

xxrrrrrrrrr

FEM
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C

F

RR
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F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29
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see [28] for details. This determines the determinization functor. We now describe the

above points in more detail.

The Kleisli category K`(T ) has the same objects as the underlying category C, but

morphisms X ! Y in K`(T ) are maps X ! T (Y ) in C. The identity map X ! X

in K`(T ) is T ’s unit ⌘X : X ! T (X); and composition g � f in K`(T ) uses T

multiplication in: g � f = µ � T (g) � f . There is a forgetful functor U : K`(T ) ! C,

sending X to T (X) and f to µ � T (f). This functor has a left adjoint F, given by

F(X) = X and F(f) = ⌘ � f . Such a Kleisli category K`(T ) inherits colimits from

the underlying category C.

The category EM(T ) of Eilenberg-Moore algebras has as objects maps of the form

a : T (X) ! X , making the first two diagrams below commute.

X

GGGGGGG

GGGGGGG
⌘

// TX

a
✏✏

T 2X
µ

✏✏

T (a)
// TX

a
✏✏

TX

a
✏✏

T (f)
// TY

b
✏✏

X TX a
// X X

f
// Y

A homomorphism of algebras
�
TX

a
! X

�
!

�
TY

b
! Y

�
is a map f : X ! Y in

C between the underlying objects making the diagram above on the right commute.

The diagram in the middle thus says that the map a is a homomorphism µ ! a. The

forgetful functor U : EM(T ) ! C has a left adjoint F, mapping an object X 2 X to

the (free) algebra µX : T 2(X) ! T (X) with carrier T (X).

Each category EM(T ) inherits limits from the category C. In the special case where

C = Sets, the category of sets and functions (our standard universe), the category

EM(T ) is not only complete but also cocomplete (see [3, § 9.3, Prop. 4]).

The extension functor E : K`(T ) ! EM(T ) sends an object X 2 K`(T ) to the

free algebra E(X) = (µ : T 2(X) ! T (X)). For a morphism f : X ! Y in K`(T ),

that is, f : X ! T (Y ) in C, we have E(f) = µ � T (f) : T (X) ! T (Y ). It forms a

map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C ! C, with

unit ⌘ and multiplication µ, and endofunctors F,G : C ! C on the same category C.
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Lemma 1. In presence of a K`-law the free functor F : C ! K`(T ) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T ) can be lifted:

CoAlg(TF )

✏✏

FK̀ //
CoAlg( bF )

✏✏

CoAlg(GT )

✏✏

FEM //
CoAlg( bG)

✏✏

C

F
&&

T

YY

F // K`(T )
bFee

C

G
&&

T

YY

F // EM(T )
bGee

(5)

The functor CoAlg(GT ) ! CoAlg( bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF ) ! CoAlg( bF ) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG ) GT one defines FEM : CoAlg(GT ) !

CoAlg( bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG ) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T ) ! EM(T ).

GTZ
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⇢
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The big picture

CoAlg( bF )

yyssssssss

bE //
CoAlg( bG)

yyssssssss

K`(T )

`

✓✓

E // EM(T )

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF )

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT )

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR
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(13)
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The above two requirements (3) for � precisely say that L is a functor.

Conversely, assume there is a functor L : K`(T ) ! K`(T ) in a commuting square

as described in the proposition. Then, on objects, L(X) = F (X). Further, for a map

f : X ! TY in C we get L(f) : FX ! TFY in C. This suggests how to define a

distributive law: the identity map idTX : TX ! TX in C forms a map TX ! X in

K`(T ), so that we can define �X = L(idTX) : FTX ! TFX in C. It satisfies (3).

For the second correspondence assume we have an EM-law ⇢ : TG ) GT . It gives

rise to a functor R : EM(T ) ! EM(T ) by:
 
TX

X

a
✏✏

!
7�!

 
TGX

GX

G(a)�⇢
✏✏

!
and f 7�! G(f).

The equations (4) guarantee that this yields a new T -algebra.

In the reverse direction, assume a lifting R : EM(T ) ! EM(T ). Applying it to

the multiplication µX yields an algebra R(µX) : T (GTX) ! GTX . We then define

⇢X = R(µX) � TG(⌘X) : TGX ! GTX . Remaining details are left to the reader. ⇤

In what follows we shall simply write bF / bG for the lifting of F / G, both when

it comes from a K`-law � or from an EM-law ⇢. Usually these laws are fixed, so

confusion is unlikely, and a light, overloaded notation is preferred.

The next result (see also [2]) is not really used in this paper, but it is a natural sequel

to the previous proposition since it relates the liftings bF , bG to the standard adjunctions.

Recall that we write Alg(�) and CoAlg(�) for categories of algebras and coalgebras

of a functor, not of a (co)monad.

Proposition 2. In presence of a K`-law and an EM-law, the adjunctions C � K`(T )

and C � EM(T ) lift to adjunctions between categories of, respectively, algebras and

coalgebras, as described below.

Alg(F )

✏✏

bF
,,

?

Alg( bF )

✏✏

bU
ll CoAlg(G)

✏✏

bF
--

?

CoAlg( bG)

✏✏

bU
mm

C

F
;;

F
,,

?

K`(T )
bFee

U

jj
C

G
;;

F
,,

?

EM(T )
bGee

U

kk

There is another lifting result, for free functors only, that is relevant in this setting.
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PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

needs extension-law  e : TF ⇒ GT

Recall from Section 2 that there is a comparison functor E : K`(T ) ! EM(T ).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT ) TF , leading to a lifting
bF : K`(T ) ! K`(T ) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG ) GT ,

yielding a lifting bG : EM(T ) ! EM(T ) to the category of T -algebras.

4. An “extension” natural transformation e : TF ) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].

Theorem 2. Assuming the above points 1–4, there is a lifting bE of the extension func-

tor E in:

CoAlg( bF )

✏✏

bE //
CoAlg( bG)

✏✏

K`(T )
bF 99

E // EM(T )
bGee

This functor bE is automatically faithful; and it is also full if the extension natural

transformation e : TF ) GT consists of monomorphisms.

PROOF. We define the functor bE : CoAlg( bF ) ! CoAlg( bG) by:

�
X

c
�!

bFX
�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)

in:  
T 2X

TX

µ
X

✏✏

!
bE(c)

//

 
TGTX

GTX

G(µ
X

)�⇢
✏✏

!
= bG

 
T 2X

TX

µ
X

✏✏

!

26
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�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)
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T 2X

TX

µ
X
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!
bE(c)

//

 
TGTX

GTX

G(µ
X

)�⇢
✏✏
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= bG

 
T 2X

TX

µ
X

✏✏

!
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Recall from Section 2 that there is a comparison functor E : K`(T ) ! EM(T ).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT ) TF , leading to a lifting
bF : K`(T ) ! K`(T ) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG ) GT ,

yielding a lifting bG : EM(T ) ! EM(T ) to the category of T -algebras.

4. An “extension” natural transformation e : TF ) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].
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✏✏
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In order to show that f is a map of coalgebras we use that e consists of monos, in:

e �
�
d � f

�
= e � µ � T (d) � f

= e � µ � T (d) � h � ⌘

(15)
= G(h) � e � µ � T (c) � ⌘

= G(h) � e � µ � ⌘ � c

= G(h) � e � c

= G(h) � G(µ � T (⌘)) � e � c

(15)
= G(µ) � GT (h � ⌘) � e � c

= G(µ) � e � TF (f) � c

(13)
= e � µ � T (� � F (f)) � c

= e �
� bF (f) � c

�
. ⇤

On a more abstract level, what the previous result does is lift e : TF ) GT to

a natural transformation be : E bF )

bGE. In this way we can also define the functor
bE : CoAlg( bF ) ! CoAlg( bG) by:

�
X

c
�!

bFX
�

7�!

�
EX

be�E(c)
����!

bG(EX)
�

and f 7�! E(f) = µ � T (f).

Getting back to the original intention, let E : CoAlg(TF ) ! CoAlg(GT ) be the

functor obtained by post-composing with the extension natural transformation e, that

is, given c : X ! TF (X) we have

E(c) = eX � c and E(f) = f

for a coalgebra homomorphism f . We can now summarize all results in one cube-

shaped diagram.

Theorem 3. Under the assumptions 1. - 4. from the beginning of this section, we have

the following commuting cube of (lifted) functors:
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e



The big picture

CoAlg( bF )

yyssssssss

bE //
CoAlg( bG)

yyssssssss

K`(T )

`

✓✓

E // EM(T )

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF )

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT )

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3
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Final via [HJS’07] if ... The G-final lifts !

The semantics coincide (almost)



End of story?



(Un)fortunately not! 



Wanted: good non-determinization           
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Another one... [DvGHMZ’07]GDP Festschrift ENTCS, to appear

6.1 Lifting relations

Let R ⊆ S ×D(S) be a relation from states to distributions. We lift it to a relation
R ⊆ D(S)×D(S) by letting ∆1 R ∆2 whenever

(i) ∆1 =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1
(ii) For each i∈ I there is a distribution Φi such that si R Φi

(iii) ∆2 =
∑

i∈I pi · Φi.

An important point here is that in the decomposition (i) of ∆1 into
∑

i∈I pi · si, the
states si are not necessarily distinct : that is, the decomposition is not in general
unique. Thus when establishing the relationship between ∆1 and ∆2, a given state
s in ∆1 may play a number of different roles, and this is seen clearly if we apply
this definition to the action relations α−→ ⊆ Sp ×D(Sp) in the operational semantics
of pCSP. We obtain lifted relations between D(Sp) and D(Sp), which to ease the
notation we write as ∆1

α−→ ∆2; then, using pCSP terms to represent distributions,
a simple instance of a transition between distributions is given by

(a.b ✷ a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

But we also have

(a.b ✷ a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d (1)

because, viewed as a distribution, the term (a.b ✷ a.c) 1
2
⊕ a.d may be re-written as

((a.b ✷ a.c) 1
2
⊕ (a.b ✷ a.c)) 1

2
⊕ a.d representing the sum of point distributions

1
4 · (a.b ✷ a.c) + 1

4 · (a.b ✷ a.c) + 1
2 · a.d

from which the move (1) can easily be derived using the three moves from states

a.b ✷ a.c a−→ b a.b ✷ a.c a−→ c a.d a−→ d

The lifting construction satisfies the following two useful properties, whose proofs
we leave to the reader.

Proposition 6.1 Suppose R ⊆ S ×D(S) and
∑

i∈I pi = 1. Then we have

(i) Θi R ∆i implies (
∑

i∈I pi ·Θi) R (
∑

i∈I pi ·∆i).
(ii) If (

∑
i∈I pi ·Θi) R ∆ then ∆ =

∑
i∈I pi ·∆i for some set of distributions ∆i

such that Θi R ∆i. ✷

The lifting construction can also be used to define the concept of a partial internal
move between distributions, one where part of the distribution does an internal
move and the remainder remains unchanged. Write s τ̂−→ ∆ if either s τ−→ ∆
or ∆ = s. This relation between states and distributions can be lifted to one
between distributions and distributions, and again for notational convenience we
use ∆1

τ̂−→ ∆2 to denote the lifted relation. As an example, again using process
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R ⊆ X x D(X)) 

X	


!

!

P (D(X)) 

c

R’ ⊆ D(X) x D2(X) 

R’’ ⊆ D(X) x D(X) 

D(X)	


!

!

P(D(X)) 

detc



Does it fit?  
Yes and no  



Does it fit?  

X	


!

!

P (D(X)) 

D(X)	


!

!

P(D(X))

c det c = P(μ)◦r◦ D(c) 

Yes and no  
but not a distributive law

still a lot to be done


