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It is aboutIt is about

● Scheduling processes in Scheduling processes in temporal isolationtemporal isolation

● Using variable bandwidth servers  for Using variable bandwidth servers  for predictabilitypredictability

● Server design for Server design for performanceperformance

 the time it takes to execute a piece of code is bounded, 
 independently of concurrently running code



Process modelProcess model
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●  action is a piece of codeaction is a piece of code

●  process is a sequence of actionsprocess is a sequence of actions

speedspeed
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Solvable with variable Solvable with variable 
bandwidth servers (VBS)bandwidth servers (VBS)

Results:Results:
●  a constant-time scheduling algorithma constant-time scheduling algorithm
●  a constant-time admission testa constant-time admission test



Resources and VBSResources and VBS
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●  VBS is determined by a bandwidth cap (VBS is determined by a bandwidth cap (uu) ) 

●  VBS processes dynamically adjust speed (resource) VBS processes dynamically adjust speed (resource) 

λλ11/π/π11 ≤  ≤ uu  andand  λλ22//ππ22 ≤  ≤ uu

●  generalization of constant bandwidth servers (CBS)generalization of constant bandwidth servers (CBS)  
[Abeni and Buttazzo 2004][Abeni and Buttazzo 2004]

  vvirtual periodic resourcesirtual periodic resources
period period ππ       limit        limit λλ      utilization       utilization λ/πλ/π



One process on a VBSOne process on a VBS
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VBSVBS
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Scheduling result and boundsScheduling result and bounds

For any action For any action αα on a resource  on a resource (λ,π)(λ,π) we have we have

upper response time boundupper response time bound
⎡⎡load / λload / λ⎤⎤π + π - 1π + π - 1

lower response time boundlower response time bound
⎡⎡load / λload / λ⎤⎤ππ

  jitter jitter 
π - 1π - 1

Processes Processes PP11,,PP22,, …  … ,,PPnn on VBSs  on VBSs uu11,,uu22,, …  … ,,uunn, are schedulable, are schedulable

if if ∑∑uuii ≤ 1 ≤ 1
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Implementation

● constant-time scheduling algorithm
● different queue management plugins
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n – number of processes   t – number of time instantsn – number of processes   t – number of time instants 
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trade-off time and spacetrade-off time and space



loop {loop {

int int number_of_framesnumber_of_frames=determine_rate();=determine_rate();

allocate_memory(allocate_memory(number_of_framesnumber_of_frames););
read_from_network(read_from_network(number_of_framesnumber_of_frames););

compress_data(compress_data(number_of_framesnumber_of_frames););
write_to_disk(write_to_disk(number_of_framesnumber_of_frames););
deallocate_memory(deallocate_memory(number_of_framesnumber_of_frames););

} until (done);} until (done);

Programming modelProgramming model

loop periodloop period

action 1action 1

different throughput and latency requirements different throughput and latency requirements 
for different portions of codefor different portions of code

action 2action 2



How do we get VBS How do we get VBS 
parameters for an action?parameters for an action?

““server design problem”server design problem”



Response-time functionResponse-time function



Response-time functionResponse-time function



Response-time functionResponse-time function

ffRR : R : RDD  →→ Q Q++



Execution-time functionExecution-time function

ffEE : E : EDD  →→ Q Q++

loadload



UtilizationUtilization



Timing of the Timing of the allocate_memoryallocate_memory action action



Response-time sampling

Scheduled response time Scheduled response time 
(under VBS)(under VBS)



Server Design ProblemServer Design Problem

Finding the right Finding the right λλ,,ππ is difficult. is difficult.

For fS(w) ≤ fR(w) one can choose π as follows:

● 0 < 0 < ππ < d < dRR – d – dEE / c / cUU

● ππ divides d divides dRR evenly evenly

● ππ divides f divides fRR(w) – d(w) – dRR evenly or  evenly or 

λλ divides f divides fEE(w) – d(w) – dE E evenlyevenly
λ = πλ = π * c * cUU



Server Design ProblemServer Design Problem

Higher-level scheduler:
● small period for the first part of an action
● large period for the remaining part

Smallest π possible:

● fS approximates fR best

● less response-time jitter

● increased scheduler overhead

Scheduler overhead accounting:
● utilization accounting 
● response-time accounting 
● combined accounting



ConclusionConclusion

For scheduling processes in temporal isolation:For scheduling processes in temporal isolation:

● Programming model as a link to VBSProgramming model as a link to VBS

● VBS provide predictabilityVBS provide predictability

● Server design for better performanceServer design for better performance

 http://tiptoe.cs.uni-salzburg.at/
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