Semantics meets Syntax in Coalgebra

Joint work with

- 1. Just the absolute basics of coalgebra
- 2. (Trace) semantics via determinisation...
- 3. ...enabled by algebraic structure

Mathematical framework based on category theory for state-based systems semantics

- 1. Just the absolute basics of coalgebra
- 2. (Trace) semantics via determinisation...
- 3. ...enabled by algebraic structure

Mathematical framework based on category theory for state-based systems semantics

1. Just the absolute basics of coalgebra

for nondeterministic, probabilistic... systems

- 2. (Trace) semantics via determinisation...
- 3. ...enabled by algebraic structure

Mathematical framework based on category theory for state-based systems semantics

1. Just the absolute basics of coalgebra

for nondeterministic, probabilistic... systems

2. (Trace) semantics via determinisation...

systems with algebraic effects

3. ...enabled by algebraic structure

Mathematical framework based on category theory for state-based systems semantics

1. Just the absolute basics of coalgebra

for nondeterministic, probabilistic... systems

2. (Trace) semantics via determinisation...

systems with algebraic effects

3. ...enabled by algebraic structure

syntax

$$X \xrightarrow{c} FX$$

NFA

NFA

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 y
 $y, \frac{1}{2}$
 x_4
 x_5
 1
 y
 y
 1
 y
 y

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

Simple PA

$$X \rightarrow ? \times (\mathcal{P} \mathcal{D} X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 ψ
 $\psi c, \frac{1}{2}$
 x_4
 x_5
 1
 ψ
 ψ
 1
 ψ
 ψ

NFA

$$X \rightarrow 2 \times (PX)^A$$

Simple PA

$$X \rightarrow ? \times (\mathcal{P} \mathcal{D} X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

systems with nondeterminism and probability

Systems

providing algebraic effects

 $\mu \colon TT \Rightarrow T$

 $\eta \colon Id \Rightarrow T$

providing algebraic effects

providing algebraic effects

 $\mu \colon TT \Rightarrow T$

 $\eta \colon Id \Rightarrow T$

NFA

$$X \rightarrow 2 \times (PX)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$X \rightarrow ? \times (\mathcal{P}\mathcal{D}X)^A$$

providing algebraic effects

 $\mu \colon TT \Rightarrow T$

 $\eta\colon Id\Rightarrow T$

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

M = P for nondeterminism

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$X \rightarrow ? \times (\mathcal{P} \mathcal{D} X)^A$$

providing algebraic effects

 $\mu \colon TT \Rightarrow T$

 $\eta \colon Id \Rightarrow T$

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$X \rightarrow ? \times (\mathcal{P}\mathcal{D}X)^A$$

providing algebraic effects

 $\mu \colon TT \Rightarrow T$

 $\eta\colon Id\Rightarrow T$

NFA

$$X \rightarrow 2 \times (PX)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

$$X \rightarrow ? \times (\mathcal{P} \mathcal{D} X)^A$$

 $\mu \colon TT \Rightarrow T$

 $\eta\colon Id\Rightarrow T$

providing algebraic effects

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

Distributions

Simple PA

$$X \rightarrow ? \times (\mathcal{P}\mathcal{D}X)^A$$

providing algebraic effects

$$\mu \colon TT \Rightarrow T$$

$$\eta \colon Id \Rightarrow T$$

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

Distributions

Simple PA

$$X \rightarrow ? \times (\mathcal{P}DX)^A$$

M = PD ???for nondeterminism and probability

providing algebraic effects

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

Distributions

Simple PA

$$X \rightarrow ? \times (\mathcal{C}X)^A$$

 $M = \mathcal{C}$ for nondeterminism and probability!

providing algebraic effects

$$\mu \colon TT \Rightarrow T$$

$$\eta \colon Id \Rightarrow T$$

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

Distributions

Simple PA

$$X \rightarrow ? \times (\mathscr{C}X)^A$$

 $M = \mathcal{C}$ for nondeterminism and probability!

providing algebraic effects

$$\mu \colon TT \Rightarrow T$$

$$\eta \colon Id \Rightarrow T$$

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

 $M = \mathcal{P}$ for nondeterminism

Powerset, subsets

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

 $M = \mathcal{D}$ for probability

Distributions

Simple PA

$$X \rightarrow ? \times (\mathcal{C}X)^A$$

 $M = \mathcal{C}$ for nondeterminism and probability!

Convex subsets of distributions

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence as

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence as

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$$

NFA = LTS + termination

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence as

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence as

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence as

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence as

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

Two ideas:

(1) unfold branching + transitions on words

(2) trace = bisimilarity after determinisation

monads!

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

algebras of a monad M

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

algebras of a monad M

Hasuo, Jacobs, S. LMCS '07

Two approaches:

(1) modelling in a Kleisli category

(2) modelling in an Eilenberg-Moore category

Hasuo, Jacobs, S. LMCS '07

Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

algebras of a monad M

Two approaches:

(1) modelling in a Kleisli category

Hasuo, Jacobs, S. LMCS '07

> Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

(2) modelling in an Eilenberg-Moore category

algebras of a monad M

we can relate (1) and (2)

Two approaches:

(1) modelling in a Kleisli category

(2) modelling in an Eilenberg-Moore category

algebras of a monad M

Jacobs, Silva, S. JCSS'15

we can relate (1) and (2)

Hasuo, Jacobs, S. LMCS '07

Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

Traces via determinisation

Traces via determinisation

Automaton with M-effects

$$X \rightarrow O \times (MX)^A$$

Automaton with M-effects

$$X \rightarrow O \times (MX)^A$$

Automaton with M-effects

 $X \rightarrow O \times (MX)^A$

Determinisation

 $MX \rightarrow O \times (MX)^A$

Automaton with M-effects

 $X \rightarrow O \times (MX)^A$

Determinisation

 $MX \rightarrow O \times (MX)^A$

trace = bisimilarity after determinisation

Automaton with M-effects

 $X \rightarrow O \times (MX)^A$

Determinisation

 $MX \rightarrow O \times (MX)^A$

trace = bisimilarity after determinisation

Algebras for M

Automaton with M-effects

 $X \rightarrow O \times (MX)^A$

Determinisation

 $MX \rightarrow O \times (MX)^A$

trace = bisimilarity after determinisation

Algebras for M

ideally we have a presentation

Determinisation

 $MX \rightarrow O \times (MX)^A$

O has to be an M-algebra!

trace = bisimilarity after determinisation

Algebras for M

ideally we have a presentation

 $X \rightarrow O \times (MX)^A$

Determinisation

 $MX \rightarrow O \times (MX)^A$

O has to be an M-algebra!

trace = bisimilarity after determinisation

Algebras for M

ideally we have a presentation

Eilenberg-Moore algebras

Eilenberg-Moore Algebras

abstractly

 $\mathcal{EM}(M)$

objects

$$MA$$
 $\downarrow a$
 A

satisfying

$$\begin{array}{ccccc} A \xrightarrow{\eta} MA & & MMA \xrightarrow{\mu} MA \\ & & \downarrow a & & Ma \downarrow & & \downarrow a \\ & & & & MA \xrightarrow{a} & A \end{array}$$

morphisms

$$\begin{array}{c|c}
MA \\
\downarrow a \\
A
\end{array}$$

$$\begin{array}{c|c}
h \\
\downarrow b \\
B
\end{array}$$

$$\begin{array}{c} MA \xrightarrow{Mh} MB \\ a \downarrow & \downarrow b \\ A \xrightarrow{h} B \end{array}$$

NFA

NFA

trace = bisimilarity after determinisation

DFA

$$\mathcal{P}X \rightarrow 2 \times (\mathcal{P}X)^A$$

$$\begin{array}{c}
x_1 \\
a \downarrow \\
x_2 \oplus x_3 \xrightarrow{b} x_3 \xrightarrow{b} b \\
\downarrow \\
*
\end{array}$$

trace = bisimilarity after determinisation

Algebras for \mathcal{P}

NFA

$$\begin{array}{c|cccc}
x_1 & & & \\
x_2 & & & x_3 \\
\downarrow & & & \\
* & & & b
\end{array}$$

DFA

$$\mathcal{P}X \rightarrow 2 \times (\mathcal{P}X)^A$$

trace = bisimilarity after determinisation

Algebras for \mathcal{P}

join semilattices with bottom

NFA

$$X \rightarrow 2 \times (\mathcal{P}X)^A$$

DFA

$$\mathcal{P}X \rightarrow 2 \times (\mathcal{P}X)^A$$

$$\begin{array}{c}
x_1 \\
a \psi \\
x_2 \oplus x_3 \xrightarrow{b} x_3 \xrightarrow{b} b
\end{array}$$

trace = bisimilarity after determinisation

Algebras for \mathcal{P}

join semilattices with bottom

finite powerset!

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

DFA

$$\mathcal{D}_{\leq 1}X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

DFA

$$\mathcal{D}_{\leq 1}X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

trace = bisimilarity after determinisation

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 ψ
 ψ
 $c, \frac{1}{2}$
 x_4
 x_5
 1
 ψ
 ψ
 1
 $*$

DFA

$$\mathcal{D}_{\leq 1}X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

trace = bisimilarity after determinisation

Algebras for $\mathcal{D}_{(\leq 1)}$

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 ψ
 $\psi c, \frac{1}{2}$
 x_4
 x_5
 1
 ψ
 ψ
 1
 ψ
 ψ

DFA

$$\mathcal{D}_{\leq 1}X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

trace = bisimilarity after determinisation

Algebras for $\mathcal{D}_{(\leq 1)}$

(positive) convex algebras

Rabin PA

$$X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^A$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 ψ
 $\psi c, \frac{1}{2}$
 x_4
 x_5
 1
 ψ
 ψ
 1
 ψ
 ψ

DFA

$$\mathcal{D}_{\leq 1}X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^{A}$$

trace = bisimilarity after determinisation

Algebras for $\mathcal{D}_{(\leq 1)}$

(positive) convex algebras

finitely supported (sub)distributions!

Simple PA

Simple PA

Simple PA

DFA

$$\mathscr{C}X \rightarrow ? \times (\mathscr{C}X)^A$$

$$\begin{array}{c}
x_1 \bigcirc b \\
a \downarrow \\
(\frac{1}{3}x_2 + \frac{2}{3}x_3) \oplus (\frac{1}{2}x_3 + \frac{1}{2}x_4)
\end{array}$$

Simple PA

DFA

$$\begin{array}{c}
x_1 \bigcirc b \\
a \downarrow \\
(\frac{1}{3}x_2 + \frac{2}{3}x_3) \oplus (\frac{1}{2}x_3 + \frac{1}{2}x_4)
\end{array}$$

trace = bisimilarity after determinisation

Simple PA

DFA

$$\mathscr{C}X \rightarrow ? \times (\mathscr{C}X)^A$$

$$\begin{array}{c}
x_1 \bigcirc b \\
a \downarrow \\
(\frac{1}{3}x_2 + \frac{2}{3}x_3) \oplus (\frac{1}{2}x_3 + \frac{1}{2}x_4)
\end{array}$$

trace = bisimilarity after determinisation

Algebras for C

Simple PA

DFA

Algebras for C

convex semilattices

trace = bisimilarity after determinisation

Simple PA

DFA

$$\begin{array}{c}
x_1 \bigcirc b \\
a \downarrow \\
(\frac{1}{3}x_2 + \frac{2}{3}x_3) \oplus (\frac{1}{2}x_3 + \frac{1}{2}x_4)
\end{array}$$

trace = bisimilarity after determinisation

Algebras for C

convex semilattices

finitely generated convex sets of distr...

SYSMICS'19

Algebras for *e*

convex semilattices

finitely generated convex sets of distr...

Algebras for *e*

convex semilattices

finitely generated convex sets of distr...

Bonchi, S., Vignudelli '19

Algebras for *e*

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

Algebras for $\mathcal C$

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

$$p \in (0,1)$$

Algebras for *e*

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

$$p \in (0,1)$$

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
 $x \oplus y \stackrel{(C)}{=} y \oplus x$
 $x \oplus x \stackrel{(I)}{=} x$

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

Algebras for $\mathcal C$

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

 $p \in (0,1)$

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$

$$x \oplus y \stackrel{(C)}{=} y \oplus x$$

$$x \oplus x \stackrel{(I)}{=} x$$

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

semilattice

Algebras for $\mathcal C$

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

 $p \in (0,1)$

 $(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$ $x \oplus y \stackrel{(C)}{=} y \oplus x$ $x \oplus x \stackrel{(I)}{=} x$

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

convex algebra

semilattice

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

Algebras for $\mathcal C$

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

 $p \in (0,1)$

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
 $x \oplus y \stackrel{(C)}{=} y \oplus x$
 $x \oplus x \stackrel{(I)}{=} x$

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

semilattice

S., Woracek '15, '17, '18

convex algebra

Algebras for e

convex semilattices

Bonchi, S., Vignudelli '19

finitely generated convex sets of distr...

$$\mathbb{A} = (A, \oplus, +_p)$$

 $p \in (0,1)$

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$

$$x \oplus y \stackrel{(C)}{=} y \oplus x$$

$$x \oplus x \stackrel{(I)}{=} x$$

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

$$(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$$

semilattice

S., Woracek '15, '17, '18

convex algebra

distributivity

Many general properties
follow
also a sound
up-to context
proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for systems / automata with M-effects
- 2. Having a presentation for M gives us syntax
- 3. Having the syntax makes determinisation natural!

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for systems / automata with M-effects
- 2. Having a presentation for M gives us syntax
- 3. Having the syntax makes determinisation natural!

combining nondeterminism and probability becomes easy

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for systems / automata with M-effects
- 2. Having a presentation for M gives us syntax
- 3. Having the syntax makes determinisation natural!

combining nondeterminism and probability becomes easy

Thank You!