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It IS about

» Scheduling processes in temporal isolation

the time it takes to execute a piece of code is bounded,
iIndependently of concurrently running code

» Using variable bandwidth servers for

« Server design for



Process model
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 action Is a plece of code

* PrOCEeSS IS a sequence of actions



Problem
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schedule the processes so that each of their

actions maintains its response time
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Resources and VBS

virtuall periodic resourrces
period it limit A utilization A/it

e VBS Is determined by a bandwidth cap (u)
* VBS processes dynamically adjust speed (resource)
ATl = U and A2/fz = U

» generalization of constant bandwidth servers (CBS)
[Abeni and Buttazzo 2004 ]



One process on a VBS

= action a1 — action a2 =

process
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VBS
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VBS
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multiple processes are EDEF-scheduled



Scheduling result and bounds

Processes Pi,P2, ... ,Ph on VVBSsS Ui,uUz, ... ,Un, are schedulable

i Yui = 1

For any action a on a resource (A,11) we have
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Implementation

« constant-time scheduling algorithm
 different gueue management plugins

array matrix/tree

O(log(t)+nlog(t))

O(t+n)

N - number off processes t - number of time instants



Implementation

« constant-time scheduling algorithm
 different gueue management plugins

matrix/tree

O(log(t)+nlog(t)) O (t)

O(t+n) O(t’+n)

N - number off processes t - number of time instants



Programming model|
loop {

Int number of frames=determine_rate();

allocate_memory(number of frames); F
read_from_network(number_of frames); } (actchR

compress_data(number of frames);

write _to_disk(number of frames);
deallocate_memory(number of frames);

} until (done); loop period

different throughput and latency requirements
fior different portions of code



How do we get VBS
parameters for an action?
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Response-time function
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Response-time function
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Response-time function
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Execution-time function

Time (ms)

A
100

80

60

40

10

------------------------- LT T

0 5 10 15 20 25
Memory allocation requests in number of frames



Utilization




Timing of the allocate memory action
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Response-time sampling

' Scheduled response time
time(ms) (under VBS)
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Server Designh Problem

dr EVENIY Or

A divides fe(W) - de evenly.
A=T%Cu




Server Design Problem

Smallest 1t possible:
- fs approximates fr best @

- less response-time jitter @

e increased scheduler overhead




Conclusion

For scheduling processes in temporal isolation:
 Programming model as a link to VBS
* VBS provide predictability

e Server design for better performance

http://tiptoe.cs.uni-salzburg.at/
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