
Determinizations and
non-determinizations

for semantics

Ana Sokolova 	

University of Salzburg

Shonan NII Meeting on Coinduction, 9.10.2013

Two parts

1. Categorical treatment of determinizations	

 joint work with Bart Jacobs and Alexandra Silva	

 CMCS 2012 / JSS in preparation	

2. Non-determinization of probabilistic automata	

 for verification	

 very early-stage work with Filippo Bonchi and Alexandra Silva	

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

Determinization of NFA

NFA DFA

x1
a
~~}}}

a
 A

AA

x2

✏✏

x3 bgg

x1

a ✏✏
x2, x3

✏✏

b //
x3 bgg

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

2 x (P(-))A ≅ P (1 + A x (-)) 2 x (-)A states P(-)

Determinization of PTS

PTS DFA

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

D (1 + A x (-)) [0,1] x (-)A

x1a, 12
}}{{{

a, 14
!!CCC

x2
b, 13 ✏✏

x3
c, 12✏✏

x4
1 ✏✏

x5
1✏✏

x1

a
✏✏

1
2x2

1
4x3

b
xxrrr

rr c
%%

KKKK

1
6x4
1
6

✏✏

1
8x5

1
8

✏✏

states D(-)

Non-determinization of PA

PA LTS

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

states D(-)P (A x (-))P (A x D(-))

x1a

||zz
zz

a

""DD
DD

b

��

1
2
|| |<

|<
1
3
"""b

"b
1
2
"""b

"b
1
2
|| |<

|<

x2

a

33
x3 x4

b

kk

x1

b

��

a
wwoooooo a

''OOOOOO

1
2x2

1
3x3

a
✏✏

1
2x3

1
2x4

b✏✏
x2

a

33
x4

b

kk

system functor “determinization” states

NFA (1) 2 x (P(-))A 2 x (-)A P(-)

PA P (A x D(-)) P (A x (-)) D(-)

NFA (2) P (1 + A x (-)) 2 x (-)A P(-)

PTS D (1 + A x (-)) [0,1] x (-)A D(-)

The functors / monads

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

GT

TF

T(-)
G

G

T - monad

Generalized powerset construction [SBBR’10]

X Z 	

!
!

GX GZ

Kleisli traces
[HJS’07] semantics via coinduction

system functor “determinization” states

NFA (1) 2 x (P(-))A 2 x (-)A P(-)

PA P (A x D(-)) P (A x (-)) D(-)

NFA (2) P (1 + A x (-)) 2 x (-)A P(-)

PTS D (1 + A x (-)) [0,1] x (-)A D(-)

The functors / monads

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

GT

TF

T(-)
Ĝ

Ĝ

T - monad

Generalized powerset construction [SBBR’10]

X Z 	

!
!

GX GZ

Kleisli traces
[HJS’07] semantics via coinduction

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

see [28] for details. This determines the determinization functor. We now describe the

above points in more detail.

The Kleisli category K`(T) has the same objects as the underlying category C, but

morphisms X ! Y in K`(T) are maps X ! T (Y) in C. The identity map X ! X

in K`(T) is T ’s unit ⌘X : X ! T (X); and composition g � f in K`(T) uses T

multiplication in: g � f = µ � T (g) � f . There is a forgetful functor U : K`(T) ! C,

sending X to T (X) and f to µ � T (f). This functor has a left adjoint F, given by

F(X) = X and F(f) = ⌘ � f . Such a Kleisli category K`(T) inherits colimits from

the underlying category C.

The category EM(T) of Eilenberg-Moore algebras has as objects maps of the form

a : T (X) ! X , making the first two diagrams below commute.

X

GGGGGGG

GGGGGGG
⌘

// TX

a
✏✏

T 2X
µ

✏✏

T (a)
// TX

a
✏✏

TX

a
✏✏

T (f)
// TY

b
✏✏

X TX a
// X X

f
// Y

A homomorphism of algebras
�
TX

a
! X

�
!

�
TY

b
! Y

�
is a map f : X ! Y in

C between the underlying objects making the diagram above on the right commute.

The diagram in the middle thus says that the map a is a homomorphism µ ! a. The

forgetful functor U : EM(T) ! C has a left adjoint F, mapping an object X 2 X to

the (free) algebra µX : T 2(X) ! T (X) with carrier T (X).

Each category EM(T) inherits limits from the category C. In the special case where

C = Sets, the category of sets and functions (our standard universe), the category

EM(T) is not only complete but also cocomplete (see [3, § 9.3, Prop. 4]).

The extension functor E : K`(T) ! EM(T) sends an object X 2 K`(T) to the

free algebra E(X) = (µ : T 2(X) ! T (X)). For a morphism f : X ! Y in K`(T),

that is, f : X ! T (Y) in C, we have E(f) = µ � T (f) : T (X) ! T (Y). It forms a

map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C ! C, with

unit ⌘ and multiplication µ, and endofunctors F,G : C ! C on the same category C.

6

see [28] for details. This determines the determinization functor. We now describe the

above points in more detail.

The Kleisli category K`(T) has the same objects as the underlying category C, but

morphisms X ! Y in K`(T) are maps X ! T (Y) in C. The identity map X ! X

in K`(T) is T ’s unit ⌘X : X ! T (X); and composition g � f in K`(T) uses T

multiplication in: g � f = µ � T (g) � f . There is a forgetful functor U : K`(T) ! C,

sending X to T (X) and f to µ � T (f). This functor has a left adjoint F, given by

F(X) = X and F(f) = ⌘ � f . Such a Kleisli category K`(T) inherits colimits from

the underlying category C.

The category EM(T) of Eilenberg-Moore algebras has as objects maps of the form

a : T (X) ! X , making the first two diagrams below commute.

X

GGGGGGG

GGGGGGG
⌘

// TX

a
✏✏

T 2X
µ

✏✏

T (a)
// TX

a
✏✏

TX

a
✏✏

T (f)
// TY

b
✏✏

X TX a
// X X

f
// Y

A homomorphism of algebras
�
TX

a
! X

�
!

�
TY

b
! Y

�
is a map f : X ! Y in

C between the underlying objects making the diagram above on the right commute.

The diagram in the middle thus says that the map a is a homomorphism µ ! a. The

forgetful functor U : EM(T) ! C has a left adjoint F, mapping an object X 2 X to

the (free) algebra µX : T 2(X) ! T (X) with carrier T (X).

Each category EM(T) inherits limits from the category C. In the special case where

C = Sets, the category of sets and functions (our standard universe), the category

EM(T) is not only complete but also cocomplete (see [3, § 9.3, Prop. 4]).

The extension functor E : K`(T) ! EM(T) sends an object X 2 K`(T) to the

free algebra E(X) = (µ : T 2(X) ! T (X)). For a morphism f : X ! Y in K`(T),

that is, f : X ! T (Y) in C, we have E(f) = µ � T (f) : T (X) ! T (Y). It forms a

map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C ! C, with

unit ⌘ and multiplication µ, and endofunctors F,G : C ! C on the same category C.

6

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

needs Kl-law l : FT ⇒ TF

see [28] for details. This determines the determinization functor. We now describe the

above points in more detail.

The Kleisli category K`(T) has the same objects as the underlying category C, but

morphisms X ! Y in K`(T) are maps X ! T (Y) in C. The identity map X ! X

in K`(T) is T ’s unit ⌘X : X ! T (X); and composition g � f in K`(T) uses T

multiplication in: g � f = µ � T (g) � f . There is a forgetful functor U : K`(T) ! C,

sending X to T (X) and f to µ � T (f). This functor has a left adjoint F, given by

F(X) = X and F(f) = ⌘ � f . Such a Kleisli category K`(T) inherits colimits from

the underlying category C.

The category EM(T) of Eilenberg-Moore algebras has as objects maps of the form

a : T (X) ! X , making the first two diagrams below commute.

X

GGGGGGG

GGGGGGG
⌘

// TX

a
✏✏

T 2X
µ

✏✏

T (a)
// TX

a
✏✏

TX

a
✏✏

T (f)
// TY

b
✏✏

X TX a
// X X

f
// Y

A homomorphism of algebras
�
TX

a
! X

�
!

�
TY

b
! Y

�
is a map f : X ! Y in

C between the underlying objects making the diagram above on the right commute.

The diagram in the middle thus says that the map a is a homomorphism µ ! a. The

forgetful functor U : EM(T) ! C has a left adjoint F, mapping an object X 2 X to

the (free) algebra µX : T 2(X) ! T (X) with carrier T (X).

Each category EM(T) inherits limits from the category C. In the special case where

C = Sets, the category of sets and functions (our standard universe), the category

EM(T) is not only complete but also cocomplete (see [3, § 9.3, Prop. 4]).

The extension functor E : K`(T) ! EM(T) sends an object X 2 K`(T) to the

free algebra E(X) = (µ : T 2(X) ! T (X)). For a morphism f : X ! Y in K`(T),

that is, f : X ! T (Y) in C, we have E(f) = µ � T (f) : T (X) ! T (Y). It forms a

map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C ! C, with

unit ⌘ and multiplication µ, and endofunctors F,G : C ! C on the same category C.

6

see [28] for details. This determines the determinization functor. We now describe the

above points in more detail.

The Kleisli category K`(T) has the same objects as the underlying category C, but

morphisms X ! Y in K`(T) are maps X ! T (Y) in C. The identity map X ! X

in K`(T) is T ’s unit ⌘X : X ! T (X); and composition g � f in K`(T) uses T

multiplication in: g � f = µ � T (g) � f . There is a forgetful functor U : K`(T) ! C,

sending X to T (X) and f to µ � T (f). This functor has a left adjoint F, given by

F(X) = X and F(f) = ⌘ � f . Such a Kleisli category K`(T) inherits colimits from

the underlying category C.

The category EM(T) of Eilenberg-Moore algebras has as objects maps of the form

a : T (X) ! X , making the first two diagrams below commute.

X

GGGGGGG

GGGGGGG
⌘

// TX

a
✏✏

T 2X
µ

✏✏

T (a)
// TX

a
✏✏

TX

a
✏✏

T (f)
// TY

b
✏✏

X TX a
// X X

f
// Y

A homomorphism of algebras
�
TX

a
! X

�
!

�
TY

b
! Y

�
is a map f : X ! Y in

C between the underlying objects making the diagram above on the right commute.

The diagram in the middle thus says that the map a is a homomorphism µ ! a. The

forgetful functor U : EM(T) ! C has a left adjoint F, mapping an object X 2 X to

the (free) algebra µX : T 2(X) ! T (X) with carrier T (X).

Each category EM(T) inherits limits from the category C. In the special case where

C = Sets, the category of sets and functions (our standard universe), the category

EM(T) is not only complete but also cocomplete (see [3, § 9.3, Prop. 4]).

The extension functor E : K`(T) ! EM(T) sends an object X 2 K`(T) to the

free algebra E(X) = (µ : T 2(X) ! T (X)). For a morphism f : X ! Y in K`(T),

that is, f : X ! T (Y) in C, we have E(f) = µ � T (f) : T (X) ! T (Y). It forms a

map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C ! C, with

unit ⌘ and multiplication µ, and endofunctors F,G : C ! C on the same category C.

6

Lemma 1. In presence of a K`-law the free functor F : C ! K`(T) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T) can be lifted:

CoAlg(TF)

✏✏

FK̀ //
CoAlg(bF)

✏✏

CoAlg(GT)

✏✏

FEM //
CoAlg(bG)

✏✏

C

F
&&

T

YY

F // K`(T)
bFee

C

G
&&

T

YY

F // EM(T)
bGee

(5)

The functor CoAlg(GT) ! CoAlg(bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF) ! CoAlg(bF) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG) GT one defines FEM : CoAlg(GT) !

CoAlg(bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T) ! EM(T).

GTZ
G(↵)

//_____ GZ

TZ

⇢�T (⇣)

OO

↵
//_____ Z

⇠= ⇣

OO

TZ

Z

↵
✏✏

!
⇣

⇠=
// bG

TZ

Z

↵
✏✏

!
=

T (GZ)

GZ

G(↵)�⇢
✏✏

!

9

- identity on objects

Lemma 1. In presence of a K`-law the free functor F : C ! K`(T) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T) can be lifted:

CoAlg(TF)

✏✏

FK̀ //
CoAlg(bF)

✏✏

CoAlg(GT)

✏✏

FEM //
CoAlg(bG)

✏✏

C

F
&&

T

YY

F // K`(T)
bFee

C

G
&&

T

YY

F // EM(T)
bGee

(5)

The functor CoAlg(GT) ! CoAlg(bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF) ! CoAlg(bF) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG) GT one defines FEM : CoAlg(GT) !

CoAlg(bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T) ! EM(T).

GTZ
G(↵)

//_____ GZ

TZ

⇢�T (⇣)

OO

↵
//_____ Z

⇠= ⇣

OO

TZ

Z

↵
✏✏

!
⇣

⇠=
// bG

TZ

Z

↵
✏✏

!
=

T (GZ)

GZ

G(↵)�⇢
✏✏

!

9

Lemma 1. In presence of a K`-law the free functor F : C ! K`(T) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T) can be lifted:

CoAlg(TF)

✏✏

FK̀ //
CoAlg(bF)

✏✏

CoAlg(GT)

✏✏

FEM //
CoAlg(bG)

✏✏

C

F
&&

T

YY

F // K`(T)
bFee

C

G
&&

T

YY

F // EM(T)
bGee

(5)

The functor CoAlg(GT) ! CoAlg(bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF) ! CoAlg(bF) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG) GT one defines FEM : CoAlg(GT) !

CoAlg(bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T) ! EM(T).

GTZ
G(↵)

//_____ GZ

TZ

⇢�T (⇣)

OO

↵
//_____ Z

⇠= ⇣

OO

TZ

Z

↵
✏✏

!
⇣

⇠=
// bG

TZ

Z

↵
✏✏

!
=

T (GZ)

GZ

G(↵)�⇢
✏✏

!

9

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

needs EM-law r : TG ⇒ GT

Lemma 1. In presence of a K`-law the free functor F : C ! K`(T) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T) can be lifted:

CoAlg(TF)

✏✏

FK̀ //
CoAlg(bF)

✏✏

CoAlg(GT)

✏✏

FEM //
CoAlg(bG)

✏✏

C

F
&&

T

YY

F // K`(T)
bFee

C

G
&&

T

YY

F // EM(T)
bGee

(5)

The functor CoAlg(GT) ! CoAlg(bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF) ! CoAlg(bF) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG) GT one defines FEM : CoAlg(GT) !

CoAlg(bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T) ! EM(T).

GTZ
G(↵)

//_____ GZ

TZ

⇢�T (⇣)

OO

↵
//_____ Z

⇠= ⇣

OO

TZ

Z

↵
✏✏

!
⇣

⇠=
// bG

TZ

Z

↵
✏✏

!
=

T (GZ)

GZ

G(↵)�⇢
✏✏

!

9

GPC [SBBR’10] 	

determinization

Lemma 1. In presence of a K`-law the free functor F : C ! K`(T) can be lifted, and

similarly, given an EM-law the free algebra functor F : C ! EM(T) can be lifted:

CoAlg(TF)

✏✏

FK̀ //
CoAlg(bF)

✏✏

CoAlg(GT)

✏✏

FEM //
CoAlg(bG)

✏✏

C

F
&&

T

YY

F // K`(T)
bFee

C

G
&&

T

YY

F // EM(T)
bGee

(5)

The functor CoAlg(GT) ! CoAlg(bG) on the right gives an abstract description

of what is called the generalized powerset construction in [35].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF) ! CoAlg(bF) is

the identity on objects; it sends a map f of TF -coalgebras to F(f) = ⌘ � f .

Next, assuming an EM-law ⇢ : TG) GT one defines FEM : CoAlg(GT) !

CoAlg(bG) by

FEM

⇣
X

c // GTX
⌘

=
⇣
TX

T (c)
// TGTX

⇢
TX // GT 2X

G(µ)
// GTX

⌘
. (6)

It is not hard to see that FEM(c) is a coalgebra µX !

bG(µX) on the free algebra µX .

On morphisms one simply has FEM(f) = T (f). ⇤

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but require

non-trivial side-conditions, like enrichement in dcpo’s. For EM-laws the situation is

much easier, see below; instances of this result have been studied in [35], see also [2].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-

law ⇢ : TG) GT between them. If G has a final coalgebra ⇣ : Z
⇠=
�! GZ in C, then

Z carries a T -algebra structure obtained by finality, as on the left below. The map ⇣

then forms a map of algebras as on the right, which is the final coalgebra for the lifted

functor bG : EM(T) ! EM(T).

GTZ
G(↵)

//_____ GZ

TZ

⇢�T (⇣)

OO

↵
//_____ Z

⇠= ⇣

OO

TZ

Z

↵
✏✏

!
⇣

⇠=
// bG

TZ

Z

↵
✏✏

!
=

T (GZ)

GZ

G(↵)�⇢
✏✏

!

9

The above two requirements (3) for � precisely say that L is a functor.

Conversely, assume there is a functor L : K`(T) ! K`(T) in a commuting square

as described in the proposition. Then, on objects, L(X) = F (X). Further, for a map

f : X ! TY in C we get L(f) : FX ! TFY in C. This suggests how to define a

distributive law: the identity map idTX : TX ! TX in C forms a map TX ! X in

K`(T), so that we can define �X = L(idTX) : FTX ! TFX in C. It satisfies (3).

For the second correspondence assume we have an EM-law ⇢ : TG) GT . It gives

rise to a functor R : EM(T) ! EM(T) by:

TX

X

a
✏✏

!
7�!

TGX

GX

G(a)�⇢
✏✏

!
and f 7�! G(f).

The equations (4) guarantee that this yields a new T -algebra.

In the reverse direction, assume a lifting R : EM(T) ! EM(T). Applying it to

the multiplication µX yields an algebra R(µX) : T (GTX) ! GTX . We then define

⇢X = R(µX) � TG(⌘X) : TGX ! GTX . Remaining details are left to the reader. ⇤

In what follows we shall simply write bF / bG for the lifting of F / G, both when

it comes from a K`-law � or from an EM-law ⇢. Usually these laws are fixed, so

confusion is unlikely, and a light, overloaded notation is preferred.

The next result (see also [2]) is not really used in this paper, but it is a natural sequel

to the previous proposition since it relates the liftings bF , bG to the standard adjunctions.

Recall that we write Alg(�) and CoAlg(�) for categories of algebras and coalgebras

of a functor, not of a (co)monad.

Proposition 2. In presence of a K`-law and an EM-law, the adjunctions C � K`(T)

and C � EM(T) lift to adjunctions between categories of, respectively, algebras and

coalgebras, as described below.

Alg(F)

✏✏

bF
,,

?

Alg(bF)

✏✏

bU
ll CoAlg(G)

✏✏

bF
--

?

CoAlg(bG)

✏✏

bU
mm

C

F
;;

F
,,

?

K`(T)
bFee

U

jj
C

G
;;

F
,,

?

EM(T)
bGee

U

kk

There is another lifting result, for free functors only, that is relevant in this setting.

8

The above two requirements (3) for � precisely say that L is a functor.

Conversely, assume there is a functor L : K`(T) ! K`(T) in a commuting square

as described in the proposition. Then, on objects, L(X) = F (X). Further, for a map

f : X ! TY in C we get L(f) : FX ! TFY in C. This suggests how to define a

distributive law: the identity map idTX : TX ! TX in C forms a map TX ! X in

K`(T), so that we can define �X = L(idTX) : FTX ! TFX in C. It satisfies (3).

For the second correspondence assume we have an EM-law ⇢ : TG) GT . It gives

rise to a functor R : EM(T) ! EM(T) by:

TX

X

a
✏✏

!
7�!

TGX

GX

G(a)�⇢
✏✏

!
and f 7�! G(f).

The equations (4) guarantee that this yields a new T -algebra.

In the reverse direction, assume a lifting R : EM(T) ! EM(T). Applying it to

the multiplication µX yields an algebra R(µX) : T (GTX) ! GTX . We then define

⇢X = R(µX) � TG(⌘X) : TGX ! GTX . Remaining details are left to the reader. ⇤

In what follows we shall simply write bF / bG for the lifting of F / G, both when

it comes from a K`-law � or from an EM-law ⇢. Usually these laws are fixed, so

confusion is unlikely, and a light, overloaded notation is preferred.

The next result (see also [2]) is not really used in this paper, but it is a natural sequel

to the previous proposition since it relates the liftings bF , bG to the standard adjunctions.

Recall that we write Alg(�) and CoAlg(�) for categories of algebras and coalgebras

of a functor, not of a (co)monad.

Proposition 2. In presence of a K`-law and an EM-law, the adjunctions C � K`(T)

and C � EM(T) lift to adjunctions between categories of, respectively, algebras and

coalgebras, as described below.

Alg(F)

✏✏

bF
,,

?

Alg(bF)

✏✏

bU
ll CoAlg(G)

✏✏

bF
--

?

CoAlg(bG)

✏✏

bU
mm

C

F
;;

F
,,

?

K`(T)
bFee

U

jj
C

G
;;

F
,,

?

EM(T)
bGee

U

kk

There is another lifting result, for free functors only, that is relevant in this setting.

8

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

needs extension-law e : TF ⇒ GT

Recall from Section 2 that there is a comparison functor E : K`(T) ! EM(T).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT) TF , leading to a lifting
bF : K`(T) ! K`(T) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG) GT ,

yielding a lifting bG : EM(T) ! EM(T) to the category of T -algebras.

4. An “extension” natural transformation e : TF) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].

Theorem 2. Assuming the above points 1–4, there is a lifting bE of the extension func-

tor E in:

CoAlg(bF)

✏✏

bE //
CoAlg(bG)

✏✏

K`(T)
bF 99

E // EM(T)
bGee

This functor bE is automatically faithful; and it is also full if the extension natural

transformation e : TF) GT consists of monomorphisms.

PROOF. We define the functor bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)

in:
T 2X

TX

µ
X

✏✏

!
bE(c)

//

TGTX

GTX

G(µ
X

)�⇢
✏✏

!
= bG

T 2X

TX

µ
X

✏✏

!

26

Recall from Section 2 that there is a comparison functor E : K`(T) ! EM(T).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT) TF , leading to a lifting
bF : K`(T) ! K`(T) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG) GT ,

yielding a lifting bG : EM(T) ! EM(T) to the category of T -algebras.

4. An “extension” natural transformation e : TF) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].

Theorem 2. Assuming the above points 1–4, there is a lifting bE of the extension func-

tor E in:

CoAlg(bF)

✏✏

bE //
CoAlg(bG)

✏✏

K`(T)
bF 99

E // EM(T)
bGee

This functor bE is automatically faithful; and it is also full if the extension natural

transformation e : TF) GT consists of monomorphisms.

PROOF. We define the functor bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)

in:
T 2X

TX

µ
X

✏✏

!
bE(c)

//

TGTX

GTX

G(µ
X

)�⇢
✏✏

!
= bG

T 2X

TX

µ
X

✏✏

!

26

Recall from Section 2 that there is a comparison functor E : K`(T) ! EM(T).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT) TF , leading to a lifting
bF : K`(T) ! K`(T) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG) GT ,

yielding a lifting bG : EM(T) ! EM(T) to the category of T -algebras.

4. An “extension” natural transformation e : TF) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].

Theorem 2. Assuming the above points 1–4, there is a lifting bE of the extension func-

tor E in:

CoAlg(bF)

✏✏

bE //
CoAlg(bG)

✏✏

K`(T)
bF 99

E // EM(T)
bGee

This functor bE is automatically faithful; and it is also full if the extension natural

transformation e : TF) GT consists of monomorphisms.

PROOF. We define the functor bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)

in:
T 2X

TX

µ
X

✏✏

!
bE(c)

//

TGTX

GTX

G(µ
X

)�⇢
✏✏

!
= bG

T 2X

TX

µ
X

✏✏

!

26

Recall from Section 2 that there is a comparison functor E : K`(T) ! EM(T).

In this section we show how it can be lifted to coalgebras. We consider the following

situation.

1. A monad T : C ! C on a category C.

2. An endofunctor F : C ! C with a K`-law � : FT) TF , leading to a lifting
bF : K`(T) ! K`(T) to T ’s Kleisli category, via Proposition 1.

3. Another endofunctor G : C ! C, but this time with an EM-law ⇢ : TG) GT ,

yielding a lifting bG : EM(T) ! EM(T) to the category of T -algebras.

4. An “extension” natural transformation e : TF) GT that connects the K`- and

EM-laws via the following two commuting diagrams.

TFT

eT
✏✏

T (�)
// T 2F

µF
// TF

e
✏✏

T 2F

T e
✏✏

µF
// TF

e
✏✏

GT 2
Gµ

// GT TGT
⇢T

// GT 2
Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [2].

Theorem 2. Assuming the above points 1–4, there is a lifting bE of the extension func-

tor E in:

CoAlg(bF)

✏✏

bE //
CoAlg(bG)

✏✏

K`(T)
bF 99

E // EM(T)
bGee

This functor bE is automatically faithful; and it is also full if the extension natural

transformation e : TF) GT consists of monomorphisms.

PROOF. We define the functor bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
TX

T (c)
���! T 2FX

µ
�! TFX

e
�! GTX

�

f 7�! E(f) = µ � T (f).

We need to show that bE(c) is a map of algebras E(X) = µX !

bG(µX) = bG(EX)

in:
T 2X

TX

µ
X

✏✏

!
bE(c)

//

TGTX

GTX

G(µ
X

)�⇢
✏✏

!
= bG

T 2X

TX

µ
X

✏✏

!

26

In order to show that f is a map of coalgebras we use that e consists of monos, in:

e �
�
d � f

�
= e � µ � T (d) � f

= e � µ � T (d) � h � ⌘

(15)
= G(h) � e � µ � T (c) � ⌘

= G(h) � e � µ � ⌘ � c

= G(h) � e � c

= G(h) � G(µ � T (⌘)) � e � c

(15)
= G(µ) � GT (h � ⌘) � e � c

= G(µ) � e � TF (f) � c

(13)
= e � µ � T (� � F (f)) � c

= e �
� bF (f) � c

�
. ⇤

On a more abstract level, what the previous result does is lift e : TF) GT to

a natural transformation be : E bF)

bGE. In this way we can also define the functor
bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
EX

be�E(c)
����!

bG(EX)
�

and f 7�! E(f) = µ � T (f).

Getting back to the original intention, let E : CoAlg(TF) ! CoAlg(GT) be the

functor obtained by post-composing with the extension natural transformation e, that

is, given c : X ! TF (X) we have

E(c) = eX � c and E(f) = f

for a coalgebra homomorphism f . We can now summarize all results in one cube-

shaped diagram.

Theorem 3. Under the assumptions 1. - 4. from the beginning of this section, we have

the following commuting cube of (lifted) functors:

28

In order to show that f is a map of coalgebras we use that e consists of monos, in:

e �
�
d � f

�
= e � µ � T (d) � f

= e � µ � T (d) � h � ⌘

(15)
= G(h) � e � µ � T (c) � ⌘

= G(h) � e � µ � ⌘ � c

= G(h) � e � c

= G(h) � G(µ � T (⌘)) � e � c

(15)
= G(µ) � GT (h � ⌘) � e � c

= G(µ) � e � TF (f) � c

(13)
= e � µ � T (� � F (f)) � c

= e �
� bF (f) � c

�
. ⇤

On a more abstract level, what the previous result does is lift e : TF) GT to

a natural transformation be : E bF)

bGE. In this way we can also define the functor
bE : CoAlg(bF) ! CoAlg(bG) by:

�
X

c
�!

bFX
�

7�!

�
EX

be�E(c)
����!

bG(EX)
�

and f 7�! E(f) = µ � T (f).

Getting back to the original intention, let E : CoAlg(TF) ! CoAlg(GT) be the

functor obtained by post-composing with the extension natural transformation e, that

is, given c : X ! TF (X) we have

E(c) = eX � c and E(f) = f

for a coalgebra homomorphism f . We can now summarize all results in one cube-

shaped diagram.

Theorem 3. Under the assumptions 1. - 4. from the beginning of this section, we have

the following commuting cube of (lifted) functors:

28

e

The big picture

CoAlg(bF)

yyssssssss

bE //
CoAlg(bG)

yyssssssss

K`(T)

`

✓✓

E // EM(T)

`

✓✓
¨

≠

Æ

Ø

∞

±

CoAlg(TF)

yyrrrrrrrrr

FK̀

OO

E //
CoAlg(GT)

xxrrrrrrrrr

FEM

OO

C

F

RR

Id
C

F

RR

PROOF. The bottom and frontal faces – ¨ and ≠ – commute trivially as E and E are

functors. Lemma 1 provides the commutativity of the left and right faces – Æ and ∞ –

under the existence of a K`-law and EM-law, respectively. The back face Ø commutes

by the definitions: we have, on objects,

FEM � E(c) = FEM(e � c)

= Gµ � ⇢ � T e � Tc

(13)
= e � µ � Tc

= bE(c)

= bE � FK`(c)

and on morphisms,

FEM � E(f) = FEM(f) = Tf = µ � T⌘ � Tf = µ � T (⌘ � f) = bE � FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed

for Ø and ±. ⇤

We can now define extension semantics for coalgebras X ! T (FX), analogously

to Definition 1.

Definition 2 (K`-extension). Assume, in addition to the points 1–4 from the beginning

of this section, that the functor G has a final coalgebra Z
⇠=
�! G(Z). By Proposition 3

29

Final via [HJS’07] if ... The G-final lifts !

The semantics coincide (almost)

End of story?

(Un)fortunately not!

Wanted: good non-determinization
	
 	
 	
 	
 	
 for PA

X	

!

!

P (A x D(X))

D(X)	

!

!

P (A x D(X))

c detc

A non-determinization of PA

PA LTS

Ana Sokolova University of Salzburg Shonan NII 26 9.10.13

states D(-)P (A x (-))P (A x D(-))

x1a

||zz
zz

a

""DD
DD

b

��

1
2
|| |<

|<
1
3
"""b

"b
1
2
"""b

"b
1
2
|| |<

|<

x2

a

33
x3 x4

b

kk

x1

b

��

a
wwoooooo a

''OOOOOO

1
2x2

1
3x3

a
✏✏

1
2x3

1
2x4

b✏✏
x2

a

33
x4

b

kk

Another one... [DvGHMZ’07]GDP Festschrift ENTCS, to appear

6.1 Lifting relations

Let R ⊆ S ×D(S) be a relation from states to distributions. We lift it to a relation
R ⊆ D(S)×D(S) by letting ∆1 R ∆2 whenever

(i) ∆1 =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1
(ii) For each i∈ I there is a distribution Φi such that si R Φi

(iii) ∆2 =
∑

i∈I pi · Φi.

An important point here is that in the decomposition (i) of ∆1 into
∑

i∈I pi · si, the
states si are not necessarily distinct : that is, the decomposition is not in general
unique. Thus when establishing the relationship between ∆1 and ∆2, a given state
s in ∆1 may play a number of different roles, and this is seen clearly if we apply
this definition to the action relations α−→ ⊆ Sp ×D(Sp) in the operational semantics
of pCSP. We obtain lifted relations between D(Sp) and D(Sp), which to ease the
notation we write as ∆1

α−→ ∆2; then, using pCSP terms to represent distributions,
a simple instance of a transition between distributions is given by

(a.b ✷ a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

But we also have

(a.b ✷ a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d (1)

because, viewed as a distribution, the term (a.b ✷ a.c) 1
2
⊕ a.d may be re-written as

((a.b ✷ a.c) 1
2
⊕ (a.b ✷ a.c)) 1

2
⊕ a.d representing the sum of point distributions

1
4 · (a.b ✷ a.c) + 1

4 · (a.b ✷ a.c) + 1
2 · a.d

from which the move (1) can easily be derived using the three moves from states

a.b ✷ a.c a−→ b a.b ✷ a.c a−→ c a.d a−→ d

The lifting construction satisfies the following two useful properties, whose proofs
we leave to the reader.

Proposition 6.1 Suppose R ⊆ S ×D(S) and
∑

i∈I pi = 1. Then we have

(i) Θi R ∆i implies (
∑

i∈I pi ·Θi) R (
∑

i∈I pi ·∆i).
(ii) If (

∑
i∈I pi ·Θi) R ∆ then ∆ =

∑
i∈I pi ·∆i for some set of distributions ∆i

such that Θi R ∆i. ✷

The lifting construction can also be used to define the concept of a partial internal
move between distributions, one where part of the distribution does an internal
move and the remainder remains unchanged. Write s τ̂−→ ∆ if either s τ−→ ∆
or ∆ = s. This relation between states and distributions can be lifted to one
between distributions and distributions, and again for notational convenience we
use ∆1

τ̂−→ ∆2 to denote the lifted relation. As an example, again using process

19

Another one... [DvGHMZ’07]GDP Festschrift ENTCS, to appear

6.1 Lifting relations

Let R ⊆ S ×D(S) be a relation from states to distributions. We lift it to a relation
R ⊆ D(S)×D(S) by letting ∆1 R ∆2 whenever

(i) ∆1 =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1
(ii) For each i∈ I there is a distribution Φi such that si R Φi

(iii) ∆2 =
∑

i∈I pi · Φi.

An important point here is that in the decomposition (i) of ∆1 into
∑

i∈I pi · si, the
states si are not necessarily distinct : that is, the decomposition is not in general
unique. Thus when establishing the relationship between ∆1 and ∆2, a given state
s in ∆1 may play a number of different roles, and this is seen clearly if we apply
this definition to the action relations α−→ ⊆ Sp ×D(Sp) in the operational semantics
of pCSP. We obtain lifted relations between D(Sp) and D(Sp), which to ease the
notation we write as ∆1

α−→ ∆2; then, using pCSP terms to represent distributions,
a simple instance of a transition between distributions is given by

(a.b ✷ a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

But we also have

(a.b ✷ a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d (1)

because, viewed as a distribution, the term (a.b ✷ a.c) 1
2
⊕ a.d may be re-written as

((a.b ✷ a.c) 1
2
⊕ (a.b ✷ a.c)) 1

2
⊕ a.d representing the sum of point distributions

1
4 · (a.b ✷ a.c) + 1

4 · (a.b ✷ a.c) + 1
2 · a.d

from which the move (1) can easily be derived using the three moves from states

a.b ✷ a.c a−→ b a.b ✷ a.c a−→ c a.d a−→ d

The lifting construction satisfies the following two useful properties, whose proofs
we leave to the reader.

Proposition 6.1 Suppose R ⊆ S ×D(S) and
∑

i∈I pi = 1. Then we have

(i) Θi R ∆i implies (
∑

i∈I pi ·Θi) R (
∑

i∈I pi ·∆i).
(ii) If (

∑
i∈I pi ·Θi) R ∆ then ∆ =

∑
i∈I pi ·∆i for some set of distributions ∆i

such that Θi R ∆i. ✷

The lifting construction can also be used to define the concept of a partial internal
move between distributions, one where part of the distribution does an internal
move and the remainder remains unchanged. Write s τ̂−→ ∆ if either s τ−→ ∆
or ∆ = s. This relation between states and distributions can be lifted to one
between distributions and distributions, and again for notational convenience we
use ∆1

τ̂−→ ∆2 to denote the lifted relation. As an example, again using process

19

R ⊆ X x D(X))

X	

!

!

P (D(X))

c

R’ ⊆ D(X) x D2(X)

R’’ ⊆ D(X) x D(X)

D(X)	

!

!

P(D(X))

detc

Does it fit?
Yes and no

Does it fit?

X	

!

!

P (D(X))

D(X)	

!

!

P(D(X))

c det c = P(μ)◦r◦ D(c)

Yes and no
but not a distributive law

still a lot to be done

