A Workload-oriented Programming
Model for Temporal Isolation with VBS

Ana Sokolova

Department of Computer Sciences
University of Salzburg

joint work with
Silviu Craciunas and Christoph Kirsch

It IS about

» Scheduling processes in temporal isolation

the time it takes to execute a piece of code is bounded,
iIndependently of concurrently running code

» Using variable bandwidth servers for

« Server design for

Process model

action o1 action o2
- > ¢ >
ikt | (70| AEEEREEEEELEEELE
process I I [
time
arrival termination
response time
G _J
~—
speed

 action Is a plece of code

* PrOCEeSS IS a sequence of actions

Problem

process 1 I I I >
process 2 I I I >
process n | | |

uniprocessor

schedule the processes so that each of their

actions maintains its response time

Problem

process 1
SEIVAIEWITE

proces= DANAWIATLA S

= U]

L

Q) Q
o o

ll—i' ot
Gt %

Yl U
LagLy Ll

Resources and VBS

virtuall periodic resourrces
period it limit A utilization A/it

e VBS Is determined by a bandwidth cap (u)
* VBS processes dynamically adjust speed (resource)
ATl = U and A2/fz = U

» generalization of constant bandwidth servers (CBS)
[Abeni and Buttazzo 2004]

One process on a VBS

= action a1 — action a2 =

process

process
running
on a VBS

response time under VBS response time
under VBS

VBS

process
' "Qr] r] \/”’“"" D time

arrival termination

VBS

process 1 U m__|
(2,4)

0] 4 8 12 16 20
process 2 . 1 i!i I 1 I_I-_l | PR o | I 1 i_l-_l_l_>
(2’8) 0) 8 16
process 3 . | | | | I '!i | | I | | ! | | I | >
(1.6) | | |
4 0] 6) 12 18

multiple processes are EDEF-scheduled

Scheduling result and bounds

Processes Pi,P2, ... ,Ph on VVBSsS Ui,uUz, ... ,Un, are schedulable

i Yui = 1

For any action a on a resource (A,11) we have
\

IBPERESPBRSENUIMENIOLURE
[Nozic /A |re -+ -1

IOVWEIRESPBHSENENIBUNRGE
[lozid /A |r

Implementation

« constant-time scheduling algorithm
 different gueue management plugins

array matrix/tree

O(log(t)+nlog(t))

O(t+n)

N - number off processes t - number of time instants

Implementation

« constant-time scheduling algorithm
 different gueue management plugins

matrix/tree

O(log(t)+nlog(t)) O (t)

O(t+n) O(t’+n)

N - number off processes t - number of time instants

Programming model|
loop {

Int number of frames=determine_rate();

allocate_memory(number of frames); F
read_from_network(number_of frames); } (actchR

compress_data(number of frames);

write _to_disk(number of frames);
deallocate_memory(number of frames);

} until (done); loop period

different throughput and latency requirements
fior different portions of code

How do we get VBS
parameters for an action?

feJnl~)l o)f=hnpl

Response-time function

Time (ms)

100

80

60

40

20

A

0 5 10 15 20
Memory allocation requests in number of frames

25

Response-time function

Time (ms)
A allocation rate of 125 fps

100

80

60

40

20

0 5 10 15 20
Memory allocation requests in number of frames

Response-time function

Time (ms)

A allocation rate of 240 fps
80

fa

60
40
20
0 L

0] 5 10 15 20 25

Memory allocation requests in number of frames

Execution-time function

Time (ms)

A
100

80

60

40

10

------------------------- LT T

0 5 10 15 20 25
Memory allocation requests in number of frames

Utilization

Timing of the allocate memory action

1 100 ms
:
I
|
fr(w) = 4w + 4
:
I
I
I
I
I
I
!
J 19.8 ms
R fE(w) :0.4w—|—0:.2
d i
E"'I"'I"'I"'I"'I"'IF
0 4 8 12 16 20 24

number of frames

Response-time sampling

' Scheduled response time
time(ms) (under VBS)
- DR

20- :
fr(w)=4w 4+ 4 """';I

169 fg(w) = 0.4w + 0.2 :.
12- :
: RECRE e ;
> TREEEREE TR, E
| 2 3 4

number of frames

Server Designh Problem

dr EVENIY Or

A divides fe(W) - de evenly.
A=T%Cu

Server Design Problem

Smallest 1t possible:
- fs approximates fr best @

- less response-time jitter @

e increased scheduler overhead

Conclusion

For scheduling processes in temporal isolation:
 Programming model as a link to VBS
* VBS provide predictability

e Server design for better performance

http://tiptoe.cs.uni-salzburg.at/

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

