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Abstract

We propose a coalgebraic definition of weak bisimulation for classes of
coalgebras obtained from bifunctors in the category Set. Weak bisim-
ilarity for a system is obtained as strong bisimilarity of a transformed
system. The particular transformation consists of two steps: First, the
behavior on actions is lifted to behavior on finite words. Second, the
behavior on finite words is taken modulo the hiding of internal or in-
visible actions, yielding behavior on equivalence classes of words closed
under silent steps. The coalgebraic definition is validated by two cor-
respondence results: one for the classical notion of weak bisimulation
of Milner, another for the notion of weak bisimulation for generative
probabilistic transition systems as advocated by Baier and Hermanns.

1 Introduction

We present a definition of weak bisimulation for action type systems based
on the general coalgebraic apparatus of bisimulation [1, 21, 38]. Action-type
systems are systems that arise from bifunctors in the category Set. A typical
and familiar example of an action-type system is a labelled transition system
(LTS) (see, e.g., [22, 33]), but also many types of probabilistic systems (see,
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e.g., [24, 40, 16, 7, 39]) fall into this class. Informally, an action-type system
in Set is a coalgebra that performs actions from a set A.

For the verification of system properties, behavior equivalences are often
employed. One such behavior equivalence is strong bisimilarity. However
strong bisimilarity is often too strong an equivalence. Weak bisimilarity,
originally defined for LTSs in the work of Milner [28, 30], is a looser equiv-
alence on systems that abstracts away from internal or invisible steps. In
fact, weak bisimilarity for a labelled transition system S amounts to strong
bisimilarity on the ‘double-arrowed’ system S ′ induced by S. In fact, the
‘double-arrowed’ system is the original system saturated with invisible steps.
We generalize this idea for a coalgebraic definition of weak bisimulation. Our
approach, given a system S, consists of two stages.

1. First, we define a ‘∗-extension’ S ′ of S which is a system with the same
carrier as S, but with action set A∗, the set of all finite words over A.
The system S ′ captures the behavior of S on finite traces.

2. Next, given a set of invisible actions τ ⊆ A, we transform S ′ into a
so-called ‘weak τ -extension’ S ′′ which abstracts away from τ steps.
Then we define weak bisimilarity on S as strong bisimilarity on the
weak-τ -extension S ′′.

Defining weak bisimulation for coalgebras has been studied before.
There is early work by Rutten on weak bisimulation for while programs [37],
succeeded by a syntactic approach to weak bisimulation by Rothe [35]. In
the latter paper, weak bisimulation for a particular class of coalgebras was
obtained by transforming a coalgebra into an LTS and making use of Mil-
ner’s weak bisimulation there. This approach also supports a definition of
weak homomorphisms and weak simulation relations. Later, in the work
of Rothe and Mašulović [36], a complex, but interesting coalgebraic theory
was developed leading to weak bisimulation for functors that weakly pre-
serve pullbacks. They also consider a chosen ‘observer’ and hidden parts of
a functor. However, in the case of probabilistic and similar systems, this
does not lead to intuitive results and cannot be related to the concrete no-
tions of weak bisimulation. The so-called skip relations used in [36] seem
to be the major obstacle as it remains unclear how quantitative information
can be incorporated. In the context of open maps, a category theoretical
interpretation of weak bisimulation on presheaf models has been proposed
in [15]. Recent work [34] shows that weak bisimilarity for LTSs can be
captured in a semantic domain involving traces and coalgebraic finality.
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Indeed, the two-phase approach of defining weak bisimilarity for general
systems is, amplifying Milner’s original idea, rather natural. Our proposal
for weak bisimilarity of action-type systems builds on the intuition in con-
crete cases. A drawback of our approach is that the definition of weak
bisimulation is parametrized with a notion of a ∗-extension that does not
come from a general categorical construction, but has to be tuned for the
concrete type of systems at hand.

In this paper we focus on two particular examples of action-type sys-
tems: LTSs and the generative probabilistic systems [17, 16, 42]. The gen-
erative systems are closely related to LTSs, the difference is that all non-
deterministic choices in an LTS are probabilistic choices in a generative
system.

For LTSs, weak bisimulation is an established notion and the main
motivation of the paper is to generalize this notion to coalgebras, as arbitrary
as possible. Baier and Hermanns introduced, rather appealingly, the notion
of weak bisimulation for generative probabilistic systems [7, 6, 8]. In this
paper, we propose a notion of weak bisimulation at a high-level of abstraction
that justifies the definition of Baier and Hermanns for generative systems
and illuminates the similarity between the notion of weak bisimulation for
LTSs and of weak bisimulation for generative systems.

In the context of concrete probabilistic transition systems, there have
been several other proposals for a notion of weak bisimulation, often rely-
ing on the particular model under consideration. For a detailed study of
the different probabilistic models the reader is referred to [10, 11, 43, 42].
Segala [40, 39] proposes four notions of weak relations for his model of sim-
ple probabilistic automata. A detailed study of these relations can be found
in [45]. It is a topic for further research to see how these notions fit into our
general framework. Several groups of authors studied weak equivalences for
the so-called alternating model of Hansson [20]. Philippou, Lee and Sokol-
sky [32] proposed the first notion of weak bisimulation in this setting. This
work was extended to infinite systems by Desharnais, Gupta, Jagadeesan
and Panangaden [14]. The same authors also provided a metric analogue of
weak bisimulation [13]. Recently, Andova and Willemse studied branching
bisimulation for the alternating model [4, 5], and together with Baeten [3]
provided a complete axiomatization of this process equivalence in a process
algebra setting. However, the alternating probabilistic automata are not
coalgebras (see [42]) and therefore do not qualify for our definition.

Weak bisimulation was also considered for Markov chains in both dis-
crete time [9, 41] and continuous time [9, 27]. Markov chains are not ex-
actly action type coalgebras, since they are fully probabilistic non-labelled
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systems. However, the notion of weak bisimulation from [41] is based on
the notion of weak bisimulation for generative probabilistic systems that is
central to our paper. It is interesting to note that the notion of weak bisim-
ulation by Baier and Hermanns has attracted attention in the security com-
munity and has been applied to security issues such as non-interference and
secure information flow [2, 41, 23]. For the latter paper [23], as we will see
for the present paper too, the coincidence of weak bisimulation and branch-
ing bisimulation in the setting of generative systems is crucial. Transition
systems with both actions and generally distributed time delay occurring
as labels are studied in [25] as well as a notion of weak bisimulation taking
non-deterministic and sequential composition into account.

Below, we prove, not only for the case of labelled transition systems,
but also for generative probabilistic systems that our coalgebraic definition
corresponds to the concrete one of [30] and [7]. Despite the appeal of the
coalgebraic definition of weak bisimulation, the proofs of correspondence re-
sults vary from straightforward to technically involved. For example, the rel-
evant theorem for labelled transition systems takes less than a page, whereas
proving the correspondence result for generative probabilistic systems takes
in its present form more than twenty pages (additional machinery included).

The paper is organized as follows: Section 2 gathers the preliminary
definitions and results. Section 3 is the kernel of the paper presenting the
definition of coalgebraic weak bisimulation. We show that our definition of
weak bisimilarity leads to Milner’s weak bisimilarity for LTSs in Section 4.
Section 5 is devoted to the correspondence result for the class of generative
systems of the notion of weak bisimilarity of Baier and Hermanns and our
coalgebraic definition. This section is a technically involved part of the paper
and is divided in several parts, discussing in detail generative probabilistic
systems and their concrete and coalgebraic weak bisimulation. In Section 5.1
we study some basic notions, such as paths and cones of generative systems,
and their properties. Section 5.2 establishes that the probability distribu-
tions defining a generative probabilistic system extend to measures on a
certain σ-algebra of paths. In Section 5.3 we present the concrete defini-
tions of weak bisimulation for generative systems by Baier and Hermanns,
as well as branching bisimulation, and we gather and prove some properties
of these relations (in concrete terms) that we need for our correspondence
result. Section 5.4 presents the coalgebraic weak bisimulation for generative
probabilistic systems which in Section 5.5 is compared to the concrete notion
of weak bisimulation. At the end, Section 6 draws some conclusions. Last,
but not least, one will find several appendices. The theme that connects
them is the notion of weak pullback preservation—a technical condition
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that is helpful in relating concrete and coalgebraic bisimulations. We recall
the definitions of pullbacks and their preservation in Appendix A. We prove
weak pullback preservation of the distribution functor (without restricting
to finite support) in Appendix B. This is an interesting side-contribution of
the paper. Its place is in an appendix in order not to distract the main line
of the story. In Appendix C we investigate the weak pullback preservation
of the functor appearing in Section 5. Interestingly, this functor does not
preserve weak pullbacks, but it preserves total weak pullbacks, a notion that
turns out to be important in our investigations.

Note An extended abstract of this paper appeared in L. Birkedal, editor, Proceed-
ings of CTCS’04, ENTCS 122, 211-228, 2005.

2 Systems and bisimilarity

We are treating systems from a coalgebraic point of view. Usually, in this
context, a system is considered a coalgebra of a given Set endofunctor. For
an introduction to the theory of coalgebra the reader is referred to the
introductory articles by Rutten, Jacobs, and Gumm [38, 21, 18]. However,
in our investigation of weak bisimilarity it is essential to explicitly specify
the set of executable actions. Therefore we shall rather start from a so-called
bifunctor instead of a Set endofunctor, cf [12, 26].

A bifunctor is any functor F : Set× Set→ Set. If F is a bifunctor and
A is a fixed set, then a Set endofunctor FA is defined by

FAS = F(A, S), FAf = F〈idA, f〉 for f : S → T. (1)

We formulate the next simple proposition for further reference.

Proposition 1 Let F be a bifunctor, and let A1, A2 be two fixed sets and
f : A1 → A2 a mapping. Then f induces a natural transformation ηf :
FA1

⇒FA2
defined by ηf

S = F〈f, idS〉. ()

We next define action-type coalgebras i.e. action-type systems based
on bifunctors.

Definition 1 Let F be a bifunctor. If S and A are sets and α is a function,
α : S → FA(S), then the triple 〈S, A,α〉 is called an action type FA coalgebra.
A homomorphism between two FA-coalgebras 〈S, A,α〉 and 〈T, A,β〉 is a
function h : S → T satisfying FAh ◦ α = β ◦ h. The FA-coalgebras together
with their homomorphisms form a category, which we denote by CoalgA

F .
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Next we present two basic types of systems, labelled transition systems
and generative systems, which will be treated in more detail in Section 4
and Section 5. We give their concrete definitions first.

Definition 2 A labelled transition system, or LTS for short, is a triple
〈S, A, →〉 where S and A are sets and → ⊆ S × A× S. We speak of S as
the set of states, of A as the set of labels or actions the system can perform
and of → as the transition relation. As usual we denote s

a
−→ s′ whenever

〈s, a, s′〉 ∈ → .

When replacing the transition relation of an LTS by a “probabilistic
transition relation”, the so-called generative probabilistic systems are ob-
tained.

Definition 3 A generative probabilistic system is a triple 〈S, A, P 〉 where S
and A are sets and P : S ×A× S → [0, 1] with the property that for s ∈ S,

∑

a∈A, s′∈S

P (s, a, s′) ∈ {0, 1}. (2)

We speak of S as the set of states, of A as the set of labels or actions
the system can perform and of P as the probabilistic transition relation.
Condition (2) states that for all s ∈ S, P (s, , ) is either a distribution over
A × S or P (s, , ) = 0, i.e. s is a terminating state. As usual we denote

s
a[p]
−→ s′ whenever P (s, a, s′) = p, and s

a
−→ s′ for P (s, a, s′) > 0.

Remark 1 In order to clarify the condition (2) let us recall that the sum of
an arbitrary family {xi | i ∈ I} of non-negative real numbers is defined as

∑

i∈I

xi = sup{
∑

i∈J

xi | J ⊆ I, J finite}.

Note that, if
∑

i∈I xi < ∞, then the set {xi | i ∈ I, xi -= 0} is at most
countably infinite.

Let us turn to the coalgebraic side. LTSs can be viewed as coalgebras
corresponding to the bifunctor

L = P(Id× Id).

Namely, if 〈S, A,→〉 is an LTS, then 〈S, A,α〉, where α : S → LA(S) is
defined by

〈a, s′〉 ∈ α(s) ⇐⇒ s
a
−→ s′
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is an LA-coalgebra, and vice-versa. Further on, we will freely use
a
−→ no-

tation when talking about LA-coalgebras. Also the generative systems can
be considered as coalgebras corresponding to the bifunctor

G = D(Id× Id) + 1.

Here D denotes the distribution functor, that is, D : Set→ Set

DX = {µ : X → [0, 1] |
∑

x∈X µ(x) = 1}

(Df)(µ)(y) =
∑

f(x)=y µ(x), f : X → Y, µ ∈ DX, y ∈ Y .

If 〈S, A, P 〉 is a generative system, then 〈S, A,α〉 is a GA-coalgebra where
α : S → GA(S) is given by

α(s)(a, s′) = P (s, a, s′),

and vice-versa. Thereby we interpret the singleton set 1 as the set containing
the zero-function on A× S. Note that α(s) is the zero-function if and only
if s is a terminating state.

In the literature it is common to restrict to generative systems 〈S, A,α〉
where for any state s the function α(s) has finite support. The restriction to
finite support guarantees existence of a final coalgebra. However, in many
respects, in particular when the existence of a final coalgebra is not needed,
this restriction is not necessary.

An important notion in this paper is that of a bisimulation relation
between two systems. We recall here the general definition of bisimulation
in coalgebraic terms.

Definition 4 Let 〈S, A,α〉 and 〈T, A,β〉 be two FA-coalgebras. A bisimu-
lation between 〈S, A,α〉 and 〈T, A,β〉 is a relation R ⊆ S × T , such that
there exists a map γ : R → FAR making the projections π1 and π2 coalgebra
homomorphisms between the respective coalgebras, i.e. making the following
diagram commute:

S

α
!!

R
π1"" π2 ##

γ
!!

T

β
!!

FAS FAR
FAπ1

""
FAπ2

## FAT

Two states s ∈ S and t ∈ T are bisimilar, notation s ∼ t if they are related
by some bisimulation between 〈S, A,α〉 and 〈T, A,β〉.
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Often we will consider bisimulations that are equivalence relations on
a single coalgebra 〈S, A,α〉.

In general, hence also for functors FA and GA arising from bifunctors
F and G, it holds that a natural transformation η : FA⇒GA determines a
functor T : CoalgA

F → CoalgA
G defined by

T (〈S, A,α〉) = 〈S, A, ηS ◦ α〉, T f = f. (3)

We will refer to the functor T as the functor induced by the natural transfor-
mation η. Functors induced by natural transformations preserve homomor-
phisms and thus preserve bisimulation relations, in particular bisimilarity
(cf. [38]).

LTSs and generative systems come equipped with their concrete notions
of bisimulation relations, cf. [29] and [24, 16], respectively, which we present
next.

Definition 5 Let 〈S, A, →〉 be an LTS. An equivalence relation R ⊆ S×S
is a (strong) bisimulation on 〈S, A, →〉 if and only if whenever 〈s, t〉 ∈ R
then for all a ∈ A the following holds:

s
a
−→ s′ implies that there exists t′ ∈ S with t

a
−→ t′ and 〈s′, t′〉 ∈ R.

Two states s and t of an LTS are called bisimilar if and only if they are
related by some bisimulation relation. Notation s ∼% t.

For generative systems we have the following definition of bisimulation.

Definition 6 Let 〈S, A, P 〉 be a generative system. An equivalence relation
R ⊆ S × S is a (strong) bisimulation on 〈S, A, P 〉 if and only if whenever
〈s, t〉 ∈ R then for all a ∈ A and for all equivalence classes C ∈ S/R

P (s, a, C) = P (t, a, C). (4)

Here we have put P (s, a, C) =
∑

s′∈C P (s, a, s′). Two states s and t of
a generative system are bisimilar if and only if they are related by some
bisimulation relation. Notation s ∼g t.

The concrete notion of bisimilarity for LTSs and generative systems
and the respective notions of bisimilarity obtained from Definition 4 coin-
cide. For the case of LTSs a direct proof was given, for example, by Rutten
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[38]. For generative systems this fact goes back to the work of De Vink and
Rutten [46] where Markov systems were considered, and was treated in [10]
for generative systems with finite support.

We will now describe a general procedure to obtain coincidence results
of this kind. This method already appeared implicitly in [11]. It applies
to LTSs as well as to generative systems in their full generality. We will
also use the method to obtain a concrete characterization of bisimilarity for
another, more complex, functor, in Section 5.

Definition 7 Let R ⊆ S × T be a relation, and F a Set functor. The
relation R can be lifted to a relation ≡F ,R⊆ FS × FT defined by

x ≡F ,R y ⇐⇒ ∃z ∈ FR : Fπ1(z) = x, Fπ2(z) = y.

The following lemma is obvious from Definition 4.

Lemma 1 A relation R ⊆ S × T is a bisimulation between the FA systems
〈S, A,α〉 and 〈T, A,β〉 if and only if

〈s, t〉 ∈ R =⇒ α(s) ≡FA,R β(t). (5)

()

Note that the condition (5) is an abstract formulation of what is com-
monly referred to as a transfer condition.

For the sequel, weak pullback preservation will be of some importance.
We recall the definitions of (weak) pullbacks and some needed properties
concerning their preservation in Appendix A. One particular kind of pull-
backs, total pullbacks, are important for our investigations. A total pullback
is a weak pullback with surjective legs.

A characterization of bisimilarity will follow from the next lemma.

Lemma 2 If the functor F weakly preserves total pullbacks and R is an
equivalence on S, then ≡F ,R is the pullback in Set of the cospan

FS
Fc ## F(S/R) FS

Fc"" (6)

where c : S → S/R is the canonical morphism mapping each element to its
equivalence class.
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Proof: Since R is an equivalence relation and therefore reflexive, the left
diagram below is a pullback diagram with epi legs, i.e., a total pullback.

R
π1

$$!!
!!

!! π2

%%""
""

""

S

c &&##
##

# S

c''$$
$$

$

S/R

FR
Fπ1

((%%%%%% Fπ2

))&&&&&&

FS

Fc **'''''' FS

Fc++((((((

F(S/R)
Since F weakly preserves total pullbacks, the right diagram is a weak pull-
back diagram. By Definition 7 the map

ω : FR →≡F ,R, ω(z) = 〈Fπ1(z),Fπ2(z)〉

is well-defined, surjective, and it makes the two upper triangles of the next
diagram commute:

≡F ,R

π1

,,

π2

--

FR

ω
..

Fπ1((%%%%%%

Fπ2 ))&&&&&&

FS

Fc **'''''' FS

Fc++((((((

F(S/R)

As the lower square commutes and ω is surjective, the outer square of the
above diagram also commutes, and by the existence of ω from the weak
pullback FR to ≡F ,R, ≡F ,R is a weak pullback as well. However, since it
has projections as legs it is a pullback. ()

Suppose that a functor F weakly preserves total pullbacks and assume
that R is an equivalence bisimulation on S, i.e., R is both an equivalence
relation and a bisimulation on S, such that 〈s, t〉 ∈ R. The pullback in Set

of the cospan (6) is the set { 〈x, y〉 | Fc(x) = Fc(y) }. By Lemma 2 this
set coincides with the lifted relation ≡F ,R. Thus x ≡F ,R y ⇐⇒ Fc(x) =
Fc(y). Therefore, we obtain the transfer condition for the particular notion
of bisimulation if we succeed in expressing concretely (Fc◦α)(s) = (Fc◦α)(t)
in terms of the representation of α(s) and α(t).

To illustrate the method, we will use it in showing the well-known
correspondence of coalgebraic and concrete bisimulation for LTSs.

Lemma 3 An equivalence relation R on a set S is a coalgebraic bisimulation
on the LTS 〈S, A,α〉 according to Definition 4 for the functor LA if and only
if it is a concrete bisimulation according to Definition 5.
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Proof: It is easy to show that the LTS functor LA preserves weak pullbacks
(see e.g. [42]). For X ∈ LA(S), i.e. X ⊆ A × S, we have LA(c)(X) =
P〈idA, c〉(X) = 〈idA, c〉(X) = {〈a, c(x)〉 | 〈a, x〉 ∈ X}. Using Lemma 1 we
get that an equivalence R ⊆ S × S is a coalgebraic bisimulation for an LTS
〈S, A,α〉 if and only if

〈s, t〉 ∈ R =⇒ { 〈a, c(s′)〉 | 〈a, s′〉 ∈ α(s) } = { 〈a, c(t′)〉 | 〈a, t′〉 ∈ α(t) }

or, equivalently

〈s, t〉 ∈ R =⇒ ( s
a
−→ s′ =⇒ ∃t′ ∈ S : t

a
−→ t′ ∧ 〈s′, t′〉 ∈ R ).

which is the transfer condition from Definition 5. ()
The most difficult part in establishing the correspondence result for

generative systems is proving the weak pullback preservation for the distri-
bution functor.

Proposition 2 The functor D preserves weak pullbacks. ()

Appendix B is dedicated to the proof of this proposition. As a con-
sequence we get that the functor for generative systems GA preserves weak
pullbacks. An application of Lemma 1 and some simple derivations now
suffice to show the correspondence result.

Lemma 4 An equivalence relation R on a set S is a coalgebraic bisimulation
on the generative system 〈S, A,α〉 according to Definition 4 for the functor
GA if and only if it is a concrete bisimulation according to Definition 6. ()

We end this section with a small discussion on the assumption of
Lemma 1. Often we require a functor to weakly preserve pullbacks, so
that it will be “well-behaved”. For example, for bisimilarity being an equiv-
alence. It can easily be seen that the milder condition of weakly preserving
total pullbacks suffices for bisimilarity to be an equivalence. Moreover, we
have relaxed the weak pullback preservation condition since in Section 5 we
will need a bisimilarity characterization of a functor that transforms total
pullbacks to weak pullbacks, but does not preserve weak pullbacks.

3 Weak bisimulation for action-type coalgebras

In this section we present a general definition of weak bisimulation for action-
type systems. Our idea arises as a generalization of the notions of weak
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bisimulation for concrete types of systems. In our opinion, a weak bisimu-
lation on a given system is a strong bisimulation on a suitably transformed
system obtained from the original one.

Weak bisimulation in concrete cases deals with hiding actions. There-
fore we focus on weak bisimulation for action-type coalgebras. Recall that
we have defined action-type coalgebras in Definition 1 as triples 〈S, A,α〉
such that 〈S,α : S → FAS〉 is a coalgebra for the functor FA induced by a
bifunctor F , as in Equation (1).

We proceed with the definition of weak bisimulation for action-type
coalgebras. The definition consists of two phases. First we define the notion
of a ∗-extended system, that captures the behavior of the original system
when extending from the given set of actions A to A∗, the set of finite
words over A. The ∗-extension should emerge from the original system in a
faithful way (which will be made precise below). The second phase considers
invisibility. Given a subset τ ⊆ A of invisible actions, we restrict the ∗-
extension to visible behavior only, by defining its weak-τ -extended system.
Then a weak bisimulation relation on the original system is obtained as a
bisimulation relation on the weak-τ -extension.

Definition 8 Let F and G be two bifunctors. Let Φ be a map assigning to
every FA-coalgebra 〈S, A,α〉, a GA∗ system 〈S, A∗,α′〉, on the same set of
states S, such that the following conditions are met

(1) Φ is injective, i.e. Φ(〈S, A,α〉) = Φ(〈S, A,β〉) ⇒ α = β;

(2) Φ preserves and reflects bisimilarity, i.e. s ∼ t in the system 〈S, A,α〉
if and only if s ∼ t in the transformed system Φ(〈S, A,α〉).

Then Φ is called a ∗-translation, notation Φ : F
∗
→ G. The GA∗-coalgebra

Φ(〈S, A,α〉) is said to be a ∗-extension of the FA-coalgebra 〈S, A,α〉.

From the conditions (1) and (2) in Definition 8 it follows that the
original system is “embedded” in its ∗-extension, cf. [10, 11, 43]. The fact
that a ∗-translation may lead to systems of a new type, viz. of the bifunctor
G, might seem counter intuitive at first sight. However, this extra freedom
is exploited in Section 5 when the starting functor itself is not expressive
enough to allow for a ∗-extension.

A way to obtain ∗-translations follows from a previous result. Namely,
if λ : FA⇒GA∗ is a natural transformation with injective components and
the functor FA preserves weak pullbacks, then the induced functor (see
Equation (3)) is a ∗-translation [10, 11]. However, we shall see later (cf.
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Example 1 and the preceding discussion) that ∗-translations emerging from
natural transformations do not suffice.

Having described how to extend an FA system to its ∗-extension we
show how to hide invisible actions. Fix a set of invisible actions τ ⊆ A.
Consider the function hτ : A∗ → (A \ τ)∗ induced by hτ (a) = a if a -∈ τ
and hτ (a) = ε for a ∈ τ (where ε denotes the empty word). The function
hτ is deleting all the occurrences of elements of τ in a word of A∗. We put
Aτ = (A \ τ)∗. By Proposition 1, we get the following.

Corollary 1 The transformation ητ : GA∗⇒GAτ given by ητ
S = G〈hτ , idS〉

is natural. ()

Let Ψτ be the functor from CoalgA∗

G to CoalgAτ
G induced by the natural

transformation ητ , i.e. Ψτ (〈S, A∗,α′〉) = 〈S, Aτ ,α′′〉 for α′′ = ητ
S

◦ α′ and
Ψτf = f for any morphism f : S → T . As mentioned above, the induced
functor preserves bisimilarity. The composition of a ∗-translation Φ and
the hiding functor Ψτ is denoted by Ωτ = Ψτ ◦ Φ and is called a weak-τ -
translation. The resulting system 〈S, Aτ , ητ

S
◦α′〉 is called a weak-τ -extension

of 〈S, A,α〉.
The transformation to a weak-τ -extension is presented in the following

scheme.

S

α
!!

S
α′

!!

S

α′′=ητ
S
◦α′

!!

Φ ##!"!"!"!"!"!"!"!"!"!"

Ψτ ##!"!"!"!"!"!"!"!"!"!"

FAS GA∗S

FA - coalgebra GA∗ - coalgebra GAτ S

GAτ - coalgebra

A weak-τ -translation, or equivalently, the pair 〈Φ, τ〉, yields a notion of
weak bisimulation with respect to Φ and τ .

Definition 9 Let F , G be two bifunctors, Φ : F
∗
→ G a ∗-translation and

τ ⊆ A. Let 〈S, A,α〉 and 〈T, A,β〉 be two FA systems. A relation R ⊆ S×T
is a weak bisimulation with respect to 〈Φ, τ〉 if and only if it is a bisimulation
between Ωτ (〈S, A,α〉) and Ωτ (〈T, A,β〉). Two states s ∈ S and t ∈ T are
weakly bisimilar with respect to 〈Φ, τ〉, notation s ≈τ t, if they are related
by some weak bisimulation with respect to 〈Φ, τ〉.
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Concrete examples of weak bisimulation will be discussed in Section 4
and Section 5. We continue with verifying that weak bisimulations ≈τ posses
the intuitively expected properties.

Proposition 3 Let F , G be two bifunctors, Φ : F
∗
→ G a ∗-translation,

〈S, A,α〉 an FA-coalgebra, τ ⊆ A and let ≈τ denote the weak bisimilarity on
〈S, A,α〉 w.r.t. 〈Φ, τ〉. Then the following hold:

(i) ∼ ⊆ ≈τ for any τ ⊆ A
i.e. strong bisimilarity implies weak bisimilarity.

(ii) ∼ = ≈∅

i.e. strong bisimilarity is weak bisimilarity in absence of invisible ac-
tions.

(iii) τ1 ⊆ τ2⇒ ≈τ1 ⊆ ≈τ2 for any τ1, τ2 ⊆ A,
i.e. the more actions are invisible, the coarser the weak bisimilarity
gets.

Proof: Let F ,G,Φ, 〈S, A,α〉 and τ be as in the assumptions of the Lemma.

(i) Assume s ∼ t in 〈S, A,α〉. Since Φ preserves bisimilarity (Definition 8)
we have that s ∼ t in Φ(〈S, A,α〉). Next, since Ψτ preserves bisimi-
larity we get s ∼ t in Ψτ ◦ Φ(〈S, A,α〉), which by Definition 9 means
s ≈τ t in 〈S, A,α〉.

(ii) From (i) we get ∼ ⊆ ≈∅. For the opposite inclusion, note that h∅ :
A∗ → A∗ is the identity map, hence the natural transformation η∅

from Corollary 1 is the identity natural transformation. Therefore the
induced functor Ψ∅ is the identity functor on CoalgA∗

G . Now assume
s ≈∅ t in 〈S, A,α〉. This means s ∼ t in Ω∅(〈S, A,α〉), i.e. s ∼ t in
Ψ∅ ◦ Φ(〈S, A,α〉), i.e. s ∼ t in Φ(〈S, A,α〉). Since, by Definition 8,
every ∗-translation reflects bisimilarity we get s ∼ t in 〈S, A,α〉.

(iii) Let τ1 ⊆ τ2. Consider the diagram

A∗
hτ2 ##

hτ1

!!

Aτ2

Aτ1

hτ1,τ2

//$$$$$$$$

where hτ1,τ2 is the map deleting all occurrences of elements of τ2 in a
word of Aτ1 . The diagram commutes since first deleting all occurrences

14



of elements of τ1 followed by deleting all occurrences of elements of τ2,
in a word of A∗ is the same as just deleting all occurrences of elements
of τ2. Let ητ1 , ητ2 , ητ1,τ2 be the natural transformations induced by
hτ1 , hτ2 , hτ1,τ2 , respectively ( see Proposition 1 and Corollary 1). Then
the following diagram commutes.

GA∗

ητ2
00

ητ1

11

GAτ2

GAτ1

ητ1,τ2

22
))))))))

))))))))

Let Ψτ1 , Ψτ2 , Ψτ1,τ2 be the functors induced by the natural transfor-
mations ητ1 , ητ2 , ητ1,τ2 , respectively. By Equation (3) it holds that

Ψτ2 = Ψτ1,τ2 ◦ Ψτ1 (7)

and they all preserve bisimilarity. Now assume s ≈τ1 t in 〈S, A,α〉.
This means that s ∼ t in the system Ψτ1 ◦ Φ(〈S, A,α〉). Then, since
Ψτ1,τ2 preserves bisimilarity we have s ∼ t in the system Ψτ1,τ2 ◦ Ψτ1 ◦

Φ(〈S, A,α〉) which by equation (7) is the system Ψτ2 ◦Φ(〈S, A,α〉) and
we find s ≈τ2 t in 〈S, A,α〉. ()

For further use, we introduce some more notation. For any w ∈ Aτ , we
put Bw = h−1

τ ({w}) ⊆ A∗. We refer to the sets Bw as blocks. Note that
Bw = τ∗a1τ∗ · · · τ∗akτ∗ for w = a1 . . . ak ∈ Aτ = (A \ τ)∗.

4 Weak bisimulation for LTSs

In this section we show that in the case of LTSs there exists a ∗-translation
according to the Definition 8, such that weak bisimulation in the concrete
case [29] coincides with weak bisimulation induced by this ∗-translation.
First we recall the standard definition of concrete weak bisimulation for
LTSs.

Definition 10 Let 〈S, A,→〉 be an LTS. Let τ ∈ A be the invisible action.
An equivalence relation R ⊆ S×S is a weak bisimulation on 〈S, A,α〉 if and
only if 〈s, t〉 ∈ R implies that

if s
a
−→ s′, then there exists t′ ∈ S with

t
τ
−→ ∗

◦

a
−→ ◦

τ
−→ ∗ t′ and 〈s′, t′〉 ∈ R

15



for all a ∈ A \ {τ}, and

if s
τ
−→ s′, then there exists t′ ∈ S with t

τ
−→ ∗ t′ and 〈s′, t′〉 ∈ R.

Two states s and t are called weakly bisimilar if and only if they are
related by some weak bisimulation relation. Notation s ≈% t.

We now present a definition of a ∗-translation that will give rise to a
notion of weak bisimulation that coincides with the standard one of Def-
inition 10. Recall that L, LA are the functors for LTSs, as introduced in
Section 2.

Definition 11 Let Φ assign to every LTS, i.e. any LA-coalgebra 〈S, A,α〉,
the LA∗ coalgebra 〈S, A∗,α′〉 where for w = a1 . . . ak ∈ A∗, k > 0,

〈a1 . . . ak, s
′〉 ∈ α′(s) ⇐⇒ s

a1−→ ◦

a2−→ ◦ · · · ◦

ak−→ s′

and 〈ε, s′〉 ∈ α′(s) ⇐⇒ s = s′. We use the notation s
w
⇒ s′ for 〈w, s′〉 ∈

α′(s).

Hence, for w = a1 . . . ak, we have s
w
⇒ s′ if and only if there exist states

s1, . . . , sk−1 such that

s
a1−→ s1

a2−→ s2 · · ·
ak−1
−→ sk−1

ak−→ s′.

Furthermore, note that for a ∈ A, since no hiding applies, it holds that

s
a
−→ s′ in 〈S, A,α〉 if and only if s

a
⇒ s′ in 〈S, A,α′〉 = Φ(〈S, A,α〉)

i.e.,
〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s).

Proposition 4 The assignment Φ from Definition 11 is a ∗-translation.

Proof: We need to prove that Φ is injective and reflects and preserves
bisimilarity. Let Φ(〈S, A,α〉) = 〈S, A∗,α′〉, Φ(〈S, A,β〉) = 〈S, A∗,β′〉. As-
sume that α′ = β′. Then, for any state s,

〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s) ⇐⇒ 〈a, s′〉 ∈ β′(s) ⇐⇒ 〈a, s′〉 ∈ β(s).

Hence α(s) = β(s), i.e., α = β.
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For the reflection of bisimilarity, let s ∼ t in Φ(〈S, A,α〉) = 〈S, A∗,α′〉.
Hence there exists an equivalence bisimulation relation R such that 〈s, t〉 ∈ R
and (according to Definition 5) for all w ∈ A∗,

if s
w
⇒ s′ then there exists t′ ∈ S such that t

w
⇒ t′ and 〈s′, t′〉 ∈ R.

Assume s
a
−→ s′ in 〈S, A,α〉. Then s

a
⇒ s′ in 〈S, A,α′〉 and therefore

there exists t′ ∈ S with 〈s′, t′〉 ∈ R and t
a
⇒ t′, i.e., t

a
−→ t′. Hence, R is a

bisimulation on 〈S, A,α〉 i.e. s ∼ t in the original system.
For the preservation of bisimulation, let s ∼ t in 〈S, A,α〉 and let R be

an equivalence bisimulation relation such that 〈s, t〉 ∈ R. Assume s
w
⇒ s′, for

some word w ∈ A∗. We show by induction on the length of w that there
exists t′ with t

w
⇒ t′ and 〈s′, t′〉 ∈ R. If w has length 0, then w = ε, s′ = s and

we take t′ = t. Assume w has length k+1, i.e. w = a ·w′ for a ∈ A, w′ ∈ A∗.

Pick s′′ such that s
a
−→ s′′

w′

⇒ s′. Since 〈s, t〉 ∈ R we can pick t′′ such that
t

a
−→ t′′ and 〈s′′, t′′〉 ∈ R. By the inductive hypothesis, for w′ we can choose

t′ such that t′′
w′

⇒ t′ and 〈s′, t′〉 ∈ R. Note that t
a
−→ t′′

w′

⇒ t′, i.e., t
w
⇒ t′. Hence

R is a bisimulation on 〈S, A∗,α′) and s ∼ t holds in the ∗-extension. ()
Note that if T is a functor induced by a natural transformation η, in

the context of Equation (3), and if 〈S, A,α〉, 〈S, A,β〉 are two systems such
that, for some s ∈ S, α(s) = β(s), then, clearly,

α′(s) = ηS(α(s)) = ηS(β(s)) = β′(s) (8)

for 〈S, A,α′〉 = T (〈S, A,α〉), 〈S, A,β′〉 = T (〈S, A,β〉).
Having ∗-translations induced by natural transformations is desirable,

since such *-translations are functorial and also obtained by a categori-
cal construct. However, the following simple example shows that the ∗-
translation Φ from Definition 11 violates (8). Therefore it can not be induced
by a natural transformation.

Example 1 Let S = {s1, s2, s3} and A = {a, b, c}. Consider the LTSs:

〈S, A,α〉 : s1
a
−→ s2

b
−→ s3 and 〈S, A,β〉 : s1

a
−→ s2

c
−→ s3.

Obviously α(s1) = β(s1). However, α′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ab, s3〉}
while β′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ac, s3〉}.

We next show that the coalgebraic and the concrete definitions coincide
in the case of LTS.

Theorem 1 Let 〈S, A,α〉 be an LTS. Let τ ∈ A be the invisible action and
s, t ∈ S any two states. Then s ≈{τ} t with respect to the pair 〈Φ, {τ}〉 if
and only if s ≈% t.
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Proof: Assume s ≈{τ} t for s, t ∈ S of an LTS 〈S, A,α〉. This means

that s ∼ t in the LTS 〈S, A{τ}, η
{τ}
S

◦ α′〉, i.e., there exists an equivalence
bisimulation R on this system with 〈s, t〉 ∈ R.

As usual, α′ is such that 〈S, A∗,α′〉 = Φ(〈S, A,α〉). Here we have

η{τ}S = L(h{τ}, idS) = P(h{τ}, idS) and

(η{τ}S
◦ α′)(s) = η{τ}S (α′(s))

= P(h{τ}, idS)(α′(s))

= {〈h{τ}(w), s′〉 | 〈w, s′〉 ∈ α′(s)}

= {〈u, s′〉 | ∃w ∈ Bu : s
w
⇒ s′}

We denote the transition relation of the weak-τ -system 〈S, A{τ}, η
{τ}
S

◦ α′〉
by ⇒ τ , i.e., for w ∈ Aτ ,

s
w
⇒ τ s′ ⇐⇒ 〈w, s′〉 ∈ (η{τ}S

◦ α′)(s).

The above shows that for a word w = a1 . . . ak ∈ Aτ

s
w
⇒ τ s′ ⇐⇒ ∃v ∈ Bw = τ∗a1τ

∗ . . . τ∗akτ
∗ : s

v
⇒ s′.

We will show that the relation R is a weak bisimulation on 〈S, A,α〉 ac-
cording to Definition 10. Let s

a
−→ s′ (a -= τ). Then s

a
⇒ s′, implying

s
a
⇒ τ s′. Since R is a bisimulation on the weak-τ -system, there exists

t′ such that t
a
⇒ τ t′ and 〈s′, t′〉 ∈ R. We only need to note here that

a
⇒ τ =

τ
−→ ∗

◦

a
−→ ◦

τ
−→ ∗. In case s

τ
−→ s′ we have s

τ
⇒ s′ implying now

s
ε
⇒ τs′. Hence, there exists t′ such that t

ε
⇒ τ t′ and 〈s′, t′〉 ∈ R. Since

ε
⇒ τ =

τ
−→ ∗, we have proved that R is a weak bisimulation on 〈S, A,α〉

according to Definition 10.
For the opposite, let R be a weak bisimulation on 〈S, A,α〉 according

to Definition 10 such that 〈s, t〉 ∈ R. It is easy to show that for any a ∈ A, if
s

τ
−→ ∗

◦

a
−→ ◦

τ
−→ ∗s′ then there exists t′ such that t

τ
−→ ∗

◦

a
−→ ◦

τ
−→ ∗t′ and

〈s′, t′〉 ∈ R. Hence, if s
a
⇒ τ s′ then there exists t′ with t

a
⇒ τ t′ and 〈s′, t′〉 ∈ R.

Based on this, a simple inductive argument on k leads to the conclusion that
for any word w = a1 . . . ak ∈ Aτ , if s

w
⇒ τ s′ then there exists a t′ such that

t
w
⇒ τ t′ and 〈s′, t′〉 ∈ R, i.e. R is a bisimulation on the weak-τ -system and

hence s ≈{τ} t. ()

5 Weak bisimulation for generative systems

In this section we deal with generative systems and their weak bisimilarity.
We first focus on the concrete definition of weak bisimulation by Baier and
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Hermanns [7, 6, 8]. Inspired by it, we provide a functor that suits for a
definition of a ∗-translation for generative systems. This way we obtain a
coalgebraic definition of weak bisimulation for this type of systems. We show
that our definition, although at first sight much stronger, coincides with the
definition of Baier and Hermanns for finite systems. Unlike in the case of
LTSs, for generative systems the ∗-translation needs to leave its original
class of systems, which justifies the generality of the definition.

This section is divided into several parts that lead to the correspon-
dence result: First we introduce paths in a generative system and establish
some notions and properties of paths. Next we define a measure on the set
of paths, where we basically follow the lines of Baier and Hermanns [8, 6].
Furthermore, we present the definition of weak bisimulation by Baier and
Hermanns, and we show some properties of weak bisimulation relations that
will be used later on (without restricting to finite state systems as in [8, 6]).
Then we define a translation and prove that it is a ∗-translation providing
us with a notion of weak-τ -bisimulation. The final part of this section is de-
voted to the question of correspondence of the notion of weak-τ -bisimulation
defined by means of the given ∗-translation and the concrete notion proposed
by Baier and Hermanns.

The material presented in this section is to a large extent of technical
nature. For readability, we provide a sketch-of-proof at a number of places.
Full proofs can be found in [44].

5.1 Paths and cones in a generative system

Let 〈S, A, P 〉 be a generative system. A finite path π of 〈S, A, P 〉 is an
alternating sequence 〈s0, a1, s1, a2, . . . , ak, sk〉, where k ∈ N0, si ∈ S, ai ∈ A,
and P (si−1, ai, si) > 0, i = 1, . . . , k. We will denote a finite path π =
〈s0, a1, s1, a2, . . . , ak, sk〉 more suggestively by

s0
a1−→ s1

a2−→ s2 · · · sk−1
ak−→ sk .

Moreover, in the situation above, we put

length(π) = k, first(π) = s0, last(π) = sk, trace(π) = a1a2 · · · ak .

The path εs0
= (s0) will be understood as the empty path starting at s0.

We will often write just ε for an arbitrary empty path. Similar to the finite
case, an infinite path π of 〈S, A, P 〉 is an infinite sequence 〈s0, a1, s1, a2, . . .〉,
where si ∈ S, ai ∈ A and P (si−1, ai, si) > 0, i ∈ N, and will be written as

s0
a1−→ s1

a2−→ s2 · · ·
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Again we set first(π) = s0. A path π is called complete if it is either infinite
or it is finite with last(π) a terminating state, i.e. P (last(π), , ) = 0.

The sets of all (finite or infinite) paths, of all finite paths and of all
complete paths will be denoted by Paths, FPaths and CPaths, respectively.
Moreover, if s ∈ S, we write

Paths(s) =
{

π ∈ Paths | first(π) = s
}

,

FPaths(s) =
{

π ∈ FPaths | first(π) = s
}

,

CPaths(s) =
{

π ∈ CPaths | first(π) = s
}

.

We next define sets of concatenated paths. If Π1,Π2 ⊆ FPaths, we
define

Π1 ·Π2 =
{

π1 · π2 | π1 ∈ Π1,π2 ∈ Π2, last(π1) = first(π2)
}

,

where π1 ·π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ · · ·

an−→ sn for π1 ≡ s
a1−→ · · ·

ak−→ sk and

π2 ≡ sk
ak+1
−→ · · ·

an−→ sn.

The set Paths(s) is partially ordered by the prefix relation. For π,π′ ∈
Paths(s) we write π 4 π′ if and only if the path π is a prefix of the path π′.

Note that if π ≺ π′ then π is a finite path, and if π1 4 π and π2 4
π, then either π1 4 π2 or π2 4 π1. The complete paths are exactly the
maximal elements in this partial order. For every π ∈ Paths(s), there exists
a π′ ∈ CPaths(s) such that π 4 π′.

The following statement will be used at several occasions throughout
this section.

Lemma 5 For any state s ∈ S, the set FPaths(s) is at most countable.

Proof: Let FPathsn(s) denote the set of finite paths starting from s with
length n. Clearly, FPaths(s) = ∪n∈N FPathsn(s). The statement follows
from the observation that for any state s and any n ∈ N the set FPathsn(s)
is at most countable. This observation can be proven by induction on n as
follows. We have FPaths0(s) = {ε} and

FPathsn+1(s) =
⋃

〈a,s′〉:P (s,a,s′)>0

s
a
−→ s′ · FPathsn(s′)

which is at most countable by the inductive hypothesis and by the fact
that P (s, a, s′) > 0 for at most countably many a and s′ (see Lemma 14 in
Appendix B). ()
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Definition 12 For a finite path π ∈ FPaths(s), let π↑ denote the set

π↑ = {ξ ∈ CPaths(s) | π 4 ξ}

also called the cone of complete paths generated by the finite path π.

Note that always π↑ -= ∅. Let

Cones(s) =
{

π↑ | π ∈ FPaths(s)
}

⊆ P(CPaths(s))

denote the set of all cones starting in s. By Lemma 5 this set is at most
countable. For the study of weak bisimulation for generative systems a
thorough understanding of the geometry of cones is crucial. To begin with,
we have the following elementary property:

Lemma 6 Let π1,π2 ∈ FPaths(s). Then the cones π1↑ and π2↑ are either
disjoint or one is a subset of the other. In fact,

π1↑ ∩ π2↑ =











π2↑ if π1 4 π2

π1↑ if π2 4 π1

∅ if π1 -4 π2 and π2 -4 π1

Moreover, we have π1↑ = π2↑ if and only if either

π1 ≡ s
a1−→ · · ·

ak−→ sk, π2 ≡ s
a1−→ · · ·

ak−→ sk
ak+1
−→ sk+1 · · ·

an−→ sn (9)

for n ≥ k ≥ 0, and

P (si−1, ai, si) = 1, i = k + 1, . . . , n (10)

or vice-versa. ()

Let Π ⊆ FPaths(s). We say that Π is minimal if for any two π1,π2 ∈ Π,
π1 -= π2, we have π1↑ ∩ π2↑ = ∅. Hence in a minimal set of paths Π no
path of Π is a proper prefix of another path of Π. We will express that Π is
minimal by writing min(Π). As example note that every singleton set {π},
π ∈ FPaths(s), is minimal. Also every subset of CPaths(s) is minimal, too.

For Π ⊆ FPaths(s) we denote by Π↑ the set

Π↑ =
⋃

π∈Π

π↑ .
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Then the fact min(Π) just means that Π↑ is actually the disjoint union of
all π↑, π ∈ Π, i.e.

min(Π) ⇐⇒ Π↑ =
⊔

π∈Π

π↑ ,

where, here and in the sequel, the symbol ) denotes disjoint unions. It is
an immediate consequence of the definition that,

min(Π), Π′ ⊆ Π =⇒ min(Π′).

However, if Π1 and Π2 are minimal, their union need not necessarily be
minimal, even if Π1 ∩Π2 = ∅. We will use the notation

Π =
⊎

i∈I

Πi

to express that

Πi ⊆ FPaths(s), i ∈ I, Π =
⊔

i∈I

Πi and min(Π) .

Note that if Π =
⊎

i∈I Πi, also min(Πi) for all i ∈ I. In particular this
notation applies to minimal subsets Π written as the union of their one-
element subsets:

min(Π) =⇒ Π =
⊎

π∈Π

{π}.

Observe that the following two properties hold, as can be readily checked.

• If Π =
⊎

i∈I Πi, then Π↑ =
⊔

i∈I Πi↑ =
⊔

i∈I,π∈Πi
π↑ .

• We have Π =
⊎

i∈I Πi if and only if

– ∀i ∈ I : min(Πi), and

– ∀i, j ∈ I : i -= j =⇒ Πi ∩Πj = ∅, and

– ∀i, j ∈ I : i -= j =⇒ ∀πi ∈ Πi,∀πj ∈ Πj : πi -4 πj and πj -4 πi.

Let Π ⊆ FPaths(s). Put Π↓ = {π ∈ Π | ∀π′ ∈ Π : π′ -≺ π}.

Lemma 7 For any subset Π ⊆ FPaths(s), it holds that Π↓ ⊆ Π, min(Π↓)
and Π↑ =

(

Π↓
)

↑. ()
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5.2 The measure Prob

We proceed with the construction of a probability measure Prob out of the
distribution P of a generative system 〈S, A, P 〉 on a certain σ-algebra on
CPaths(s). This method was used in many papers, also in [8, 6], and before
that in [39], where the setting is slightly different and/or only a part of the
story is given. Here we give complete proofs for our setting. As a standard
reference for measure theoretic notions and results we use the monograph
[47]. An important measure theoretic result is the extension theorem which
states that any pre-measure (σ-additive, monotone function with value zero
for the empty set) on a semi-ring extends in a unique way to a measure
on the σ-field generated by the semi-ring. Slightly different versions of this
theorem apply to different definitions of the notion “semi-ring”. For our
purposes, the definition of a semi-ring from [47] fits best. Namely, a family
of subsets of a given set S is a semi-ring if it contains the empty set, is closed
under finite intersection and the set difference of any two of its elements is
a disjoint union of at most countably many elements of the semi-ring.

Lemma 8 The set Cones(s) ∪ {∅} is a semi-ring.

Proof: Clearly, Cones(s) ∪ {∅} contains the empty set and it is closed
under intersection, by Lemma 6. We need to check that the set-difference
of any two of its elements is a disjoint union of at most countably many
elements of Cones(s) ∪ {∅}. Let π1↑,π2↑ ∈ Cones(s). We consider π1↑ \ π2↑.
Since π1↑ \ π2↑ = π1↑ \ (π1↑ ∩ π2↑), by Lemma 6, the only interesting case
is π1↑ ∩ π2↑ = π2↑ -= π1↑ which implies π1 ≺ π2. Let

Π = {π | π = π′ · last(π′)
a
−→ s′,π1 4 π′ ≺ π2,π -4 π2}.

Then π1↑ \ π2↑ = Π↑ = )π∈Π π↑. This union is at most countable since the
set Π is at most countable by Lemma 5. ()

Now we are ready to introduce the desired extension of P to a measure.
By Lemma 6, a function Prob : Cones(s) ∪ {∅} → [0, 1] is well-defined by
Prob(∅) = 0, Prob(ε↑) = Prob(CPaths(s)) = 1 and

Prob(C) = P (s, a, s′) · Prob(C ′), for C = π↑, π = s
a
−→ s′ · π′, C ′ = π′↑

Lemma 9 The function Prob is a pre-measure4 on the semi-ring Cones(s)∪
{∅}.

4In [47] pre-measures are also called measures.
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Proof: By definition Prob(∅) = 0. Further we need to check monotonicity
and σ-additivity. To see that Prob is monotonic assume π1↑ ⊆ π2↑. Then,
by Lemma 6, we have two possibilities. The first one is π2 ≺ π1 and since
P (s, a, t) ≤ 1 for all s, t ∈ S, a ∈ A, from the definition of Prob we get
Prob(π1↑) ≤ Prob(π2↑). The second possibility is π1↑ = π2↑, in which case
Prob(π1↑) = Prob(π2↑).

For the σ-additivity, assume

π↑ =
⊔

i∈I

πi↑ (11)

for some at most countable index set I. We need to show that Prob(π↑) =
∑

i∈I Prob(πi↑).
If |I| = 1, then the property is trivially satisfied. Therefore we assume

that |I| > 1. In particular this means that π is not terminating.
There exists (via a Lemma of Zorn argument) a partial function depth5

that assigns to some finite paths an ordinal number, satisfying:

1. If ξ ∈ FPaths(s) is such that πi 4 ξ for some i ∈ I, or if ξ terminates,
then depth(ξ) = 0.

2. Otherwise, if ξ is a finite path such that all its one step successors
{ξ′ | ξ 4 ξ′, length(ξ′) = length(ξ) + 1} have assigned depth then also
ξ belongs to the domain of depth and

depth(ξ) = sup{depth(ξ′) | ξ 4 ξ′, length(ξ′) = length(ξ) + 1} + 1.
(12)

Actually the function depth applied to a finite path ξ captures how
deep in the cone generated by ξ one must go in order to be sure that all
extensions of the path under consideration belong to some πi↑ for i ∈ I or
terminate. In other words, if depth(ξ) is defined, and if Ξ is the set of paths
that extend ξ in at least depth(ξ) steps, then any path that extends any
path in Ξ belongs to some of the cones πi↑ for i ∈ I or terminates.

We first show, by reducing to contradiction, that our starting finite
path π has been assigned a value for depth. Assume that π has not been
assigned a value for depth. Let π0 = π. For each i > 0 let πi be a path such
that length(πi) = length(πi−1) + 1, πi−1 4 πi and πi has not been assigned
a value for depth. Such a chain under the prefix ordering exists since if

5The function depth has also been defined and used in a proof of a similar property by
Segala [39].
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for some i all paths that extend πi in one step would had been assigned
depth, then πi would also have been assigned a depth. Consider the infinite
complete path π∞ such that for all i > 0, πi 4 π∞. By definition π∞ ∈ π↑.
By (11), there exists i ∈ I such that π∞ ∈ πi↑, implying that πi 4 π∞ and
hence πi = πn for some n ≥ 0. However, then depth(πn) = depth(πi) = 0
contradicting that πn has no value for depth assigned.

Let π̂ be any non-terminating path and let {πo | o ∈ O} be the set of
paths that extend π̂ in one step, which means that

∀o ∈ O : π̂ ≺ πo, length(πo) = length(π̂) + 1. (13)

Then
π̂↑ =

⊔

o∈O

πo↑ (14)

and
∑

o∈O

Prob(πo↑) =
∑

a∈A,s′∈S

Prob(π̂↑) · P (last(π̂), a, s′)

= Prob(π̂↑) ·
∑

a∈A,s′∈S

P (last(π̂), a, s′)

= Prob(π̂↑) (15)

since π̂ does not end in a terminating state, i.e.
∑

a∈A,s∈S P (last(π̂), a, s) =
1.

We finally show, by induction on depth, that if π̂ is a finite path which
has been assigned a value for depth and if

π̂↑ =
⊔

i∈I′⊆I

πi↑, (16)

for some I ′ ⊆ I, then Prob(π̂↑) =
∑

i∈I′⊆I Prob(πi↑). Assume π̂ is a path
with depth(π̂) = 0 satisfying the assumption above. Then either π̂ termi-
nates or π̂↑ = πi↑ for some i ∈ I ′ and therefore |I ′| = 1 and the additivity
holds trivially. Now assume depth(π̂) = α and α is a successor ordinal (by
definition α can not be a limit ordinal). This implies that π̂ is not terminat-
ing. Moreover assume that the property holds for any path of the discussed
form with depth smaller than α and let {πo | o ∈ O} be the set of paths
that extend π̂ in one step.

By (16) we have that

∀i ∈ I ′ : π̂ 4 πi. (17)
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Moreover, from (16) and (14), using Lemma 6 we easily conclude that

∀i ∈ I ′,∃!o ∈ O : πo 4 πi (18)

and
∀o ∈ O,∃i ∈ I ′ : πo 4 πi. (19)

Let
I ′o = {i ∈ I ′ | πo 4 πi}.

From (16), (18) and (19), we get that I ′o -= ∅,

I ′ =
⊔

o∈O

I ′o and πo↑ =
⊔

i∈I′o

πi↑ for o ∈ O. (20)

Then we get

Prob(π̂↑)
(15)
=

∑

o∈O

Prob(πo↑)

(I.H.)
=

∑

o∈O

∑

i∈I′o

Prob(πi↑)

(20)
=

∑

i∈I′

Prob(πi↑).

where the inductive hypothesis is applicable since by (12) and (13),
depth(πo) < α for all o ∈ O and I ′o ⊆ I ′ ⊆ I. This completes the proof. ()

Corollary 2 The function Prob extends uniquely to a probability measure
on the σ-algebra on CPaths(s) generated by Cones(s)∪ {∅}. We will denote
this measure again by Prob. ()

Remark 2 Note that, although paths are more or less just alternating se-
quences of elements of S and A, whether an alternating sequence of states
and actions is a path depends on the distribution P . Therefore the function
Prob itself, but also the σ-algebra where it is defined and in fact already the
base set CPaths(s) depends heavily on P .

The measure Prob induces a function on sets of finite paths, which we
will also denote by Prob. We define Prob : P(FPaths(s)) → [0, 1] by

Prob(Π) = Prob(Π↑).
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Note that Π↑ is measurable since it is a countable union of cones. This nota-
tion is not in conflict with the already existing notation of the measure Prob.
In fact, P(FPaths(s)) ∩ P(CPaths(s)) consists entirely of Prob-measurable
sets and on such sets both definitions coincide. To see this, note that if
π ∈ FPaths(s) ∩ CPaths(s), then π↑ = {π}. Thus, if Π ⊆ FPaths(s) and
Π ⊆ CPaths(s), we have

Π =
⊔

π∈Π

{π} =
⊔

π∈Π

π↑ = Π↑ ,

and this union is at most countable.
It will always be clear from the context whether we mean the measure

Prob or the just defined function Prob on sets of finite paths. Still, there is
a word of caution in order: The function Prob : P(FPaths(s)) → [0, 1] is,
in general, not additive. However, looking at the properties of > introduced
above (on page 22), we find that

Π =
⊎

i∈I

Πi =⇒ Prob(Π) =
∑

i∈I

Prob(Πi) .

For this reason, we will overload the notation > and use it also for sets of
cones generated by sets of finite paths, i.e. from now on we will freely write

Π↑ =
⊎

i∈I

Πi↑

if and only if it holds that Π =
⊎

i∈I Πi for Π,Πi ⊆ FPaths(s).

We obtain that Prob(Π) =
∑

π∈Π Prob(π↑) for every minimal set Π.
Moreover, by Lemma 7, we always have Prob(Π) = Prob(Π↓).

We next introduce some particular sets of paths. For s ∈ S, S′, S′′ ⊆ S
with S′ ⊆ S′′, and W, W ′ ⊆ A∗ with W ⊆ W ′, by

s
W
→¬W ′

¬S′′

S′

we denote the set of all finite paths that start in s, have a trace in W , end
up in S′, without passing a state in S′′ having just performed a trace in the
set W ′. Formally,

s
W
→¬W ′

¬S′′

S′ =
{

π ∈ FPaths(s) |
last(π) ∈ S′, trace(π) ∈W

∀ ξ ≺ π : trace(ξ) -∈ W ′ ∨ last(ξ) -∈ S′′

}

.
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We write Prob(s, W,¬W, S′,¬S′′) = Prob(s
W
→¬W ′

¬S′′

S′). Since S′ ⊆ S′′ and

W ⊆ W ′ we always have min(s
W
→¬W ′

¬S′′

S′). For notational convenience we

will drop redundant arguments whenever possible. Put

s
W
→¬W ′ S′ = s

W
→¬W ′

¬S′

S′,

s
W
→¬S′′ S′ = s

W
→¬W

¬S′′

S′,

s
W
→ S′ = s

W
→¬W

¬S′

S′ ,

(21)

and, correspondingly,

Prob(s, W,¬W ′, S′) = Prob(s, W,¬W ′, S′,¬S′),
Prob(s, W, S′,¬S′′) = Prob(s, W,¬W, S′,¬S′′),
Prob(s, W, S′) = Prob(s, W,¬W, S′,¬S′) .

(22)

Note that

s
W
→ S′ =

{

π ∈ FPaths(s) | trace(π) ∈ W, last(π) ∈ S′
}

↓

and hence

Prob(s, W, S′) = Prob(s
W
→ S′) (23)

= Prob({π ∈ FPaths(s) | trace(π) ∈ W, last(π) ∈ S′}).

Also, for a ∈ A, t ∈ S, we have

Prob(s, {a}, {t}) =

{

Prob(s
a
−→ t) = P (s, a, t), if s

a
−→ t

Prob(∅) = 0, otherwise
(24)

Let S′, S′′, W, W ′ be as above. Suppose F ⊆ S. Then we put

F
W
→¬W ′

¬S′′

S′ =
⊔

s∈F

s
W
→¬W ′

¬S′′

S′ ⊆ FPaths

In case that for every s ∈ F the value of Prob(s, W,¬W ′, S′,¬S′′) is the
same, we speak of this value as Prob(F, W,¬W ′, S′,¬S′′). Also, in this
context, we shall freely apply shorthand as in (21) and (22).

The next technical property concerning sets of concatenated paths will be
used at several occasions in the paper. Note that, whenever a concatenation
π1 · π2 is defined, we have Prob({π1 · π2}) = Prob({π1}) · Prob({π2}). The
proof is rather elementary and can be found in [44].
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Proposition 5 Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths and assume that the set
of states S is represented as a disjoint union S =

⊔

i∈I Si . Denote Π1,Si
=

{π1 ∈ Π1 | last(π1) ∈ Si}, Π2,t = {π2 ∈ Π2 | first(π2) = t}. Assume that for
every i ∈ I

Prob(Π2,t′) = Prob(Π2,t′′), t′, t′′ ∈ Si .

Moreover, assume that Π1,Π2 and Π1 · Π2 are minimal. Then, for every
choice of (ti)i∈I ∈

∏

i∈I Si, we have

Prob(Π1 ·Π2) =
∑

i∈I

Prob(Π1,Si
) · Prob(Π2,ti) .

()

It is worth to explicitly note the particular case of this proposition when
|I| = 1.

Corollary 3 Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths. Let Π2,t = {π2 ∈ Π2 |
first(π2) = t}. Then, if min(Π1), min(Π2) and min(Π1 ·Π2), and if for any
t′, t′′ ∈ first(Π2), Prob(Π2,t′) = Prob(Π2,t′′), we have that

Prob(Π1 ·Π2) = Prob(Π1) · Prob(Π2,t)

for arbitrary t ∈ first(Π2). ()

For further reference, we state the following simple property.

Proposition 6 Consider a generative system 〈S, A, P 〉. Let s ∈ S, W ⊆ A∗

and S′ ⊆ S such that it partitions as S′ = )i∈ISi. Then

Prob(s, W, S′) =
∑

i∈I

Prob(s, W, Si,¬S′).

Proof: We have s
W
−→S′ =

⊎

i∈I s
W
−→ ¬S′Si. ()

5.3 The concrete weak bisimulation

In this subsection we recall the original definition of weak bisimulation and
branching bisimulation for generative systems proposed by Baier and Her-
manns and we establish some properties of these relations that are essential
for the correspondence result in Section 5.5 below.
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Definition 13 [7, 6, 8] Let 〈S, A, P 〉 be a generative system. Let τ ∈ A be
the invisible action. An equivalence relation R ⊆ S×S is a weak bisimulation
on 〈S, A, P 〉 if and only if 〈s, t〉 ∈ R implies that for all actions a ∈ A \ {τ}
and for all equivalence classes C ∈ S/R:

Prob(s, τ∗aτ∗, C) = Prob(t, τ∗aτ∗, C) (25)

and for all C ∈ S/R:

Prob(s, τ∗, C) = Prob(t, τ∗, C). (26)

Two states s and t are weakly bisimilar if and only if they are related by
some weak bisimulation relation. Notation s ≈g t.

Note the analogy between the transfer conditions (25), (26) and (4).
The definition of branching bisimulation for generative systems is given be-
low.

Definition 14 [7, 6, 8] Let 〈S, A, P 〉 be a generative system. Let τ ∈ A
be the invisible action. An equivalence relation R ⊆ S × S is a branching
bisimulation on 〈S, A, P 〉 if and only if 〈s, t〉 ∈ R implies that for all actions
a ∈ A \ {τ} and for all equivalence classes C ∈ S/R:

Prob(s, τ∗a, C) = Prob(t, τ∗a, C) (27)

and for all C ∈ S/R:

Prob(s, τ∗, C) = Prob(t, τ∗, C). (28)

Two states s and t are branching bisimilar if and only if they are related by
some branching bisimulation relation. Notation s ≈br

g t.

Baier and Hermanns have shown [6, 8] the following correspondence
result for finite systems, i.e. systems with finite set of states.

Proposition 7 Any weak bisimulation on a finite generative system is a
branching bisimulation and vice versa. Hence, branching bisimilarity and
weak bisimilarity coincide on finite systems. ()

Also for arbitrary generative systems branching bisimilarity implies
weak bisimilarity, i.e., the proof of this direction of Proposition 7 does not
require finiteness, as shown below.
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Proposition 8 Any branching bisimulation on a generative system is a
weak bisimulation as well.

Proof: The property follows since we have s
τ∗aτ∗

−→ C =
⊎

C′∈S/R s
τ∗a
−→C ′ ·

C ′ τ∗

−→C given a branching bisimulation R, s ∈ S, a ∈ A and C ∈ S/R. ()
Whether a coincidence result as in Proposition 7 holds for arbitrary

systems is an open question. The proof for finite systems can not be
extended to arbitrary systems - in particular in Lemma 7.5.4 of [6] we can
not obtain regularity for arbitrary matrices. On the other hand, up to now,
an example showing the difference between weak and branching bisimilarity
for arbitrary systems is not known to us. Therefore, we distinguish between
the two notions.

Let R be a weak or branching bisimulation on 〈S, A, P 〉. Define a
relation → on S/R by

C1 → C2 ⇐⇒ Prob(C1, τ
∗, C2) = 1

and denote by ↔ the equivalence closure of →, i.e., ↔ = (→ ∪ ←)∗.

A weak or branching bisimulation on 〈S, A, P 〉 is called complete, if

Prob(C1, τ
∗, C2) = 1 ⇐⇒ C1 = C2

for all classes C1, C2 ∈ S/R. Hence, if R is a complete weak or branching
bisimulation then for any two different classes C1, C2 ∈ S/R it holds that
Prob(C1, τ∗, C2) < 1.

The next proposition is essential for the correspondence result below.
Its proof is long, involved, and includes a detailed study of the → relation.
We only give a sketch, details can be found in [44]. A similar property is
stated in [8, 6] without a proof.

Proposition 9 Let 〈S, A, P 〉 be a generative system and let s ≈g t or s ≈br
g

t. Then there exists a complete weak or a complete branching bisimulation
R, respectively, relating s and t.

Proof: (Sketch) The proof follows by a limit argument, using the Lemma
of Zorn, from the following property:

Let R be a weak or branching bisimulation on 〈S, A, P 〉. Let C0 ∈ S/R
be a fixed class such that U = [C0]↔ -= {C0}. Here [C0]↔ denotes the ↔ -
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equivalence class of C. Define an equivalence R′ on S by

〈s, t〉 ∈ R′ ⇐⇒ 〈s, t〉 ∈ R ∨ {s, t} ⊆
⋃

C∈U

C.

Then R′ is a weak or branching bisimulation, respectively, and R ⊂ R′.
Hence, if R is not complete, then a larger weak or branching bisimula-

tion can be derived from it (by joining some classes). ()

5.4 Weak coalgebraic bisimulation for generative systems

In this subsection we provide a coalgebraic definition of weak bisimulation
for generative systems, according to the approach from Section 3. For
this we need a ∗-translation that will transform the generative systems
with action set A into systems with action set A∗. Unlike for LTSs, the
∗-translation employed will yield coalgebras of a different type.

Let G∗ be the bifunctor defined by

G∗(A, S) = P(A)× P(S) → [0, 1]

on objects 〈A, S〉 and for morphisms 〈f1, f2〉 : 〈A, S〉 → 〈B, T 〉 by

G∗〈f1, f2〉 = (ν C→ ν ◦ (f−1
1 × f−1

2 ) | ν : P(A)× P(S) → [0, 1]).

Consider the Set functor G∗
A corresponding to G∗, so that

G∗
A(S) = (P(A)× P(S) → [0, 1])

and for a mapping f : S → T ,

G∗
Af(ν) = ν ◦ (id−1

A × f−1)

for ν : P(A)× P(S) → [0, 1].
We will use the functor G∗

A to model the ∗-translation of generative
systems. Therefore we are interested in characterizing equivalence bisimula-
tions for this functor. In order to apply the results from Section 2 we need
the following proposition. We dedicate Appendix C to its proof.

Proposition 10 The functor G∗
A weakly preserves total pullbacks, but it

does not preserve weak pullbacks. ()
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Let R be an equivalence relation on a set S. A subset M ⊆ S is an
R-saturated set if for all s ∈M the whole equivalence class of s is contained
in M . We denote by Sat(R) the set of all R-saturated sets, Sat(R) ⊆ P(S).
Actually, M is a saturated set if and only if M = ∪i∈ICi for Ci ∈ S/R.
Hence there is a one-to-one correspondence between the R-saturated sets
and the elements of P(S/R).

The next lemma contains a transfer condition for equivalence bisimu-
lations for systems of type G∗

A. Its proof follows the approach discussed in
Section 2 (see Lemma 2 and Lemma 3).

Lemma 10 An equivalence relation R on a set S is a bisimulation on the
G∗

A system 〈S, A,α〉 if and only if

〈s, t〉 ∈ R =⇒ ∀A′ ⊆ A,∀M ∈ Sat(R) : α(s)(A′, M) = α(t)(A′, M).

Proof: Consider the pullback P of the cospan

G∗
AS

G∗

Ac
## G∗

A(S/R) G∗
AS

G∗

Ac
""

where c is the canonical projection of S onto S/R. We have 〈µ, ν〉 ∈ P if
and only if G∗

Ac(µ) = G∗
Ac(ν), i.e. µ ◦ (id−1

A × c−1) = ν ◦ (id−1
A × c−1). This is

equivalent to

∀A′ ⊆ A,∀M ⊆ S/R : µ(A′, c−1(M)) = ν(A′, c−1(M))

and, since c−1 : P(S/R) → Sat(R) is a bijection, we get an equivalent
condition

∀A′ ⊆ A,∀M ∈ Sat(R) : µ(A′, M) = ν(A′, M).

Now, using Lemma 2, and Proposition 10, we obtain the stated characteri-
zation. ()

We proceed by presenting a suitable ∗-translation for generative sys-
tems. The translation will yield a system of type G∗

A∗ . Recall that generative
systems are coalgebras of the functor GA = D(A× Id) + 1.

Definition 15 Let Φg assign to every generative system 〈S, A, P 〉, i.e. any
GA-coalgebra 〈S, A,α〉, the G∗

A∗-coalgebra 〈S, A∗,α′〉, where for W ⊆ A∗ and
S′ ⊆ S, α′(s)(W, S′) = Prob(s, W, S′).

In order to show that the translation defined above is indeed a ∗-
translation we need the property below. Its proof is straightforward and
can be found in [44].
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Lemma 11 Let 〈S, A,α〉, i.e. 〈S, A, P 〉, be a GA system, R a bisimulation
equivalence on 〈S, A,α〉 and 〈s, t〉 ∈ R. For k ∈ N, Ci ∈ S/R and ai ∈ A,

i ∈ {1, . . . , k}, let s
a1−→C1 · · ·

ak−→Ck denote the set of paths

s
a1−→C1 · · ·

ak−→Ck = {s
a1−→ s1 · · ·

ak−→ sk | si ∈ Ci, i = 1, . . . , k}.

Then s
a1−→C1 · · ·

ak−→Ck is minimal and

Prob(s
a1−→C1 · · ·

ak−→Ck) = Prob(t
a1−→C1 · · ·

ak−→Ck) (29)

()

We can now show that the defined map is a ∗-translation.

Proposition 11 The assignment Φg from Definition 15 is a ∗-translation.

Proof: We need to check that Φg is injective and preserves and re-
flects bisimilarity. For injectivity, assume Φg(〈S, A,α〉) = Φg(〈S, A,β〉) =
〈S, A∗,α′〉. Then, by the definition of Prob, cf. (24), we get that for any
s, t ∈ S and any a ∈ A, α(s)(〈a, t〉) = P (s, a, t) = Prob(s, {a}, {t}) =
α′(s)({a}, {t}) = β(s)(〈a, t〉).

Reflection of bisimilarity is direct from Lemma 10: Assume s ∼ t in
Φg(〈S, A,α〉) = 〈S, A∗,α′〉 and assume that R is an equivalence bisimulation
on 〈S, A∗,α′〉 such that 〈s, t〉 ∈ R. By Lemma 10, we get that for W ⊆ A∗

and for M ∈ Sat(R),

α′(s)(W, M) = α′(t)(W, M). (30)

In particular, for all a ∈ A and all C ∈ S/R, we have

α′(s)({a}, C) = α′(t)({a}, C). (31)

By the definition of α′ and Prob we have

α′(s)({a}, C) = Prob(s, {a}, C) =
∑

s′∈C

P (s, a, s′) =
∑

s′∈C

α(s)(〈a, s′〉)

and therefore, for all a ∈ A and all C ∈ S/R,

∑

s′∈C

α(s)(〈a, s′〉) =
∑

s′∈C

α(t)(〈a, s′〉) (32)

which means that R is a bisimulation equivalence on the generative system
〈S, A,α〉, i.e. s ∼ t in the original system.
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The proof of preservation of bisimilarity uses Lemma 11. Let s ∼ t
in the generative system 〈S, A,α〉. Then there exists an equivalence bisim-
ulation R with 〈s, t〉 ∈ R. The relation R induces an equivalence Rs on
FPaths(s) defined by

〈s
a1−→ s1 · · ·

ak−→ sk , s
a′

1−→ s′1 · · ·
a′

k′−→ s′k′〉 ∈ Rs

if and only if k = k′, ai = a′i and 〈si, s′i〉 ∈ R for i = 1, . . . , k. The classes of

Rs are exactly the sets s
a1−→C1 · · ·

ak−→Ck for Ci ∈ S/R and ai ∈ A.

Assume M ∈ Sat(R) and W ⊆ A∗. We show that the set s
W
−→M is

saturated with respect to Rs. Namely, let π ≡ s
a1−→ s1 · · ·

ak−→ sk ∈ s
W
−→M

and let π′ ≡ s
a1−→ s′1 · · ·

ak−→ s′k be a path such that 〈π,π′〉 ∈ Rs. Then
trace(π) = trace(π′), first(π) = first(π′) and 〈last(π), last(π′)〉 ∈ R. Since
M is saturated, last(π′) ∈ M for last(π) ∈ M . Furthermore, π′ does not
have a proper prefix with trace in W and last in M , since this would imply

that π has such a prefix, contradicting π ∈ s
W
−→M . Hence, π′ ∈ s

W
−→M .

Therefore, the set s
W
−→M is a disjoint union of some Rs classes and,

since s
W
→ M is minimal, we can write

s
W
→ M =

⊎

i∈I

s
ai1→ Ci1 · · ·

aiki→ Ciki
,

and it follows that Prob(s, W, M) =
∑

i∈I Prob(s
ai1−→Ci1 · · ·

aik−→Cik).

Similarly, t
W
→ M is a disjoint union of some Rt classes, for Rt being an

equivalence on FPaths(t), defined as Rs with t instead of s. Using that R is
a bisimulation and 〈s, t〉 ∈ R, it is not difficult to see that actually

t
W
→ M =

⊎

i∈I

t
ai1→ Ci1 · · ·

aiki→ Ciki
.

By Lemma 11, we get that Prob(s, W, M) = Prob(t, W, M), i.e.
α′(s)(W, M) = α′(t)(W, M) proving that R is a bisimulation on 〈S, A∗,α′〉
and s ∼ t in the ∗-extension 〈S, A∗,α′〉. ()

The ∗-translation Φg is also not induced by a natural transformation,
as the systems of Example 1 in Section 4 show, interpreting each transition
as probabilistic with probability 1.

Remark 3 The ∗-translation Φg together with a subset τ ⊆ A determines a
weak-τ -bisimulation. For a generative system 〈S, A,α〉, the weak-τ -system
is

Ψτ ◦ Φg(〈S, A,α〉) = Ψτ (〈S, A∗,α′〉) = 〈S, Aτ ,α
′′〉
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where α′′(s) : P(Aτ )× P(S) → [0, 1] is given by

α′′(s) = ητ
S(α′(s)) = G∗〈hτ , idS〉(α

′(s)) = α′(s) ◦ (h−1
τ × id

−1
S ).

Hence for X ⊆ Aτ and S′ ⊆ S,

α′′(s)(X, S′) = α′(s)(h−1
τ (X), S′) = α′(s)(

⋃

w∈X

Bw, S′) = Prob(s,
⋃

w∈X

Bw, S′),

where, Bw is the block Bw = τ∗a1τ∗ . . . τ∗akτ∗ = h−1
τ ({w}), for a word

w = a1 . . . ak ∈ Aτ .
Therefore, from Lemma 10 we get that an equivalence relation R is a

weak-τ -bisimulation w.r.t. 〈Φg, τ〉 on the generative system 〈S, A,α〉 if and
only if 〈s, t〉 ∈ R implies that for any collection (Bi)i∈I of blocks writing Bi

as a shorthand for Bwi for some word wi ∈ A∗, and any collection (Cj)j∈J

of classes Cj ∈ S/R,

Prob(s,
⋃

i∈I

Bi,
⋃

j∈J

Cj) = Prob(t,
⋃

i∈I

Bi,
⋃

j∈J

Cj). (33)

Sets of the form ∪i∈IBi will be called saturated blocks.

5.5 Correspondence results

We are now able to state and prove the correspondence results for generative
systems. The first statement is obvious from the definitions.

Theorem 2 Let 〈S, A,α〉 be a generative system. Let τ ∈ A be the invisible
action and s, t ∈ S any two states. Then s ≈{τ} t according to Definition 9
with respect to the pair 〈Φg, {τ}〉 implies s ≈g t according to Definition 13.

Proof: The statement holds trivially, having in mind Definition 13 and
Remark 3, equation (33), since τ∗ as well as τ∗aτ∗, for any a ∈ A \ {τ} is
a saturated block and also each R-equivalence class is an R saturated set.
Hence ≈{τ} is at least as strong as ≈g, ≈{τ}⊆≈g. ()

In the opposite direction we have that coalgebraic weak bisimilarity is
implied by branching bisimilarity.

Theorem 3 Let 〈S, A,α〉 be a generative system. Let τ ∈ A be the invisible
action and s, t ∈ S any two states. Then s ≈br

g t according to Definition 14
implies s ≈{τ} t according to Definition 9 with respect to the pair 〈Φg, {τ}〉.
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Proof: (Sketch) The proof of this theorem is rather technical, long, and
divided into several steps. Here we discuss its outline. Details can be found
in [44].

Let 〈S, A, P 〉 be a generative system, and s, t ∈ S. For
ease of presentation we write Holds[s, t, W, S′] for the statement
Prob(s, W, S′) = Prob(t, W, S′), where W ⊆ A∗ and S′ ⊆ S. We
also write Holds[s, t, W, S′,¬S′′] for the statement Prob(s, W, S′,¬S′′) =
Prob(t, W, S′,¬S′′) if needed.

Now assume s ≈br
g t for two states s and t. This means that there exists

a branching bisimulation R, according to Definition 14, with 〈s, t〉 ∈ R.
Hence, R is an equivalence relation such that for all visible actions a and
all equivalence classes C ∈ S/R we have Holds[s, t, τ∗a, C]. Additionally
Holds[s, t, τ∗, C]. By Proposition 9, we can assume that R is complete (this
is essential for the proof).

We want to show that the transfer condition (33) of Remark 3 holds,
and hence R is a coalgebraic weak bisimulation witnessing that s ≈{τ} t.
Therefore, we need to show that for any R-saturated set M = ∪jCj and any
union of blocks W = ∪iBi it holds that

Holds[s, t, W, M ].

We establish successively:

1. Holds[s, t, B, C] where B is any block, B = τ∗a1τ∗ . . . τ∗akτ∗ and C
any class.

2. Holds[s, t, B, Ci,¬M ] for any block B, any saturated set M , and
Ci ⊆M .

3. Holds[s, t, B, M ] for any block B and any saturated set M .

4. Holds[s, t, W, M ] for any saturated block (i.e. union of blocks) W and
any saturated set M .

In each item, the main idea is to represent the set to be measured in terms
of the sets for which the statement has already been proved. For example,
for the simplest step 1., we observe that for any B′ = τ∗a1τ∗ . . . τ∗ak we
have

s
B′

−→C =
⊎

C′∈S/R

s
B
−→C ′ · C ′ τ∗ak+1

−→ C
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and further
s

B
−→C =

⊎

C′∈S/R

s
B′

−→C ′ · C ′ τ∗

−→C.

Step 2. is most involved, but interesting in itself (cf. [44]). Step 3. is a
direct consequence of Proposition 6. Showing 4. completes the proof. ()

By Theorem 2, Theorem 3, and Proposition 7 we obtain the following
corollary which gives us the correspondence result for finite systems.

Corollary 4 For finite generative systems, coalgebraic weak bisimilarity
≈{τ} according to Definition 9, with respect to the pair 〈Φg, {τ}〉, coincides
with concrete weak bisimilarity ≈g according to Definition 13. ()

6 Concluding remarks

In this paper, we have proposed a coalgebraic definition of weak bisimulation
for action-type systems. For its justification we have considered the case of
familiar labelled transition systems and of generative probabilistic systems,
and we have compared our notion to the concrete definitions. In particular,
we have obtained that the coalgebraic definition of weak bisimulation (for a
suitably chosen ∗-extension) for LTSs coincides with the standard definition
of weak bisimulation.

For generative probabilistic systems, the situation is more complex.
Most of the work and technical difficulties of this paper are related to the
correspondence results for generative probabilistic systems. As the stan-
dard notion of concrete weak bisimulation we have adopted from a number
of choices the one proposed by Baier and Hermanns. However, their inves-
tigations and results are limited to finite systems. As our set-up does not
restrict to the finite case, the coalgebraic framework exploited in the present
paper extends the concrete definition and provides a coalgebraic definition
of weak bisimulation for generative systems also covering the infinite case.
Moreover, the correspondence results of our Section 5 also position the def-
inition of Baier and Hermanns as a natural one as it is canonically induced
from the underlying generative transition systems, once captured coalge-
braically.

Baier and Hermanns also propose a notion of branching bisimulation.
They prove their concrete notions of weak and branching bisimulation to
coincide for finite generative systems. For the coalgebraic definition of weak
bisimulation for finite and infinite generative systems the situation is as

38



follows:

concrete branching ⊆ coalgebraic weak ⊆ concrete weak.

As mentioned before, in case of finite systems, we have

concrete branching = concrete weak.

So, in the finite case, that was considered for the concrete notions, all
three notions –concrete branching, coalgebraic weak, and concrete weak
bisimulation– coincide. The precise situation of strict inclusion and/or
equality for the general case remains to be unraveled, although it seems
that the coincidence of concrete branching and concrete weak bisimulation
will carry over to a wide class of well-behaved infinite systems.

Various issues remain untackled by the present approach to the weak
bisimulation problem for coalgebras. In particular, the main issue here is
that one has to come up with a suitable definition of a ∗-translation oneself,
in order to obtain a weak bisimulation for a class of coalgebras of a given
type. Ideally, a coalgebraic construction would automatically induce the ∗-
translation. A method for systematically obtaining ∗-translations is a topic
for further research.

Also, other examples that fit in our framework are to be studied. For
instance, while programs, modeled by automata with outputs for the functor
Id + O with O being the set of outputs, allow for a coalgebraic definition
of weak bisimulation along the lines described above quite naturally. The
resulting definition coincides with the definition described in [37]. Namely,
there the action set is a singleton A = 1 using that Id + O ∼= 1× Id + O.

Acknowledgments We are indebted to Holger Hermanns for his careful
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detailed and constructive feedback received in the reviewing process of the
paper.
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A (Weak) Pullbacks and their preservation

A span 〈S, s1, s2〉, between X and Y , is a diagram of the

form X S
s1"" s2 ## Y . It is jointly injective if the mapping

〈s1, s2〉 : S → X × Y , defined by 〈s1, s2〉(s) = 〈s1(s), s2(s)〉 is injec-
tive. A relation R ⊆ X×Y gives rise to the jointly injective span 〈R,π1,π2〉
between X and Y . Dually, a cospan 〈C, c1, c2〉 is a diagram of the form

X
c1 ## C Y

c2"" .

A pullback, of a cospan 〈C, c1, c2〉, is a span 〈P, p1, p2〉 as in the diagram
below satisfying c1 ◦ p1 = c2 ◦ p2 and such that for every span 〈S, s1, s2〉 with
c1 ◦ s1 = c2 ◦ s2 there exists a unique mediating map m : S → P satisfying
s1 = p1 ◦ m and s2 = p2 ◦ m. A weak pullback is a pullback for which the
mediating arrow m need not be unique.

S
s1

33

s2

44

m!!
*
*

Pp1

55++
++

p2

66,
,,

,

X

c1 66-
--

- Y

c255..
..

C

A pullback of a cospan 〈C, c1, c2〉 between sets X and Y is the span
arising from the relation

Q := {〈x, y〉 ∈ X × Y | c1(x) = c2(y)}.

A weak pullback arising from a relation R ⊆ X × Y is also an ordinary
pullback, as one can derive from the joint injectivity of the two projections.

A functor F is said to preserve a (weak) pullback 〈P, p1, p2〉 of a cospan
〈C, c1, c2〉, if 〈FP,Fp1,Fp2〉 is again a (weak) pullback of 〈FC,Fc1,Fc2〉,
i.e. if it transforms a (weak) pullback of a cospan into a (weak) pullback
of the transformed cospan. The functor F weakly preserves a pullback of a
cospan if it transforms it into a weak pullback of the transformed cospan.
We note the following two properties taken from [18, 19].

Lemma 12 Let F be a Set endofunctor. Then

(i) F preserves weak pullbacks if and only if it weakly preserves pullbacks.
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(ii) F preserves weak pullbacks if and only if for any cospan 〈C, c1, c2〉
we have: Given u and v with Fc1(u) = Fc2(v) then there exists a
w ∈ F{〈x, y〉 | c1(x) = c2(y)} with Fπ1(w) = u and Fπ2(w) = v. ()

We end this section by mentioning a special type of pullback. A (weak)
pullback 〈P, p1, p2〉 is said to be total if its canonical morphisms, or legs, p1

and p2 are epi. In Set a pullback of a cospan 〈C, c1, c2〉 where c1 : X → C
and c2 : Y → C are surjective, is a total pullback. Moreover, it is easy to
see the following.

Lemma 13 In Set, the pullback of a cospan 〈C, c1 : X → C, c2 : Y → C〉 is
total if and only if the images of X and Y under c1 and c2, respectively, are
equal, i.e. c1(X) = c2(Y ). ()

We say that a functor weakly preserves total pullbacks if it transforms
any total pullback into a weak pullback. According to Lemma 13, weakly
preserving total pullbacks is the same as weakly preserving pullbacks of
cospans 〈C, c1, c2〉 with c1(X) = c2(Y ). Clearly, if a functor preserves weak
pullbacks, then it weakly preserves total pullbacks. We shall see in Ap-
pendix C that weak preservation of total pullbacks is a strictly weaker no-
tion, i.e., there exists a functor that weakly preserves total pullbacks but
does not preserve weak pullbacks.

B Weak pullback preservation of the distribution
functor

Here we establish the weak pullback preservation of GA, the functor defining
generative probabilistic systems. Actually, we show weak pullback preser-
vation of the probability distribution functor D. For the probability distri-
bution functor with finite support weak pullback preservation was proven
by De Vink and Rutten [46], using the graph-theoretic min cut - max flow
theorem, and by Moss [31], using an elementary matrix fill-in property. Fol-
lowing Moss [31] we show that the needed matrix fill-in property can be used
and holds for arbitrary, infinite, matrices as well.

We start with a simple auxiliary property, that is also needed for the
proof of Lemma 5 (Section 5.1). This property also justifies the name “dis-
crete” probability distributions.

Lemma 14 Let f : S → R≥0 be a function with the property
∑

s∈S f(s)<∞.
Then the support set of this function, supp(f) = {s ∈ S | f(s) > 0} is at
most countable.
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Proof: Let s ∈ supp(f). Then f(s)>0 and therefore there exists a natural
number n such that f(s)>1/n. So we have, supp(f) ⊆ ∪n∈N suppn(µ) where
suppn(µ) = {s ∈ supp(µ) | f(s)>1/n}. Now, since

∑

s∈supp(f) f(s) = r<∞,
the set suppn(f) has less than n/r elements, i.e., it is finite , for all n ∈ N.
Therefore the set supp(f) is at most countable, being a countable union of
finite sets. ()

Next we present the matrix fill-in property for infinite matrices.

Lemma 15 Let I and J be arbitrary sets. For any two sets {xi | i ∈ I}
and {yj | j ∈ J} of non-negative real numbers such that

∑

i∈I

xi =
∑

j∈J

yj <∞,

there exist non-negative real numbers {zi,j | i ∈ I, j ∈ J} such that

∑

j∈J

zi,j = xi and
∑

i∈I

zi,j = yj

for all i ∈ I, j ∈ J .

The proof is rather technical, though interesting, and can be found
in [44, Lemma B.2, Lemma B.3]. Let us discuss the idea, also used in [31]
for finite matrices, on a finite example. Let two finite sequences x and y be
given by x1 = 2, x2 = 1, x3 = 3 and y1 = 1, y2 = 3, y3 = 0, y4 = 2. Since

x1 + x2 + x3 = y1 + y2 + y3 + y4

the statement claims that there exists a matrix Z, in this case of order 3×4,
such that xi is the sum of the i-th row and yj the sum of the j-th column.
The matrix

Z =





1 1 0 0
0 1 0 0
0 1 0 2





satisfies that property. We have constructed it in the following way. For
z1,1 we take the minimum min{x1, y1}, hence z1,1 = y1 = 1. Since the first
column sum has already been achieved we fill-in z2,1 = z3,1 = 0 and the next
element to be filled-in is z1,2. We fill it with the value min{x1 − z1,1, y2} =
x1 − z1,1 = 1. Since the first row-sum has been achieved, we put z1,3 =
z1,4 = 0, and continue with z2,2. It gets the value min{x2− z2,1, y2− z1,2} =
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x2 − z2,1 = 1. Hence, z2,3 = z2,4 = 0 and the next element to be filled-in is
z3,2. Its value is then min{x3 − z3,1, y2 − z1,2 − z2,2} = y2 − z1,2 − z2,2 = 1,
which completes the second column. Next is z3,3 = min{x3−z3,1−z3,2, y3−
z1,3 − z2,3} = y3 − z1,3 − z2,3 = 0. We fill-in the last element z3,4 with the
remaining value x3 − z3,1 − z3,2 − z3,3 = y4 − z1,4 − z2,4 − z3,4 = 2.

Lemma 16 The functor D preserves weak pullbacks.

Proof: It suffices to show that a pullback diagram

P
π1

55++
++

π2

66,
,,

,

X

f 66-
--

- Y

g55..
..

Z

will be transformed to a weak pullback diagram (Lemma 12). Let P ′ be the

pullback of the cospan DX
Df ## DZ DY

Dg"" . Since Df ◦Dπ1 = Dg ◦Dπ2,
there exists γ : DP → P ′ such that the next diagram commutes

DP

Dπ1

77

Dπ2

33

γ
!!

P ′

π188//
//

//

π2 9900
00

00

DX

Df 9911111 DY

Dg88/////

DZ

and it is enough to show that γ is surjective in order to get a mediating
morphism from P ′ to DP . Let 〈u, v〉 ∈ P ′ be given. If µ ∈ DP is such that

(Dπ1)(µ) = u, (Dπ2)(µ) = v (34)

then γ(µ) = 〈u, v〉 since π1 and π2 are jointly injective i.e. π1×π2 is injective.
Hence the task is to find a function µ ∈ DP which satisfies (34). More
explicitely we have to find µ : P → [0, 1] such that for all x0 ∈ X, y0 ∈ Y

∑

y∈Y :〈x0,y〉∈P

µ(x0, y) = u(x0),
∑

x∈X:〈x,y0〉∈P

µ(x, y0) = v(y0) (35)

For if µ : P → [0, 1] satisfies (35), then µ ∈ DP and (34) holds.
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The set P can be written as the union

P =
⋃

z∈Z

f−1({z})× g−1({z})

of disjoint rectangles, in fact rectangles with non-overlapping edges. There-
fore, the existence of a map µ which satisfies condition (35) is equiv-
alent to the condition that for all z ∈ Z there exists a function µz :
f−1({z}) × g−1({z}) → [0, 1] such that for all x0 ∈ f−1({z}), and all
y0 ∈ g−1({z}),

∑

y∈g−1({z})

µz(x0, y) = u(x0),
∑

x∈f−1({z})

µz(x, y0) = v(y0). (36)

Since 〈u, v〉 ∈ P ′, we have
∑

x∈f−1({z})

u(x) = (Df)(u)(z) = (Dg)(v)(z) =
∑

y∈g−1({z})

v(y). (37)

Thus we may apply the matrix fill-in property, Lemma 15. ()

C Weak pullback preservation of the functor G∗A

In this part we investigate the weak pullback preservation of the functor G∗
A.

We establish that the functor preserves total weak pullbacks, but does not
preserve weak pullbacks, i.e. we give a proof of Proposition 10.

Lemma 17 The functor G∗
A weakly preserves total pullbacks.

Proof: Let 〈P,π1,π2〉 be a total pullback in Set of the cospan

X
f ## Z Y

g"" , i.e. P = {〈x, y〉 | f(x) = g(y)} and π1,π2 surjec-
tive. Then the outer square of the diagram below commutes. More-
over, there exists a mediating morphism γ : G∗

AP → P ′ from the candi-
date pullback 〈G∗

AP,G∗
Aπ1,G

∗
Aπ2〉 to the pullback 〈P ′, p1, p2〉 of the cospan

G∗
AX

G∗

Af
## G∗

AZ G∗
AY

G∗

Ag
"" .

G∗
AP

G∗

Aπ1

1:

G∗

Aπ2

:1

γ
!!
*

*

P ′

p1;;22
22

22

p2 <<33
33

33

G∗
AX

G∗

Af <<11111
G∗

AY

G∗

Ag8844444

G∗
AZ
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It is enough to prove that γ is surjective (Lemma 12(ii)). So, we show that for
every 〈u, v〉 ∈ P ′ there exists w ∈ G∗

AP with G∗
Aπ1(w) = u and G∗

Aπ2(w) = v
which is equivalent to w ◦ (id−1

A × π−1
1 ) = u and w ◦ (id−1

A × π−1
2 ) = v. Fix

〈u, v〉 ∈ P ′. We have

〈u, v〉 ∈ P ′ =⇒ ∀A′ ⊆ A,∀Z ′ ⊆ Z : u(A′, f−1(Z ′)) = v(A′, g−1(Z ′)). (38)

Let X ′ ⊆ X, Y ′ ⊆ Y and assume π−1
1 (X ′) = π−1

2 (Y ′). Then

(i) f−1(f(X ′)) = X ′:
Clearly X ′ ⊆ f−1(f(X ′)). Let x ∈ f−1(f(X ′)) such that f(x) =
f(x′) for some x′ ∈ X ′. Since π1 is surjective, there exists y ∈ Y
with 〈x, y〉 ∈ P i.e. f(x) = g(y), and hence also f(x′) = g(y), i.e.
〈x′, y〉 ∈ P . Thus 〈x′, y〉 ∈ π−1

1 (X ′) = π−1
2 (Y ′) implying y ∈ Y ′.

Hence 〈x, y〉 ∈ π−1
2 (Y ′) = π−1

1 (X ′) i.e. x ∈ X ′.

(ii) g−1(g(Y ′)) = Y ′: similar as (i).

(iii) f(X ′) = g(Y ′):
Let z ∈ f(X ′), i.e. z = f(x′) for x′ ∈ X ′. Since π1 is surjective there
exists y ∈ Y with 〈x′, y〉 ∈ P , i.e. f(x′) = g(y). Now, 〈x′, y〉 ∈
π−1

1 (X ′) = π−1
2 (Y ′) and therefore y ∈ Y ′, i.e. z = f(x′) = g(y) ∈

g(Y ′). We have shown f(X ′) ⊆ g(Y ′). Similarly, g(Y ′) ⊆ f(X ′).

Hence, if π−1
1 (X ′) = π−1

2 (Y ′) for X ′ ⊆ X, Y ′ ⊆ Y we get, for any
A′ ⊆ A,

u(A′, X ′)
(i)
= u(A′, f−1(f(X ′)))

(38)
= v(A′, g−1(f(X ′)))

(iii)
=

v(A′, g−1(g(Y ′)))
(ii)
= v(A′, Y ′).

Since π1 and π2 are surjective,

π−1
1 (X ′) = π−1

1 (X ′′) =⇒ X ′ = X ′′

and
π−1

2 (Y ′) = π−1
2 (Y ′′) =⇒ Y ′ = Y ′′

for any X ′, X ′′ ⊆ X and any Y ′, Y ′′ ⊆ Y . So the function w : P(A)×P(P ) →
[0, 1] given by

w(A′, Q) =







u(A′, X ′) Q = π−1
1 (X ′)

v(A′, Y ′) Q = π−1
2 (Y ′)

0 otherwise
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is well defined. Clearly, w ◦ (id−1
A ×π−1

1 ) = u and w ◦ (id−1
A ×π−1

2 ) = v. Thus
the functor G∗

A weakly preserves total pullbacks. ()

However, note that although G∗
A weakly preserves total pullbacks, it

does not preserve weak pullbacks, as shown by the next example.

Example 2 G∗
A does not preserve weak pullbacks.

Choose X with |X| ≥ 3. Fix x0 ∈ X. Let Z = {1, 2, 3} and consider

the cospan X
f ## Z X

g"" for the maps

f(x) =

{

2 x = x0

1 otherwise
g(x) =

{

2 x = x0

3 otherwise.

The Set pullback of this cospan is then P = {〈x0, x0〉}. On the other hand,
let P ′ be the pullback of the cospan

G∗
AX

G∗

Af
## G∗

AZ G∗
AX

G∗

Ag
"" .

We have 〈µ, ν〉 ∈ P ′ if and only if

G∗
Af(µ) = G∗

Ag(ν),

i.e.
µ(A′, f−1(Z ′)) = ν(A′, g−1(Z ′))

for all A′ ⊆ A, Z ′ ⊆ Z. Therefore, every pair 〈µ, ν〉 ∈ G∗
AX × G∗

AX with the
property

µ(A′, ∅) = µ(A′, {x0}) = µ(A′, X \ {x0}) = µ(A′, X) =

= ν(A′, ∅) = ν(A′, {x0}) = ν(A′, X \ {x0}) = ν(A′, X)

belongs to P ′, since ∅, {x0}, X \ {x0} and X are the only subsets of X that
are inverse images of subsets of Z under f and g.

Now we consider G∗
AP = P(A) × P(P ) → [0, 1]. If µ ∈ G∗

AX is such
that µ = (G∗

Aπ1)(χ) for some χ ∈ G∗
AP , then µ = χ ◦ (id−1

A × π−1
1 ). Hence,

for A′ ⊆ A, X ′ ⊆ X we have

µ(A′, X ′) =

{

χ(A′, ∅) x0 -∈ X ′

χ(A′, {〈x0, x0〉}) x0 ∈ X ′.
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Choose x1 ∈ X, x1 -= x0. Since |X| ≥ 3 we have {x0, x1} -∈ {∅, {x0}, X \
{x0}, X}. Define ξ : P(A)× P(X) → [0, 1] by

ξ(A′, X ′) =

{

1 X ′ = {x0, x1}
0 otherwise.

Then ξ ∈ G∗
A(X) and the pair 〈ξ, ξ〉 belongs to P ′, since for every A′ ⊆ A,

ξ(A′, ∅) = ξ(A′, {x0}) = ξ(A′, X \ {x0}) = ξ(A′, X) = 0.

However, ξ can not be written as (G∗
Aπ1)(χ) for any χ ∈ G∗

AP , since

ξ(A′, {x0, x1}) -= ξ(A′, {x0}),

while, as noted above,

(G∗
Aπ1)(χ)(A′, {x0, x1}) = χ(A′, {〈x0, x0〉}) = (G∗

Aπ1)(χ)(A′, {x0}).

Hence, for the pair 〈ξ, ξ〉 ∈ P ′ there does not exist an element χ ∈ G∗
AP

such that G∗
Aπ1(χ) = ξ and G∗

Aπ2(χ) = ξ, which by Lemma 12 shows that
G∗

A does not preserve weak pullbacks.
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