
Performance, Scalability, and Semantics of

Concurrent FIFO Queues
�

Christoph M. Kirsch Hannes Payer Harald Röck Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. We introduce the notion of a k-FIFO queue which may dequeue el-
ements out of FIFO order up to a constant k ≥ 0. Retrieving the oldest element
from the queue may require up to k+ 1 dequeue operations (bounded lateness),
which may return elements not younger than the k + 1 oldest elements in the
queue (bounded age) or nothing even if there are elements in the queue. A k-FIFO
queue is starvation-free for finite k where k+1 is what we call the worst-case se-
mantical deviation (WCSD) of the queue from a regular FIFO queue. The WCSD
bounds the actual semantical deviation (ASD) of a k-FIFO queue from a regu-
lar FIFO queue when applied to a given workload. Intuitively, the ASD keeps
track of the number of dequeue operations necessary to return oldest elements
and the age of dequeued elements. We show that a number of existing concurrent
algorithms implement k-FIFO queues whose WCSD are determined by config-
urable constants independent from any workload. We then introduce so-called
Scal queues, which implement k-FIFO queues with generally larger, workload-
dependent as well as unbounded WCSD. Since ASD cannot be obtained without
prohibitive overhead we have developed a tool that computes lower bounds on
ASD from time-stamped runs. Our micro- and macrobenchmarks on a state-of-
the-art 40-core multiprocessor machine show that Scal queues, as an immediate
consequence of their weaker WCSD, outperform and outscale existing imple-
mentations at the expense of moderately increased lower bounds on ASD.

1 Introduction

We are interested in designing and implementing concurrent FIFO queues that pro-
vide high performance and positive scalability on shared memory, multiprocessor and
multicore machines. By performance we mean throughput measured in queue opera-
tions per second. Scalability is performance as a function of the number of threads in
a system. The ideal result is linear scalability and high performance already with few
threads. This is nevertheless an unlikely outcome on multicore hardware where shared
memory access is typically orders of magnitude slower than core computation. A still
challenging yet more realistic outcome and our goal in particular is positive scalabil-
ity, i.e., increasing performance with an increasing number of threads, up to as many
� This work has been supported by the Austrian Science Fund (National Research Network RiSE

on Rigorous Systems Engineering S11404-N23 and Elise Richter Fellowship V00125) and the
National Science Foundation (CNS1136141).

threads as possible, and high performance already with few threads. Achieving both
performance and scalability is important since positive scalability but low performance
with few threads may be even worse than negative scalability.

The key to high performance and positive scalability is parallelization with low
sequential overhead. Earlier attempts to improve the performance and scalability of
simple, lock-based FIFO queues include the lock-free Michael-Scott FIFO Queue [13]
and, more recently, the Flat-Combining FIFO Queue [11], which we have both imple-
mented for our experiments. Both algorithms tend to provide better performance and
scale to more threads than lock-based FIFO queues. Another two recent examples of
algorithms that aim at improving performance and scalability are the Random Dequeue
Queue [1] and the Segment Queue [1], which we have also implemented and study here.
An important difference to the former two algorithms is that the latter two provide only
relaxed FIFO semantics in the sense that elements may be returned out of FIFO order.
The goal is to increase parallelism further while the challenge is to maintain bounds on
the relaxation of semantics.

Based on the same principle of improving performance and scalability at the ex-
pense of strict FIFO semantics we propose Scal queues for implementing FIFO queues
with relaxed semantics. The idea is to maintain (a distributed system of) p instances of a
regular FIFO queue (we chose Michael-Scott for our experiments) and then select, upon
each enqueue or dequeue operation, one of the p instances before performing the opera-
tion on the selected instance without further coordination with the other instances. Thus
up to p queueing operations may be performed in parallel. Selection is done by a load
balancer whose implementation has an immediate impact on performance, scalability,
and semantics. In particular, the load balancer determines how close the semantics of
the Scal queue is to the semantics of a regular FIFO queue. We have implemented a va-
riety of load balancers for our experiments to study the trade-off between performance,
scalability, and semantics with Scal queues relative to the previously mentioned queues.

With the straightforward metric of operation throughput in place for measuring per-
formance, the only remaining challenge is to quantify and to measure difference in
semantics. For this purpose, we introduce the notion of semantical deviation as a metric
for quantifying the difference in semantics between a queue with relaxed FIFO seman-
tics and a regular FIFO queue. Intuitively, when running a given queue implementation
on some workload, semantical deviation keeps track of the number of dequeue opera-
tions necessary to return oldest elements and the age of dequeued elements. However,
measuring actual semantical deviation on existing hardware is only possible indirectly
and approximatively through time-stamping invocation and response events of opera-
tions online, and then computing offline, using a tool that we developed, an approxima-
tion of the actual run that took place. The approximation is a sequence of linearization
points that leads to a lower bound on the actual semantical deviation.

Here a key observation is that there exist upper bounds on semantical deviation in-
dependent of at least all workloads in a given class (e.g. with a fixed number of threads)
for most of the implementations we consider. It turns out that these implementations are
instances of the notion of a k-FIFO queue for different k ≥ 0 where k+1 is their worst-
case semantical deviation from a regular FIFO queue. A k-FIFO queue may dequeue
elements out of FIFO order up to k. In particular, retrieving the oldest element from

enqueuek(e)(q, l) = (q · e, l)

dequeuek(e)(q, l) =






(ε,0) if e = null,q = ε (L1)
(q, l +1) if e = null,q �= ε, (C1) l < k (L2)
(q�,0) if q = e ·q� (L3)
(e1 . . . ei−1ei+1 . . . en, l +1) if e = ei,q = e1 . . . en, (L4)

1 < i ≤ n, (C2) l < k,
(C3) i ≤ k+1− l

error otherwise (L5)

Fig. 1. Sequential specification of a k-FIFO queue (a FIFO queue w/o lines (L2), (L4); a POOL
w/o conditions (C1), (C2), (C3))

the queue may require up to k+ 1 dequeue operations (bounded lateness), which may
return elements not younger than the k+1 oldest elements in the queue (bounded age)
or nothing even if there are elements in the queue. Depending on the implementation k
may or may not depend on workload characteristics such as number of threads or may
even be probabilistic. The non-determinism in the choice of elements to be returned
provides the potential for performance and scalability which, in our benchmarks, tend
to increase with increasing k.

We summarize the contributions of this paper: (1) the notion of k-FIFO queues
(previously presented in a brief announcement [12]), (2) Scal queues, (3) the notion
of semantical deviation, and (4) micro- and macrobenchmarks showing the trade-off
between performance, scalability, and semantics.

In Section 2, we formally define k-FIFO queues and then discuss the existing con-
current algorithms we consider. In Section 3, we introduce Scal queues along with the
load balancers we have designed and implemented. Semantical deviation is defined in
Section 4. Related work is discussed in Section 5, our experiments are presented in
Section 6, and conclusions are in Section 7.

2 k-FIFO Queues

We introduce the notion of a k-FIFO queue where k ≥ 0. Similar to a regular FIFO
queue, a k-FIFO queue provides an enqueue and a dequeue operation but with a strictly
more general semantics defined as follows. Let the tuple (q, l) denote the state of a
k-FIFO queue where q is the sequence of queue elements and l is an integer, called
lateness, that counts the number of dequeue operations since the most recent dequeue
operation removed the oldest element. The initial, empty state of a k-FIFO queue is
(ε,0). The enqueue operation of a k-FIFO queue is a function from queue states and
queue elements to queue states. The dequeue operation is a function from queue states
and queue elements or the null return value to queue states. The formal definition of
the semantics (sequential specification) of a k-FIFO queue is shown in Figure 1. In
order to keep the definition simple we assume, without loss of generality, that queue
elements are unique, i.e., each element will only be enqueued once and discarded when
dequeued.

A k-FIFO queue is a queue where an enqueue operation, as usual, adds an element
to the queue tail. A dequeue operation, however, may either return nothing (null) al-

though there could be elements in the queue, or else remove one of the k+1− l oldest
elements from the queue with l < k again being the number of invoked dequeue opera-
tions since the most recent dequeue operation that removed the oldest element from the
queue. Retrieving the oldest element from the queue may require up to k+ 1 dequeue
operations (bounded lateness), which may return null or elements not younger than the
k+1− l oldest elements in the queue (bounded age) and which may be interleaved with
any number of enqueue operations. Thus k-FIFO queues are starvation-free for finite k
and a 0-FIFO queue is a regular FIFO queue.

The standard definition of a regular FIFO queue can be obtained from Figure 1 by
dropping lines (L2) and (L4). Just dropping line (L2) provides the definition of a k-
FIFO queue without null returns if non-empty, which is a special case that we have
implemented for some queues. Other combinations may also be meaningful, e.g. drop-
ping conditions (C1), (C2), and (C3) defines the semantics of a POOL. In other words,
a POOL is equivalent to a k-FIFO queue with unbounded k.

2.1 Implementations

We study different implementations of k-FIFO queues with k independent from any
workload as well as k dependent on workload parameters such as the number of threads.
In particular, k may or may not be configurable for a given implementation.

The following queues implement regular FIFO queues: a standard lock-based FIFO
queue (LB), the lock-free Michael-Scott FIFO queue (MS) [13], and the flat-combining
FIFO queue (FC) [11]. LB locks a mutex for each data structure operation. With MS
each thread uses at least two compare-and-swap (CAS) operations to insert an element
into the queue and at least one CAS operation to remove an element from the queue.
FC is based on the idea that a single thread performs the queue operations of multiple
threads by locking the whole queue, collecting pending queue operations, and applying
them to the queue.

The Random Dequeue Queue (RD) [1] is a k-FIFO queue where k = r and r de-
fines the range [0,r− 1] of a random number. RD is based on MS where the dequeue
operation was modified in a way that the random number determines which element
is returned starting from the oldest element. If the element is not the oldest element in
the queue it is marked as dequeued and returned but not removed from the queue. If
the element is already marked as dequeued the process is repeated until a not-dequeued
element is found or the queue is empty. If the element is the oldest element the queue
head is set to the first not-dequeued element and all elements in between are removed.
Hence RD may be out-of-FIFO order by at most r and always returns an element when
the queue is not empty. RD was originally not defined as a k-FIFO queue but introduced
in the context of relaxing the consistency condition linearizability [1].

The Segment Queue (SQ) [1] is a k-FIFO queue implemented by a non-blocking
FIFO queue of segments. A segment can hold s queue elements. An enqueue operation
inserts an element at an arbitrary position of the youngest segment. A dequeue operation
removes an arbitrary element from the oldest segment. When a segment becomes full
a new segment is added to the queue. When a segment becomes empty it is removed
from the queue. A thread performing a dequeue operation starts looking for an element
in the oldest segment. If the segment is empty it is removed and the thread checks

the next oldest segment and so on until it either finds an element and returns that, or
else may return null if only one segment containing up to s− 1 elements remains in
the queue. The thread returns null if other threads dequeued the up to s− 1 elements
before the thread could find them. Hence, k = s for SQ. SQ was originally not defined
as a k-FIFO queue but introduced in the context of relaxing the consistency condition
linearizability [1].

Next, we discuss new implementations of k-FIFO queues where k depends not only
on constant numbers but also on the workload such as the number of threads or is even
unbounded and may only be determined probabilistically.

3 Scal Queues

Scal is a framework for implementing k-FIFO queues as well as potentially other con-
current data structures such as relaxed versions of stacks and priority queues that may
provide bounded out-of-order behavior. In this paper we focus on k-FIFO queues and
leave other concurrent data structures for future work. In the sequel we refer to k-FIFO
queues implemented with Scal as Scal queues.

Scal is motivated by distributed systems where shared resources are distributed and
access to them is coordinated globally or locally. For implementing k-FIFO queues
Scal uses p instances of a regular FIFO queue, so-called partial FIFO queues, and a
load balancer that distributes queueing operations among the p partial FIFO queues.
Upon the invocation of a queueing operation the load balancer first selects one of the
p partial FIFO queues and then calls the actual queueing operation on the selected
queue. The value of p and the type of load balancer determine k, as discussed below,
as well as the performance and scalability of Scal queues, i.e., how many queueing
operations can potentially be performed concurrently and in parallel, and at which cost
without causing contention. Moreover, in our Scal queue implementations selection and
queueing are performed non-atomically for better performance and scalability. Thus
k with Scal queues depends on the number of threads in the system since between
selection and queueing of a given thread all other threads may run. The semantics of
Scal queues may nevertheless be significantly closer to FIFO semantics than what the
value of k may suggest because of the low probability of the worst case, as shown in
Section 6. Note that p and the load balancer may be configured at compile time or
dynamically at runtime with the help of performance counters. For example, a load
balancer may be chosen with p = 1 under low contention and with increasing p as
contention increases. Dynamic reconfiguration is future work.

Round-Robin Load Balancing We have implemented a round-robin load balancer (RR)
for Scal that selects partial FIFO queues for enqueue and dequeue operations in round-
robin fashion. Two global counters keep track on which of the p partial FIFO queues the
last enqueue and the last dequeue operation was performed. The counters are accessed
and modified using atomic operations, which can cause contention. However, scalability
may still be achieved under low contention since the load balancer itself is simple. A
Scal queue using RR implements a k-FIFO queue with k = t · (p− 1) where t is an
upper bound on the number of threads in the system. Note that k comes down to p−1
if selection and queueing are performed atomically.

Randomized Load Balancing Another approach is to use a randomized load balancer
(RA) for Scal that randomly distributes operations over partial FIFO queues. Random-
ized load balancing [4, 16, 6] has been shown to provide good distribution quality if
the random numbers are distributed independently and uniformly. However, generating
such random numbers may be computationally expensive. Therefore, it is essential to
find the right trade-off between quality and overhead of random number generation.
We use an efficient random number generator that produces evenly distributed random
numbers [15]. The value of k for RA Scal queues is unbounded but may be deter-
mined probabilistically as part of future work. A first step is to determine the maximum
imbalance of the partial FIFO queues. Suppose that t threads have performed m oper-
ations each on p partial FIFO queues using RA. Then, with a probability of at least
1−O

�
1
p

�
, the maximum difference (imbalance) between the number of elements in

any partial FIFO queue and the average number of elements in all partial FIFO queues
is Θ

��
t·m·log p

p

�
[16] if selection and queueing are performed atomically. However, as

previously mentioned, selection and queueing are performed non-atomically in our im-
plementation. The presented maximum imbalance is anyway relevant for a comparison
with a refined version of RA discussed next.

In order to improve the load balancing quality of RA, d partial FIFO queues with
1 < d ≤ p may be chosen randomly. Out of the d partial FIFO queues the queue that
contributes most to a better load balance is then selected. More precisely, enqueue and
dequeue operations are performed on the partial FIFO queues that contain among the
d partial FIFO queues the fewest and the most elements, respectively. We refer to such
a load balancer as d-randomized load balancer (dRA). The runtime overhead of dRA
increases linearly in d since the random number generator is called d times. Thus d al-
lows us to trade off balancing quality and global coordination overhead. Here, again the
value of k for dRA is unbounded. However, again with a probability of at least 1−O(1

p),
the maximum difference (imbalance) between the number of elements in any partial
FIFO queue and the average number of elements in all partial FIFO queues is now
Θ
�

log log p
d

�
[6] if selection and queueing are performed atomically. Again, determin-

ing the maximum imbalance for the case when selection and queueing are performed
non-atomically, as in our implementation, is future work. However, the presented max-
imum imbalance shows an important difference to RA Scal queues. It is independent
of the state of the Scal queue, i.e., the history of enqueue and dequeue operations. In
particular, d = 2 leads to an exponential improvement in the balancing quality in com-
parison to RA. Note that d > 2 further improves the balancing quality only by a constant
factor [6] at the cost of higher computational overhead.

Hierarchical Load Balancing With hierarchical load balancing p partial FIFO queues
are partitioned into 0 < h ≤ p non-overlapping subsets. In this paper we use a two-level
hierarchy where the high-level load balancer chooses the subset and the low-level load
balancer chooses one of the partial FIFO queues in the given subset. For partitioning we
take the cache architecture of the system into account by making the subsets processor-
local, i.e., h is here the number of processors of the system. For the high-level load
balancer we use a weighted randomized load balancer where the thread running on pro-

cessor i chooses the processor-local subset i with a given probability w while one of the
remaining subsets is chosen with probability 1−w. This allows us to increase cache
utilization and reduce the number of cache misses. On the lower level we use a random-
ized (H-RA) or 2-randomized (H-2RA) load balancer to choose the actual partial FIFO
queue. Note that in principle multiple hierarchies of load balancers could be used and in
each hierarchy a different load balancer could run. The value of k for H-RA and H-2RA
Scal queues is again unbounded but may be determined probabilistically similar to the
value of k for RA and 2RA Scal queues, respectively.

Backoff Algorithm We have implemented two so-called backoff algorithms for dequeue
operations to avoid null returns on non-empty Scal queues. In particular, we have im-
plemented a perfect backoff algorithm (no null returns if queue is non-empty) based
on the number of elements in a Scal queue as well as a heuristic backoff algorithm (no
null returns, if queue is non-empty, with high probability given a sufficiently high retry
threshold).

In the perfect backoff algorithm a global counter holds the number of elements
in a Scal queue. The counter is incremented after a successful enqueue operation and
decremented after a successful dequeue operation. If a dequeue operation ends up at
an empty partial FIFO queue the backoff algorithm inspects the counter. If it indicates
that the Scal queue is not empty the load balancer selects another partial FIFO queue.
Updating and inspecting the global counter requires synchronization and can lead to
cache conflicts, which may limit performance and scalability.

The heuristic backoff algorithm may simply retry a given number of times deter-
mined at compile-time before having the dequeue operation return null. The average
number of retries depends on different factors such as the application workload. In the
experiments in Section 6 we use a heuristic backoff algorithm with a maximum retry
threshold set high enough to avoid null returns on non-empty Scal queues.

4 Semantical Deviation

We are interested in what we call the semantical deviation of a k-FIFO queue from a reg-
ular FIFO queue when applied to a given workload. Semantical deviation captures how
many dequeue operations it took to return oldest elements (lateness) and what the age
of dequeued elements was. Since semantical deviation cannot be measured efficiently
without introducing prohibitive measurement overhead we propose lower and upper
bounds of which the lower bounds can be computed efficiently from time-stamped runs
of k-FIFO queue implementations. Our experimental results show that the lower bounds
at least enable a relative, approximative comparison of different implementations in
terms of their actual semantical deviation. Computing the upper bounds remains future
work.

We represent a workload applied to a queue by a so-called (concurrent) history H,
which is a finite sequence of invocation and response events of enqueue and dequeue
operations [10]. We work with complete histories, i.e., histories in which each operation
has a corresponding invocation and response event and the invocation is before the
response event. By �op and by op� we denote the invocation and response events of the

operation op, respectively. Two operations op1 and op2 in a history H are overlapping
if the response event op1� is after the invocation event �op2 and before the response
event op2�, or vice versa. An operation op1 precedes another operation op2 in a history
H, if the response event op1� is before the invocation event �op2. Two histories are
equivalent if the one is a permutation of the other in which precedences are preserved
(only events of overlapping operations may commute). A history H is sequential if the
first event of H is an invocation event and each invocation event is immediately followed
by a matching response event [10]. Equivalently, a sequential history is a sequence of
enqueue and dequeue operations.

Given a sequential specification C (here FIFO, k-FIFO, or POOL), an execution
sequence corresponding to a sequential history HS = op1 . . . opm is a sequence of
states C(HS) = s0s1 . . . sm starting from the initial state s0 with s j+1 = op j+1(s j) for
j = 0, . . . ,m−1. The sequential history HS is valid with respect to the sequential speci-
fication C if no si in C(HS) is the error state error.

In particular, for a sequential history HS = op1 . . . opm, FIFO(HS) is the sequence
of FIFO queue states obtained from the sequential specification of Figure 1 without
lines (L2) and (L4), where s0 = (ε,0) and s j = (q j, l j) with l j = 0 for j = 0, . . . ,m;
k-FIFO(HS) is the sequence of k-FIFO queue states obtained from the sequential spec-
ification of Figure 1, where s0 = (ε,0). If HS is valid with respect to FIFO, FIFO-valid
for short, i.e., if no queue state in FIFO(HS) is the error state error, then each dequeue
operation in HS returns the head of the queue or null if the queue is empty. Similarly, if
HS is valid with respect to k-FIFO, k-FIFO-valid for short, then each dequeue operation
in HS returns one of the k+1− l oldest elements in the queue (or null) and queue heads
are always returned in HS in at most k+1 steps. Every FIFO-valid sequential history is
k-FIFO-valid.

We next define the notion of semantical deviation of a sequential history and char-
acterize validity in terms of it. In order to do that we need the sequential specification
of a POOL. Given a sequential history HS = op1 . . . opm,

POOL(HS) = (q0, l0)(q1, l1) . . . (qm, lm)

is the sequence of POOL states obtained from the sequential specification of Figure 1
without the conditions (C1), (C2), and (C3), where (q0, l0) = (ε,0).

From POOL(HS) we quantify bounded fairness through (maximum) lateness of HS,
denoted L(HS), which is the maximum number of dequeue operations it ever took in HS
to return an oldest element, i.e.,

L(HS) = max1≤ j≤m(l j).

The average lateness ML(HS) is the mean of the number of dequeue operations it took
to return all oldest elements in HS, i.e.,

ML(HS) = mean({l j−1 | l j = 0, j ∈ {1, . . . ,m}}).

From POOL(HS) we also define the sequence of (inverse) ages a0a1 . . . am of HS by

a j =

�
i−1 if q j = e1 . . . en,q j+1 = e1 . . . ei−1ei+1 . . . en
0 otherwise

The (minimum inverse) age of HS, denoted A(HS), is the (inverse) age of the youngest
element ever returned in HS, i.e.,

A(HS) = max1≤ j≤m(a j).

The average (inverse) age MA(HS) is the mean of the (inverse) ages of all elements
returned in HS, i.e.,

MA(HS) = mean1≤ j≤m(a j).

Finally, the (maximum) semantical deviation of HS, denoted SD(HS), is the maximum
of the sums of the lateness and (inverse) age pairs obtained from POOL(HS), i.e.,

SD(HS) = max1≤ j≤m(l j +a j).

Similarly, the average semantical deviation is

MSD(HS) = mean1≤ j≤m(l j +a j).

We are now ready to present the characterization of k-FIFO validity in terms of
lateness, age, and semantical deviation.

Proposition 1 A sequential history HS is k-FIFO-valid if and only if L(HS)≤ k, A(HS)≤
k, and SD(HS)≤ k+1.

Finally, we recall the notion of linearizability [10] before introducing the remain-
ing concepts. Given a history H and a sequential specification C, lin(H,C) denotes the
set of all sequential histories that are equivalent to H and valid with respect to C. If
lin(H,C) is not empty, H is said to be linearizable with respect to C [10]. Hence, H
is linearizable with respect to FIFO if there is a sequential history HS equivalent to H
that is FIFO-valid; it is linearizable with respect to k-FIFO if there is a sequential his-
tory HS equivalent to H that is k-FIFO-valid. Note that every history linearizable with
respect to FIFO is linearizable with respect to k-FIFO as well. A concurrent implemen-
tation of a sequential specification is said to be linearizable if all histories that can be
obtained with the implementation are linearizable [10]. Linearizability is thus a consis-
tency condition for specifying the semantics of objects in the presence of concurrency.
The implementations of all (k-FIFO) queues discussed in this paper are linearizable.

In general, lin(H,C) may contain more than one sequential history if H is lineariz-
able with respect to C. However, we are only interested in the sequential history HA in
lin(H,C) that represents the run that was actually performed. In particular, we are inter-
ested in the actual semantical deviation SD(HA) of H (ASD for short), and similarly in
L(HA) and A(HA). Unfortunately, HA cannot be determined on existing hardware with-
out introducing prohibitive overhead. In practice, only H can be obtained efficiently by
time-stamping the invocation and response events of all operations. We therefore pro-
pose to approximate HA by computing two sequential histories HL and HH in lin(H,C)
such that

L(HL) = min({L(HS)|HS ∈ lin(H,C)})
A(HL) = min({A(HS)|HS ∈ lin(H,C)})

SD(HL) = min({SD(HS)|HS ∈ lin(H,C)})

and, similarly for HH with min replaced by max, holds.
The following proposition is a consequence of Proposition 1 and the definition of a

k-FIFO queue.

Proposition 2 For all histories H of a linearizable implementation of a k-FIFO queue
we have that

L(HL) ≤ L(HA) ≤ L(HH) ≤ k
A(HL) ≤ A(HA) ≤ A(HH) ≤ k

SD(HL) ≤ SD(HA) ≤ SD(HH) ≤ k+1
and SD(HH) = 0 for k = 0.

We therefore call k the worst-case lateness (WCL) and worst-case age (WCA), and
k+1 for k > 0 and 0 for k = 0 the worst-case semantical deviation (WCSD) of a k-FIFO
queue.

4.1 Computing HL

We have designed and implemented a tool that computes HL from a given history H
without enumerating lin(H,C) explicitly (assuming that the sequential specification C
is POOL not knowing any k in particular). The tool scans H for invocation events of
dequeue operations in the order of their appearance in H to construct HL in a single
pass (and POOL(HL) to keep track of the queue states and lateness). For each invoca-
tion event �op of a dequeue operation op the following computation is performed until
a linearization point for op has been created: (1) if op returns null remember the (in-
verse) age for op as zero, otherwise compute and remember the (inverse) age for op
assuming that the linearization point of the enqueue operation that matches op is as
far in the past as possible under the precedence constraints in H, (2) repeat (1) for all
dequeue operations that overlap with op and are not preceded by any other dequeue
operations that also overlap with op, (3) among the dequeue operations considered in
(1) and (2) find the dequeue operation op� that returns an element other than null and
has the minimum remembered (inverse) age (any such op� will do if multiple exist), or
else if only dequeue operations that return null have been considered in (1) and (2) then
take any of those as op�, and finally (4) create a linearization point in HL for the en-
queue operation that matches op� and move that point under the precedence constraints
in H as far into the past as possible and create a linearization point for op� in HL right
before the invocation event �op. Note that after creating a linearization point for an op-
eration its invocation and response events are not considered anymore in subsequent
computations. The key insight for correctness is that bringing operations forward with
minimum (inverse) age also minimizes lateness and thus produces HL. In contrast to
HL, computing HH may require exploring all possible permutations of overlapping op-
erations, which is computationally expensive, in particular for histories obtained from
k-FIFO queue implementations with large or even unbounded k.

5 Related Work

We relate the notions of a k-FIFO queue and semantical deviation as well as the concept,
design, and implementation of Scal queues to other work.

The topic of this paper is part of a recent trend towards scalable but semantically
weaker concurrent data structures [17] acknowledging the intrinsic difficulties of im-
plementing deterministic semantics in the presence of concurrency [3]. The idea is to
address the multicore scalability challenge by leveraging non-determinism in concur-
rent data structure semantics for better performance and scalability. In the context of
concurrent FIFO queues, the notion of a k-FIFO queue is an attempt to capture the
degree of non-determinism and its impact on performance and scalability in a single
parameter. Many existing implementations of concurrent FIFO queues (with or without
relaxed semantics) are instances of k-FIFO queues. The implementations we consider
here [13, 11, 1] are only a subset of the available choices [9]. Other implementations
such as work stealing queues which may return the same element multiple times before
removing it are not instances of k-FIFO queues but are anyway related in high-level
objective and principle [14]. The concept of Scal queues can be seen as an example of
best-effort computing [7] where inaccuracies introduced on a given level in a system
may lead to better overall performance but must then be dealt with on a higher level.

The notion of semantical deviation is a metric for quantifying the difference in se-
mantics between a queue with relaxed FIFO semantics and a regular FIFO queue. An-
other approach for relaxing the sequential specification is quasi-linearizability [1]. As
opposed to relaxing the sequential specification of a concurrent object one can also
relax the consistency condition. An example of a more relaxed consistency condition
than linearizability is quiescent consistency [2], for which concurrent data structure
implementations exist which may provide superior performance in comparison to their
linearizable counterparts. A comprehensive overview of variants of weaker and stronger
consistency conditions than linearizability can be found in [9].

6 Experiments

We evaluate performance, scalability, and semantics of the k-FIFO queue implemen-
tations described in Section 2.1 and Section 3. All experiments ran on an Intel-based
server machine with four 10-core 2.0GHz Intel Xeon processors (40 cores, 2 hyper-
threads per core), 24MB shared L3-cache, and 128GB of memory running Linux 2.6.39.

We study the LB, MS, FC, RD, SQ, and Scal queues (with the RR, RA, 2RA, H-
RA, and H-2RA load balancers without backoff as well as the RR-B, RA-B, 2RA-
B, H-RA-B, and H-2RA-B load balancers with backoff). The partial FIFO queues of
the Scal queues are implemented with MS. For the RD, SQ, and Scal queues we use
r = s = p = 80. For the hierarchical load balancers we use h = 4 (number of processors)
and w = 0.9.

All benchmarked algorithms are implemented in C and compiled using gcc 4.3.3
with -O3 optimizations. In all experiments the benchmark threads are executed with
real-time priorities to minimize system jitter. The threads are scheduled by the default
Linux scheduler and not pinned to cores. Each thread pre-allocates and touches a large
block of memory to avoid subsequent demand paging, and then allocates and deallo-
cates thread-locally all queue elements from this block to minimize cache misses and
to avoid potential scalability issues introduced by the underlying memory allocator.

6.1 Microbenchmarks

We designed and implemented a framework to microbenchmark and analyze differ-
ent queue implementations under configurable contention. The framework emulates a
multi-threaded producer-consumer setup where each thread enqueues and dequeues in
alternating order an element to a shared queue. The framework allows to specify the
number of threads, the number of elements each thread enqueues and dequeues, how
much computation is performed between queueing operations, and which queue im-
plementation to use. We focus on two microbenchmark configurations: 1. a high con-
tention configuration where no computational load in between queueing operations is
performed and 2. a low contention configuration where in between any two queueing
operations additional computational load is created by executing an iterative algorithm
that calculates in 500 loop iterations an approximation of π which takes in total on
average 1130ns.

We evaluate each queue implementation with an increasing number of threads and
determine its performance, scalability, and semantics. Performance is shown in number
of operations performed per millisecond. Scalability is performance with an increasing
number of threads. Semantics is average semantical deviation as computed by our tool
described in Section 4.

Figure 2(a) depicts the performance result of the high contention benchmark. The
throughput of LB, MS, FC, RD, and SQ decreases with an increasing number of threads.
RR does not scale but performs better then the non-Scal queues. The non-backoff Scal
queues provide better performance then their backoff counterparts. This is due to the
fact that in the non-backoff case a Scal queue may return null if no element is found
in the selected partial FIFO queue whereas in the backoff case it has to retry. The best
performance is provided by the hierarchical Scal queues which scale up to the number
of hardware threads in the system, due to better cache utilization. For all other instances
the number of L3 cache misses significantly increases between 20 and 32 threads.

The average semantical deviation of the experimental runs or the high contention
benchmark are depicted in Figure 2(b). Note that the graphs for regular FIFO queues,
i.e., LB, MS, and FC, are not visible since their semantical deviation is always zero.
Using a backoff algorithm for Scal queues generally improves the average semantical
deviation by an order of magnitude, except for RR and RR-B. Scal queues that show
higher average semantical deviation clearly outperform the other queues in terms of
performance and scalability. The Scal queue with H-2RA load balancing appears to
offer the best trade-off between performance, scalability, and semantics on the workload
and hardware considered here.

Figures 2(c) and 2(d) depict the performance result of the low contention bench-
mark. The LB, MS, FC, RD, and SQ queues scale for up to 8 threads. Between 8 to
16 threads throughput increases only slightly. With more than 16 threads scalability is
negative. The RR Scal queue scales for up to 16 threads and then maintains through-
put. The other Scal queues provide scalability up to the number of hardware threads in
the system. The performance difference between backoff and non-backoff is less sig-
nificant in the presence of additional computational load. The best performance and
scalability is still provided by the hierarchical Scal queues but the difference to the non-
hierarchical versions is significantly smaller. The number of L3 cache misses are similar

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB MS FC RD SQ

RR RR-B

RA

RA-B

2RA
2RA-B

H-RA

H-RA-B

H-2RA

H-2RA-B

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(a) Performance and scalability of high
contention benchmark

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

a
ve

ra
g
e
 s

e
m

a
n
tic

a
l d

e
vi

a
tio

n

(l
o
g
sc

a
le

,
lo

w
e
r

is
 b

e
tt
e
r)

number of threads

RD

SQ 2RA-B

RR

RR-B

RA H-RA

RA-B

H-RA-B H-2RA-B

2RA

H-2RA

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(b) Average semantical deviation of high
contention benchmark

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

LB RD SQ

MS

FC

RR RR-B

RA-B
2RA-B
H-RA-B

RA 2RA H-RA
H-2RA H-2RA-B

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(c) Performance and scalability of low
contention benchmark

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

a
ve

ra
g
e
 s

e
m

a
n
tic

a
l d

e
vi

a
tio

n
 (

lo
g
sc

a
le

,
lo

w
e
r

is
 b

e
tt
e
r)

number of threads

RD

SQ

RR

RR-B

RA H-RA

RA-B 2RA-B
H-RA-B H-2RA-B

2RA

H-2RA

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(d) Average semantical deviation of low con-
tention benchmark

Fig. 2. High and low contention microbenchmarks with an increasing number of threads on a
40-core (2 hyperthreads per core) server

to the high contention case. Again, the hierarchical Scal queues have the lowest number
of L3 cache misses. The additional computational load between queueing operations
does not change average semantical deviation significantly on the workload considered
here, see Figure 2(d).

6.2 Macrobenchmarks

We ran two macrobenchmarks with parallel versions of transitive closure and spanning
tree graph algorithms [5] using random graphs consisting of 1000000 vertices where
1000000 unique edges got randomly added to the vertices. All threads start operating on
the graph at different randomly determined vertices. From then on each thread iterates
over the neighbors of a given vertex and tries to process them (transitive closure or
spanning tree operation). If a neighboring vertex already got processed by a different
thread then the vertex is ignored. Vertices to be processed are kept in a global queue
(which we implemented with a representative selection of our queue implementations).
When a vertex is processed, then it is removed from the queue and all its unprocessed
neighbors are added to the queue. The graph algorithm terminates when the global
queue is empty. Thus we need to use backoff in these experiments to guarantee correct

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

MS RD SQ

RR-B

H-2RA-B

H-RA-B

2RA-B

RA-B

MS
RD r=80

SQ s=80
RR-B p=80

RA-B p=80
2RA-B p=80

H-RA-B p=80
H-2RA-B p=80

(a) Spanning tree

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

MS RD SQ RR-B

H-2RA-B

H-RA-B

2RA-B

RA-B

MS
RD r=80

SQ s=80
RR-B p=80

RA-B p=80
2RA-B p=80

H-RA-B p=80
H-2RA-B p=80

(b) Transitive closure

Fig. 3. Performance and Scalability of macrobenchmarks on a random graph with 1000000 ver-
tices and 1000000 edges with an increasing number of threads on a 40-core (2 hyperthreads per
core) server

termination. Note that both algorithms tolerate any particular order of elements in the
global queue.

The macrobenchmark results are presented in Figure 3. Each run was repeated 10
times. We present the average number of operations per milliseconds of the 10 runs as
our performance metric. The Scal queues with RA-B, 2RA-B, H-RA-B, and H-2RA-B
clearly outperform MS, RD, and SQ. The RR-B Scal queue provides a small perfor-
mance improvement in the spanning tree case and no improvement in the transitive
closure case. Both algorithms may produce high cache-miss rates since accessing the
neighbors of a vertex may result in disjoint cache line accesses. A graph representation
that takes hardware features into account may improve scalability further.

7 Conclusions

We have introduced the notion of a k-FIFO queue which may dequeue elements out of
FIFO order up to k. Several existing queue implementations are instances of k-FIFO
queues for different k. We have also introduced Scal queues, which aim at improving
performance and scalability of FIFO queue implementations through load balancing by
distributing queueing operations across multiple, independent queue instances. Load
balancing directly determines performance, scalability, and semantics of Scal queues,
in particular how close the queueing behavior is to FIFO. In order to quantify the dif-
ference between actual and regular FIFO semantics, we have introduced the notion
of semantical deviation, which captures how many dequeue operations it took to return
oldest elements (lateness) and what the age of dequeued elements was. Our experiments
show that Scal queues with a memory-hierarchy-aware combination of randomized and
queue-size-based load balancing (H-2RA) offer the best trade-off between performance,
scalability, and semantics on the considered workloads and hardware.

We see many interesting directions for future work. Which applications tolerate
semantical deviation to what extent? Is the parameter k the right choice of information
that should be exposed to application programmers for performance-oriented multicore

programming (rather than, e.g. the memory hierarchy)? Can concurrent data structures
other than FIFO queues be relaxed in a similar way? In recent collaboration [8] we have
developed a framework for quantitative relaxation of concurrent data structures which
covers FIFO queues but also stacks, priority queues, and other examples.

References

1. Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In Proc. Conference on Principles of Distributed Systems (OPODIS),
pages 395–410. Springer, 2010.

2. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM, 41:1020–
1048, 1994.

3. H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev. Laws of
order: expensive synchronization in concurrent algorithms cannot be eliminated. In Proc. of
Principles of Programming Languages (POPL), pages 487–498. ACM, 2011.

4. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations (extended abstract).
In Proc. Symposium on Theory of computing (STOC), pages 593–602. ACM, 1994.

5. D. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric multiproces-
sors (smps). Journal of Parallel and Distributed Computing, 65:994–1006, 2005.

6. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily
loaded case. SIAM Journal on Computing, 35(6):1350–1385, 2006.

7. S. Chakradhar and A. Raghunathan. Best-effort computing: re-thinking parallel software and
hardware. In Proc. Design Automation Conference, pages 865–870. ACM, 2010.

8. T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation of
concurrent data structures. Technical Report 2012-03, Department of Computer Sciences,
University of Salzburg, May 2012.

9. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., 2008.

10. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

11. D. H. I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In Proc. Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
355–364. ACM, 2010.

12. C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Brief announcement: Scalability versus
semantics of concurrent FIFO queues. In Proc. Symposium on Principles of Distributed
Computing (PODC). ACM, 2011.

13. M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proc. Symposium on Principles of Distributed Computing (PODC),
pages 267–275. ACM, 1996.

14. M. Michael, M. Vechev, and V. Saraswat. Idempotent work stealing. In Proc. Principles and
Practice of Parallel Programming (PPoPP), pages 45–54. ACM, 2009.

15. S. Park and K. Miller. Random number generators: good ones are hard to find. Communica-
tions of the ACM, 31(10):1192–1201, 1988.

16. M. Raab and A. Steger. ”Balls into Bins” - A Simple and Tight Analysis. In Proc. Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM), pages
159–170. Springer, 1998.

17. N. Shavit. Data structures in the multicore age. Communications ACM, 54:76–84, March
2011.

