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© probabilistic systems (coalgebras)
* bisimilarity - the strong end of the spectrum
* expressiveness hierarchy

* other semantics - at the weak end of the spectrum
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* abstraction
* analysis
* In hardware and software design
* trial and error
* duplication

* Formal methods aim at replacing the & with the &
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© specification
* development
* verification

of software and hardware systems
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* models - transition systems, automata, terms,...
with a clear semantics

* analysis - model checking
process algebra
theorem proving...
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* models - transition systems

* semantics - behavior equivalences
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* models - transition systems

* semantics - behavior equivalences

Aim: one framework for many (probabilistic) models and

semantics - compare expressiveness
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S)———= 51 ——— S9 ——— 53
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80—>81—>82—>8®

states + transitions a: S5 — S

a(SO) — 51, 04(81) — 52, ...
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a b b

S)——— 51 ———— S9 ——— 53
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a b b

30—>31—>32—>s®

a

states + transitions a:S — Ax S

a(sg) = (a, s1), a(sy) = (b, s9), ...

University of Salzburg, CoSy, 13-10-6 — p.5/22



University of Salzburg, CoSy, 13-10-6 — p.5/22



states + transitions «: S — P(9)

a(sg) = {s1,s2}, a(s1) = {s3}, ...
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CS\L Q
states + transitions «a:S — P(A x S)
Ck(So) — {<a7 31>7 <b7 82>}7 Ck(Sl) — {<Cv S3>}7 :
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states + transitions
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states + transitions
as pairs
(S,a: S — FS), for F a functor

University of Salzburg, CoSy, 13-10-6 — p.6/22



states + transitions
as pairs
(S,a: S — FS), for F a functor

¢ rich mathematical structure
® a uniform way for treating transition systems

® general notions and results, generic notion of bisimulation
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probabilities as labels on the transitions.
Examples:
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probabilities as labels on the transitions.
Examples:
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probabilities as labels on the transitions.
Examples:
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probabilities as labels on the transitions.
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probabilities as labels on the transitions.
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probabilities as labels on the transitions.
Examples:
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B the set of all discrete

DS =
probability distributions on S
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B the set of all discrete

DS =
probability distributions on S

the probabilistic systems are also coalgebras
Example: a: S — DS

[
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B the set of all discrete

DS =
probability distributions on S

the probabilistic systems are also coalgebras
... of functors built by the following syntax

Fu=_|A|P|D|G+H|GxH|G'|G-H
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LTS
React
Gen
Str
Alt
Var
SSeg
Seg

C+D7

P(Ax _)x=pPA
(D+1)4

DAx _)+1

D+ (Ax_)+1
D+PAx_)

DAXx _)+PAx_)
P(A x D)
PD(A x _)
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(D+1)4
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D+ (Ax_)+1
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z-\_,.

LS bl1]
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... two states are bisimilar if they are related by some
bisimulation
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the coloring is a bisimulation, so sy and ¢, are bisimilar
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U =r,A U

=R, A relates distributions that assign the same probability to each label
and each R-class
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® R~ ©
MU =RrR,A U
... two states are bisimilar if they are related by some
bisimulation

A
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U =r U

= R relates distributions that assign the same probability to each R-class
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the coloring is a bisimulation, so sy and ¢, are bisimilar
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(S,a: 8 — FS)
IS R C S x S5 such that
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(S,a: 8 — FS)
Is 7 C S x S such that ~ exists:

S<W—1RL>S

Vo ks

fS?fRTW;}—S
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(S,a: 8 — FS)
IS R C S x S5 such that

.S e R~ .t
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(S,a: 8 — FS)
IS R C S x S5 such that

.S ’\MR’\M .t

l .

a(s)
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(S,a: 8 — FS)
IS R C S x S5 such that

| »
a(s) RelF)(R) «aft)
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(S,a: 8 — FS)
IS 7 C S x S such that

o, o,

| |

a(s) Rel(F)(R) «aft)

... two states are bisimilar if they are related by some
bisimulation
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(S,a: 8 — FS)
IS 7 C S x S such that

| »
a(s) RelF)(R) «aft)

Theorem: Coalgebraic and concrete bisimilarity coincide !

University of Salzburg, CoSy, 13-10-6 — p.13/22



University of Salzburg, CoSy, 13-10-6 — p.14/22




University of Salzburg, CoSy, 13-10-6 — p.14/22




| I

When do we consider one type of systems more
expressive than another?
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oalgr — Coalgg

iIf there is a way to map each F-coalgebra to a
G-coalgebra with the same states such that
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Coalgr — Coalgg

iIf there is a way to map each F-coalgebra to a
G-coalgebra with the same states such that

bisimilarity is preserved and reflected

states are bisimilar in the original system iff they are bisimilar in the translation
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Coalgr — Coalgg

iIf there is a way to map each F-coalgebra to a
G-coalgebra with the same states such that

bisimilarity is preserved and reflected

Theorem: An injective natural transformation 7 = G is
sufficient for Coalg - — Coalgg
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Coalgr — Coalgg

iIf there is a way to map each F-coalgebra to a
G-coalgebra with the same states such that

bisimilarity is preserved and reflected

Theorem: An injective natural transformation 7 = G is
sufficient for Coalg - — Coalgg

proof via cocongruences - behavioral equivalence
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o — [
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o — [

“ {
b1 Pn a’[pl] a[pn]
° %2 \ PS ° [r:f;;[P;]v\*.\.v.\“ °
gives us an injective natural transformation

P(Ax D)= PD(A x _)
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Gen Str

DLT MC
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SSeg

e

React

N

DLT'S MC

LTS Gen Str

8

* Falk Bartels, AS, Erik de Vink [ EEEN
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o ®,

0| 2N

) [ ) [ [

R %
[ [ [ [ |

x and y are:

* different wrt. bisimilarity O
-
|
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o ®,

LT,
SN
x and y are:

¢ different wrt. bisimilarity, but

® equivalent wrt. trace semantics
tr(z) = tr(y) = {ab, ac}
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e set of all possible
linear behaviors

frace =
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the set of all possible
linear behaviors

frace =

Example:
a b
Qx e QQ .
{

v

tr(y) = b", tr(z) = a’-tr(y) = a* - b*
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sub-probability distribution over
possible linear behaviors

frace =
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trace = : : :
possible linear behaviors

Example: a[2]

1
i 3
3
| E .
=33
o, \/
2 1 1 1
a — = ¢« = « =
a[1] 3 2 2

sub-probability distribution over
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- ... this problem has a longer history
(of partial solutions)

* |chiro Hasuo, Bart Jacobs, AS:
Generic Trace Theory
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- ... this problem has a longer history
(of partial solutions)

* |chiro Hasuo, Bart Jacobs, AS:
Generic Trace Theory

main idea: coinduction in a Kleisli category
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© coalgebras allow for a unified treatment of transition systems and
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coalgebras allow for a unified treatment of transition systems and
bisimulation

comparison of systems is then easy

we have built an expressiveness hierarchy w.r.t bisimulation
semantics

trace semantics can also be captured coalgebraically
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