
A Workload-oriented Programming A Workload-oriented Programming
Model for Temporal Isolation with VBSModel for Temporal Isolation with VBS

Ana SokolovaAna Sokolova

Department of Computer SciencesDepartment of Computer Sciences
University of SalzburgUniversity of Salzburg

joint work withjoint work with
Silviu Craciunas and Christoph KirschSilviu Craciunas and Christoph Kirsch

It is aboutIt is about

● Scheduling processes in Scheduling processes in temporal isolationtemporal isolation

● Using variable bandwidth servers for Using variable bandwidth servers for predictabilitypredictability

● Server design for Server design for performanceperformance

 the time it takes to execute a piece of code is bounded,
 independently of concurrently running code

Process modelProcess model

processprocess
timetime

action action αα11

response timeresponse time

loadload

arrivalarrival terminationtermination

action action αα22

● action is a piece of codeaction is a piece of code

● process is a sequence of actionsprocess is a sequence of actions

speedspeed

ProblemProblem

process 1process 1

process 2process 2

process nprocess n

.

.

.

schedule the processes so that each of their schedule the processes so that each of their
actions maintains its response timeactions maintains its response time

uniprocessoruniprocessor

ProblemProblem

process 1process 1

process 2process 2

process nprocess n

.

.

.

schedule the processes so that each of their schedule the processes so that each of their
actions maintains its response timeactions maintains its response time

uniprocessoruniprocessor

Solvable with variable Solvable with variable
bandwidth servers (VBS)bandwidth servers (VBS)

Results:Results:
● a constant-time scheduling algorithma constant-time scheduling algorithm
● a constant-time admission testa constant-time admission test

Resources and VBSResources and VBS

ππ11

λλ11

timetime

ππ22

λλ22

● VBS is determined by a bandwidth cap (VBS is determined by a bandwidth cap (uu))

● VBS processes dynamically adjust speed (resource) VBS processes dynamically adjust speed (resource)

λλ11/π/π11 ≤ ≤ uu andand λλ22//ππ22 ≤ ≤ uu

● generalization of constant bandwidth servers (CBS)generalization of constant bandwidth servers (CBS)
[Abeni and Buttazzo 2004][Abeni and Buttazzo 2004]

 vvirtual periodic resourcesirtual periodic resources
period period ππ limit limit λλ utilization utilization λ/πλ/π

One process on a VBSOne process on a VBS

response timeresponse time

processprocess

timetime

processprocess
running running

on a VBSon a VBS

response time under VBSresponse time under VBS

ππ11

timetime

loadload

action action αα11

response timeresponse time

action action αα22

loadload

λλ11 λλ22

ππ22

response time response time
under VBSunder VBS

VBSVBS

processprocess
running running

on a VBSon a VBS timetime

response time under VBSresponse time under VBS

arrivalarrival terminationtermination

VBSVBS

process 1process 1
(2,4)(2,4)

process 2process 2
(2,8)(2,8)

process 3process 3
(1,6)(1,6)

multiple processes are EDF-scheduledmultiple processes are EDF-scheduled

00

00

88 1616

66 1212 1818

00 88 1616

44 1212 2020

Scheduling result and boundsScheduling result and bounds

For any action For any action αα on a resource on a resource (λ,π)(λ,π) we have we have

upper response time boundupper response time bound
⎡⎡load / λload / λ⎤⎤π + π - 1π + π - 1

lower response time boundlower response time bound
⎡⎡load / λload / λ⎤⎤ππ

 jitter jitter
π - 1π - 1

Processes Processes PP11,,PP22,, … … ,,PPnn on VBSs on VBSs uu11,,uu22,, … … ,,uunn, are schedulable, are schedulable

if if ∑∑uuii ≤ 1 ≤ 1

list array matrix/tree

time

space

Implementation

● constant-time scheduling algorithm
● different queue management plugins

t 

n  tn O  t 2n

O  log t nlog t O n2


n – number of processes t – number of time instantsn – number of processes t – number of time instants

list array matrix/tree

time

space

Implementation

● constant-time scheduling algorithm
● different queue management plugins

t 

n  tn O  t 2n

O  log t nlog t O n2


n – number of processes t – number of time instantsn – number of processes t – number of time instants

trade-off time and spacetrade-off time and space

loop {loop {

int int number_of_framesnumber_of_frames=determine_rate();=determine_rate();

allocate_memory(allocate_memory(number_of_framesnumber_of_frames););
read_from_network(read_from_network(number_of_framesnumber_of_frames););

compress_data(compress_data(number_of_framesnumber_of_frames););
write_to_disk(write_to_disk(number_of_framesnumber_of_frames););
deallocate_memory(deallocate_memory(number_of_framesnumber_of_frames););

} until (done);} until (done);

Programming modelProgramming model

loop periodloop period

action 1action 1

different throughput and latency requirements different throughput and latency requirements
for different portions of codefor different portions of code

action 2action 2

How do we get VBS How do we get VBS
parameters for an action?parameters for an action?

““server design problem”server design problem”

Response-time functionResponse-time function

Response-time functionResponse-time function

Response-time functionResponse-time function

ffRR : R : RDD →→ Q Q++

Execution-time functionExecution-time function

ffEE : E : EDD →→ Q Q++

loadload

UtilizationUtilization

Timing of the Timing of the allocate_memoryallocate_memory action action

Response-time sampling

Scheduled response time Scheduled response time
(under VBS)(under VBS)

Server Design ProblemServer Design Problem

Finding the right Finding the right λλ,,ππ is difficult. is difficult.

For fS(w) ≤ fR(w) one can choose π as follows:

● 0 < 0 < ππ < d < dRR – d – dEE / c / cUU

● ππ divides d divides dRR evenly evenly

● ππ divides f divides fRR(w) – d(w) – dRR evenly or evenly or

λλ divides f divides fEE(w) – d(w) – dE E evenlyevenly
λ = πλ = π * c * cUU

Server Design ProblemServer Design Problem

Higher-level scheduler:
● small period for the first part of an action
● large period for the remaining part

Smallest π possible:

● fS approximates fR best

● less response-time jitter

● increased scheduler overhead

Scheduler overhead accounting:
● utilization accounting
● response-time accounting
● combined accounting

ConclusionConclusion

For scheduling processes in temporal isolation:For scheduling processes in temporal isolation:

● Programming model as a link to VBSProgramming model as a link to VBS

● VBS provide predictabilityVBS provide predictability

● Server design for better performanceServer design for better performance

 http://tiptoe.cs.uni-salzburg.at/

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

