
Response Time versus Utilization
in Scheduler Overhead Accounting∗

Silviu S. Craciunas Christoph M. Kirsch Ana Sokolova
Department of Computer Sciences

University of Salzburg, Austria
Email: firstname.lastname@cs.uni-salzburg.at

Abstract—We propose two complementary methods to account
for scheduler overhead in the schedulability analysis of Variable
Bandwidth Servers (VBS), which control process execution speed
by allocating variable CPU bandwidth to processes. Scheduler
overhead in VBS may be accounted for either by decreasing pro-
cess execution speed to maintain CPU utilization (called response
accounting), or by increasing CPU utilization to maintain process
execution speed (called utilization accounting). Both methods
can be combined by handling an arbitrary fraction of the total
scheduler overhead with one method and the rest with the other.
Distinguishing scheduler overhead due to releasing and due to
suspending processes allows us to further improve our analysis
by accounting for releasing overhead in a separate, virtual VBS
process. Although our analysis is based on the VBS model, the
general idea of response and utilization accounting may also be
applied to other, related scheduling methods.

I. INTRODUCTION

We study scheduler overhead accounting in the schedu-
lability analysis of Variable Bandwidth Servers (VBS) [1],
[2]. VBS are a generalization of Constant Bandwidth Servers
(CBS) [3]. A CBS allocates a constant fraction of CPU time to
a process (the server bandwidth) at a constant granularity (the
server period). Multiple CBS processes are EDF-scheduled
using the server periods as deadlines. A VBS is similar to a
CBS but also allows the process to change its execution speed
at any time, i.e., change both server bandwidth and server
period, as long as the resulting CPU utilization remains under
a given bandwidth cap. The portion of process code from a
change in speed to the next is called an action. A VBS process
is therefore a sequence of actions. The total time to execute
an action is explicitly modeled and called the response time
of the action. The key result of VBS is that, for each action
of a VBS process, there exist lower and upper bounds on
response times and thus also on jitter that are independent of
any other concurrently executing VBS processes, as long as
system utilization (the sum of all bandwidth caps) is less than
or equal to 100% [1], [2] (Section III).

This paper generalizes the VBS scheduling result by includ-
ing the overhead of scheduler execution. We first determine
an upper bound on the number of scheduler invocations that
may occur during a given amount of time (Section IV). This
is possible because process release and suspend times are
known in VBS. We then show that there are two comple-
mentary methods to account for scheduler overhead, either by

∗Supported by the EU ArtistDesign Network of Excellence on Embedded
Systems Design and the Austrian Science Funds P18913-N15 and V00125.

decreasing the speed at which processes run to maintain CPU
utilization (called response accounting), or by increasing CPU
utilization to maintain the speed at which processes run (called
utilization accounting). Response accounting decreases the net
server bandwidth available to a process by dedicating some of
its bandwidth to the scheduler. Utilization accounting increases
the server bandwidth to maintain the net bandwidth available
to a process. In other words, with utilization accounting,
the bounds on response times are maintained while CPU
utilization is increased whereas, with response accounting,
the upper bounds on response times and thus on jitter are
increased while utilization is maintained. Both methods can
be combined by handling an arbitrary fraction of the total
scheduler overhead with one method and the rest with the
other. We also show, by example, that the fraction may be
chosen within server- and process-dependent intervals such
that CPU utilization decreases while the response-time bounds
and thus the speed at which processes run remain the same
(Section V).

Next, we observe that there is a natural division of the
VBS scheduler overhead into overhead due to releasing and
due to suspending processes. Moreover, we note that our
previously mentioned upper bound on the number of scheduler
invocations can be improved for the scheduler invocations due
to releasing processes by accounting for them in a separate,
virtual VBS process instead of the given VBS processes
(Section VI). The virtual process is then accounted for in
increased CPU utilization. The remaining overhead due to
suspending processes may then be accounted for in either
more increased CPU utilization, or increased response-time
bounds and thus decreased speed at which processes run. The
former method is pure utilization accounting, the latter method
is combined accounting. Pure response accounting does not
apply here.

Up until this point we have assumed that there is a constant
upper bound on the execution time of any scheduler invoca-
tion. The VBS scheduling algorithm itself is indeed constant-
time. Even queue management in VBS can be done in constant
time. However, our VBS implementation features a plugin
architecture for queue management so that other plugins with
non-constant-time complexity (but less space complexity) can
be used. In addition to the constant-time plugin, there are also
a list-based, quadratic-time and an array-based, linear-time
plugin (in the number of processes) [1], [2]. Our method can
readily be generalized to account for non-constant scheduler
overhead.

We present the results of several experiments that measure
the accuracy of the estimated number of scheduler invocations
(Section VII) and conclude the paper (Section VIII). Note that,
although our analysis is based on the VBS model, the general
idea of response and utilization accounting may also be applied
to CBS as well as to RBED [4], which is another rate-based
scheduler closely related to VBS. Related work is discussed
next in more detail.

II. RELATED WORK

We first put Variable Bandwidth Servers (VBS) [1], [2] in
the context of earlier work on scheduling. We then identify
examples of response and utilization accounting in related
work on scheduler overhead. We also acknowledge previous
work on a wider range of issues dealing with general system
overhead.

The Generalized Processor Sharing (GPS) approach intro-
duced an idealized model of resources for fair scheduling
based on the assumption that resource capacities are infinitely
divisible [5]. Proportional-share algorithms (PSA) such as [6]
approximate GPS using quantum-based CPU scheduling tech-
niques. Constant Bandwidth Servers (CBS) [3] are related
to PSA [7] but allocate a constant fraction of CPU time
to each process (server bandwidth) at a constant granularity
(server period). VBS is a generalization of CBS that allows
processes to change their servers’ bandwidth and period (also
called virtual periodic resource, or resource reservation [8]) at
runtime as long as the CPU capacity is not exceeded.

VBS is closely related to RBED, which is a rate-based
scheduler extending resource reservations for hard real-time,
soft real-time, and best effort processes [4]. Like VBS, RBED
uses EDF scheduling and allows dynamic bandwidth and
rate adjustments. While the capabilities are similar, RBED
and VBS differ in the level of abstraction they provide. In
VBS we model processes as sequences of actions to quantify
the response times of portions of process code, where each
transition from one action to the next marks an adjustment in
bandwidth and rate.

Other scheduling techniques related to VBS include elastic
scheduling [9], handling of quality of service [10] and overload
scenarios [11], and runtime server reconfiguration in CBS
using benefit functions [12].

Next, we identify examples of response and utilization
accounting in related work dealing with scheduler overhead.
In [13], given a set of dynamically scheduled periodic inter-
rupts and tasks, interrupt handler overhead is accounted for
in the processor demand of the tasks (related to utilization
accounting). In [14], given a set of periodic tasks, so-called
explicit overhead through system calls invoked by task code
is accounted for in the worst-case execution times of tasks
(response accounting) and so-called implicit overhead through
scheduler invocations and interrupts is accounted for in CPU
utilization (utilization accounting). In [15], given a set of
periodic tasks, interrupt and fixed-priority scheduling overhead
is accounted for in the response times of the tasks (response
accounting). In [16], given a CBS system, scheduler overhead
due to suspending processes is accounted for in response-time

bounds of so-called jobs (response accounting). The response-
time bounds are tighter than ours exploiting the fact that
server parameters cannot be changed and scheduler invocations
due to releasing processes are not considered. Note that our
contribution is not only scheduler overhead accounting for
VBS, but also recognizing conceptual principles and trade-offs
that have lead us to a unifying approach.

In a wider context, examples of previous work dealing
with general system overhead are an analysis of event- and
time-driven implementations of fixed-priority scheduling [17],
algorithms to compute the number of preemptions in sets of
periodic, DM- and EDF-scheduled tasks [18], and a study
of RM and EDF scheduling that includes a comparison of
context-switching overhead [19]. There is also work on re-
ducing context-switching overhead through a modified fixed-
priority scheduler [20] and on reducing the number of pre-
emptions in fixed-priority scheduling without modifying the
scheduler [21]. The effects of cache-related preemption delays
on the execution time of processes are analyzed in [22]
and [23].

III. VBS SCHEDULING

We have introduced VBS scheduling in previous work [1],
[2]. Here, we briefly recall the necessary definitions and
results. A variable bandwidth server (VBS) is an extension
of a constant bandwidth server (CBS) where throughput and
latency of process execution can vary in time under certain
restrictions. Given a virtual periodic resource [24], defined as
a pair of a period and a limit (with bandwidth equal to the
ratio of limit over period), a CBS executes a single process
no more than the amount of time given by the resource limit
in every time interval given by the resource period. A VBS
may vary the virtual periodic resource (change the resource
periods and limits), as long as the bandwidth does not exceed
a predefined bandwidth cap. A process running on a VBS can
initiate a resource switch at any time. The process code from
one switch to the next is called a process action. The execution
of a process is thus potentially an unbounded sequence of
actions. In practice each action can be seen as a piece of
sequential code that has a virtual resource associated with it.
We implemented a VBS-based scheduling algorithm [1], [2],
with four alternative queue management plugins based on lists,
arrays, matrices, and trees. The plugins allow trading-off time
and space complexity.

A. Process Model
A process P (u) corresponding to a VBS with utilization u

is a finite or infinite sequence of actions,

P (u) = α0α1α2 . . .

for αi ∈ Act, where Act = N ×R, with R being the finite
set of virtual periodic resources [24], explained below. An
action α ∈ Act is a pair α = (l, R) where l (for load) is
a natural number which denotes the exact amount of time
the process will perform the action on the virtual periodic
resource R. The load of an action can be understood as the
worst-case execution time of the piece of code that constitutes

ms

24 ms

20 24

ai ri fi
ci

ai = ri

8 16 20

8 16

ci fi

late
strategy

1210

1210

early
strategy

Fig. 1. Scheduling an action αi with load li = 5 using both release strategies,
where λi = 2 and πi = 4

the action. The virtual periodic resource R is a pair R = (λ, π)
of natural numbers with λ ≤ π, where λ denotes the limit
and π the period of the resource. The limit λ specifies the
maximum amount of time the process P can execute on the
virtual periodic resource within the period π, while performing
the action α. The utilization of R is uR = λ

π ≤ u.

B. Schedulability analysis without overhead
Let P be a finite set of processes. A schedule for P is a

partial function
σ : N �→ P

from the time domain to the set of processes. The function σ
assigns to each moment in time a process that is running in
the time interval [t, t + 1). If no process runs in the interval
[t, t + 1) then σ(t) is undefined. Any scheduler σ of VBS
processes determines a unique function σR : N �→ P × R
that specifies which virtual periodic resource is used by the
running process.

We are only interested in well-behaved schedules with the
property that for any process P ∈ P , any resource R ∈ R
with R = (λ, π), and any natural number k ∈ N

|{t ∈ [kπ, (k + 1)π) | σR(t) = (P,R)}| ≤ λ.

Hence, in such a well-behaved schedule, the process P uses
the resource R at most λ units of time per period of time π.
Our scheduling algorithm produces well-behaved schedules.

For each process action αi we denote the following absolute
moments in time, which are also depicted in Figure 1:
• Arrival time ai of the action αi is the time instant

at which the previous action of the same process has
finished. The first action of a process has zero arrival
time.

• Completion time ci of the action αi is the time at which
the action completes its execution. It is calculated as

ci = min {c ∈ N | li = |{t ∈ [ai, c) | σ(t) = P}|} .

• Termination or finishing time fi of the action αi is
the time at which the action terminates or finishes its
execution, fi ≥ ci. We adopt the following termination
strategy: The termination time is at the end of the period
within which the action has completed.

• Release time ri is the earliest time when αi can be sched-
uled, ri ≥ ai. As shown in Figure 1, we consider two
release strategies. In the early release strategy ri = ai,
i.e., the process is released immediately upon arrival with
a fraction of its limit computed for the remaining interval
until the period ends. The late release strategy delays the
release of an action until the beginning of the next period.

The early release strategy may improve average response
times.

The scheduled response time si of the action αi under the
scheduler σ is the difference between the finishing time and
the arrival time, i.e., si = fi − ai.

We digress at this point for a brief elaboration on the type
of tasks that are generated by VBS processes, which are used
to prove the VBS schedulability result.

Let τ = (r, e, d) be an aperiodic task with release time
r, execution duration e, and deadline d. We say that τ has
type (λ, π) where λ and π are natural numbers, λ ≤ π, if the
following conditions hold:
• d = (n + 1)π for a natural number n such that r ∈

[nπ, (n + 1)π), and
• e ≤ (d− r)λ

π .
The task type (λ, π) represents a virtual periodic task which
we use in order to impose a bound on the aperiodic task τ .
If the release of τ is at time nπ, the execution duration e is
limited by λ. Otherwise, if the release is not at an instance
of the period π, the execution duration is adjusted so that the
task τ has utilization factor at most λ

π over the interval [r, d].
Let S be a finite set of task types. Let I be a finite index

set, and consider a set of tasks

{τi,j = (ri,j , ei,j , di,j) | i ∈ I, j ≥ 0}

with the properties:
• Each τi,j has a type in S. We will write (λi,j , πi,j) for

the type of τi,j .
• The tasks with the same first index are released in a

sequence, i.e., ri,j+1 ≥ di,j and ri,0 = 0.
We refer to such a set as a typed set of tasks.

Lemma 1 ([2]): Let {τi,j | i ∈ I, j ≥ 0} be a typed set of
tasks. If �

i∈I

max
j≥0

λi,j

πi,j
≤ 1,

then this set of tasks is schedulable using the EDF strategy at
any point of time, so that each task meets its deadline. �

The proof of Lemma 1 follows the standard periodic EDF
proof of sufficiency with the addition that the periods of the
tasks may change in time. The full proof can be found in
our previous work on VBS [2]. The same result in a different
formulation has also been shown in [4].

Using the definition of VBS processes and actions we can
give both response-time bounds for an action and a constant-
time schedulability test for an ideal system, i.e., a system
without overhead.

Let P = {Pi(ui) | 1 ≤ i ≤ n} be a finite set of n processes
with corresponding actions αi,j = (li,j , Ri,j) for j ≥ 0. Each
Pi(ui) = αi,0αi,1 . . . corresponds to a VBS with utilization
ui. Let Ri,j = (λi,j , πi,j) be the virtual periodic resource
associated with the action αi,j with li,j , λi,j , and πi,j being
the load, the limit, and the period for the action αi,j . The
upper bound for the response time of action αi,j is

bu
i,j = πi,j − 1 +

�
li,j
λi,j

�
πi,j .

The lower response-time bound varies depending on the strat-
egy used, namely

bl
i,j =

�
li,j

λi,j

�
πi,j , for late release

�
li,j

λi,j

�
πi,j , for early release.

Note that the lower bound in the early release strategy is
achieved only if λi,j divides li,j , in which case

�
li,j

λi,j

�
=

�
li,j

λi,j

�
. From these bounds we can derive that the response-

time jitter, i.e., the difference between the upper and lower
bound on the response time, is at most πi,j − 1 for the late
release strategy and at most 2πi,j − 1 for the early release
strategy. It is possible to give more precise bounds for the
early strategy (using (2) and (3) below) and show that also in
that case the jitter is at most πi,j − 1.

We say that the set of VBS processes is schedulable with
respect to the response-time bounds bu

i,j and bl
i,j if there exists

a well-behaved schedule σ such that for every action αi,j the
scheduled response time si,j satisfies bl

i,j ≤ si,j ≤ bu
i,j .

It is important to note that each action αi,j of a process
produces a sequence of tasks with type (λi,j , πi,j) that are re-
leased at period instances of the virtual periodic resource used
by the action. Scheduling VBS processes therefore amounts to
scheduling typed sets of tasks. We call the release of such a
task an activation of the action.

Proposition 1 ([1], [2]): Given a set of VBS processes
P = {Pi(ui) | 1 ≤ i ≤ n}, if

�
i∈I ui ≤ 1, then the set

of processes P is schedulable with respect to the response-
time bounds bu

i,j and bl
i,j .

Proof: As mentioned above, each process Pi provides a
typed set of tasks since each action αi,j of the process is
split into several tasks that all have the type (λi,j , πi,j). The
tasks are released in a sequence, i.e. the release time of the
next task is always greater than or equal to the deadline of
the current task (also due to the termination strategy). We
can thus apply Lemma 1 and conclude that the set of tasks
is schedulable. To check the upper bound, we distinguish a
case for the early release strategy and one for the late release
strategy in terms of the first task of an action. The details can
be found in [2]. We present the proof for the lower bounds
which is not discussed in [2]. For each action αi,j , according
to the termination strategy and the late release strategy, we
have

fi,j = ri,j +
�

li,j
λi,j

�
πi,j (1)

where the release times are given by ri,j = njπi,j for some
natural number nj such that the arrival times are ai,j =
fi,j−1 ∈ ((nj − 1)πi,j , njπi,j]. Therefore, for the late strategy
we have

si,j = fi,j − ai,j
(1)
=

�
li,j
λi,j

�
πi,j + ri,j − ai,j

≥
�

li,j
λi,j

�
πi,j = bl

i,j , for late release.

For the early release strategy we distinguish two cases

depending on whether the following inequality holds
�
m

λi,j

πi,j

�
≥ li,j −

�
li,j
λi,j

�
λi,j (2)

where m = njπi,j − ri,j and ri,j = ai,j = fi,j−1 ∈
((nj − 1)πi,j , njπi,j]. The finishing time for the action αi,j

is

fi,j =

ai,j +
�

li,j

λi,j

�
πi,j + m , if (2) holds

ai,j +
�

li,j

λi,j

�
πi,j + m , otherwise

(3)

In both cases fi,j ≥
�

li,j

λi,j

�
πi,j + ai,j , so

si,j = fi,j − ai,j

≥
�

li,j
λi,j

�
πi,j = bl

i,j , for early release.

In the following sections we analyze VBS schedulability in
the presence of scheduler overhead. In particular, we define
an upper bound on the number of scheduler invocations that
occur within a period of an action, and perform an analysis of
the changes in the response-time bounds and utilization due
to the scheduler overhead.

IV. VBS SCHEDULING WITH OVERHEAD

Our first aim is to bound the number of scheduler invo-
cations over a time interval. In particular, we need the worst-
case number of preemptions, and hence scheduler invocations,
that an action of a VBS process experiences during a period.
Hence, by overhead we mean the overhead due to scheduler
invocations (and not interrupts or other types of system over-
head).

Typically the duration of a scheduler invocation is several
orders of magnitude lower than a unit execution of an action.
Therefore, we assume that all periods belong to the set of
discrete time instants M = {c · n | n ≥ 0} ⊂ N, for a
constant value c ∈ N, c > 1. Hence, for any action αi,j

with its associated virtual periodic resource Ri,j = (λi,j , πi,j)
we have that πi,j = c · π�i,j with π�i,j ∈ N. We call c the
scale of the system. Intuitively we can say that there are two
different timelines, the “fine-grained timeline” given by the set
of natural numbers and the “coarse-grained timeline” given by
the set M . Resource periods are defined on the “coarse-grained
timeline”, while the execution time of the scheduler is defined
on the “fine-grained timeline”.

In VBS scheduling, a process Pi is preempted at a time
instant t if and only if one of the following situations occurs:

1) Completion. Pi has completed the entire work related to
its current action αi,j = (li,j , Ri,j).

2) Limit. Pi uses up all resource limit λi,j of the current
resource Ri,j .

3) Release. A task of an action is released at time t, i.e.,
an action of another process is activated. Note that all
preemptions due to release occur at time instants on the
“coarse-grained timeline”, the set M .

0 40 80 120

0 60 120

0 100

P

P

P

1

2

3

R L L R L R R,L C R,C

Fig. 2. Example schedule for processes P1, P2, and P3

Example 1: Consider the first action of three processes P1,
P2, and P3, with corresponding virtual periodic resources
R1,0 = (λ1,0, π1,0) = (10, 40), R2,0 = (λ2,0, π2,0) =
(10, 60), and R3,0 = (λ3,0, π3,0) = (50, 100), and loads 30,
20, and 100, respectively. Figure 2 shows an example schedule
of the three actions up to time 120 and the time instants at
which preemptions occur. Preemptions that occur because of
the release of an action instance (action activation) are labeled
with R, preemptions that occur because an action has finished
its limit are labeled with L, and preemptions that are due to
an action finishing its entire load have the label C. At time
0, 40, 60, 80, and 100 preemptions occur due to an activation
of one of the three actions, while at time 10, 20, 50, and 80
preemptions occur because an action has used all its limit for
the current period. At times 90 and 100 preemptions occur
due to completion of an action. At certain time instants such
as 80 and 100 there is more than one reason for preemption.
In this example the scale c of the system is 10.

Let us first consider preemptions due to release, i.e., ac-
tivation of an action. Each activation happens when a new
period of the used virtual periodic resource starts. Hence, an
action αi,j with a virtual periodic resource (λi,j , πi,j) will only
be activated at time instants k · πi,j with k ∈ N. Therefore,
in the worst-case scenario, the preemptions caused by action
activations of all processes in the system occur at all time
instants in the set {k·gcd({πi,j | i ∈ I, j ≥ 0}) | k ∈ N}. Note
that, because the periods of all actions in the system are on
the “coarse-grained timeline”, gcd({πi,j | i ∈ I, j ≥ 0}) ≥ c.

We compute the scheduler overhead for each action using an
upper bound on the number of preemptions during one period
of the respective action.

Lemma 2: Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of VBS
processes with actions αi,j and corresponding virtual periodic
resources (λi,j , πi,j). There are at most Ni,j = NR

i,j + NL
i,j

scheduler invocations every period πi,j for the action αi,j ,
where

NR
i,j =

�
πi,j

gcd({πm,n | m ∈ I, n ≥ 0, m �= i})

�
(4)

and NL
i,j = 1.

Proof: There are scheduler invocations due to release
at most at every k · gcd({πm,n | m ∈ I, n ≥ 0}), for
k ∈ N. An action αi,j belonging to a process Pi(u) can
only be preempted by task releases of actions not belonging
to Pi(u). Hence, there can be at most NR

i,j preemptions due
to release over a period of the considered action. By design of
the scheduling algorithm, there is exactly one more scheduler
invocation due to the action using all its limit or completing
its entire load in each period, i.e., NL

i,j = 1.

This is a pessimistic approximation which could be im-
proved by running a runtime analysis that considers only the
periods of the active actions at a specific time. Nevertheless,
we take the pessimistic approach in order to be able to analyze
the system off-line.

Another bound on the number of preemptions due to release
for sets of periodic tasks has been given in [14]. For an
action αi,j , it calculates the number of period instances from
other actions that occur during the period πi,j . The worst-case
number of scheduler invocations for a period πi,j of an action
due to release is thus

�

k∈I
k �=i

�

l>0

�
πi,j

πk,l

�
. (5)

Depending on the periods in the system one of the two given
bounds approximates the worst-case number better than the
other. Consider for example a case where the periods in the
system are 3, 5, and 7. In this case (5) approximates the
number of preemptions better than (4). In another example,
if the periods in the system are 2, 4, and 6, then (4) provides
a more accurate bound than (5). We choose to consider (4)
for a bound on the number of preemptions due to release, for
reasons that will be explained in Section VI.

V. SCHEDULABILITY ANALYSIS WITH OVERHEAD

In a real system the scheduler overhead manifests itself
as additional load which must be accounted for within the
execution of a process in order not to invalidate the schedule
of the system. Let ξ denote the duration of a single scheduler
invocation. The total scheduler overhead for one period of
action αi,j is therefore

δi,j = Ni,j · ξ.

Hence, the total overhead is made up of Ni,j pieces of
ξ workload. An important aspect in the analysis is that a
scheduler invocation with overhead ξ is nonpreemptable. Note
that Ni,j , and therefore δi,j , depends on the finitely many
periods in the system and not on the load of the action. As
a result, there are only finitely many possible values for δi,j

even if there are infinitely many actions.
Accounting for the overhead can be done in two ways. One

way is to allow an action to execute for less time than its actual
limit within one period and use the remaining time to account
for the scheduler overhead. The other way is to increase the
limit such that the action will be able to execute its original
limit and the time spent on scheduler invocations within one
period. Intuitively, the first method increases the response-time
bounds, and the second increases the utilization of an action.
We recognize a fundamental trade-off between an increase in
response time versus utilization by distributing the amount of
scheduler overhead. Namely, we write that the overhead is

δi,j = δb
i,j + δu

i,j ,

where δb
i,j is the overhead that extends the response-time

bounds of the respective action and δu
i,j increases the utiliza-

tion. Note that no scheduler invocation is divisible, i.e., both
δb
i,j and δu

i,j are multiples of ξ.

Case Overhead distribution Load Utilization Schedulability test

RA δb
i,j = δi,j , δu

i,j = 0 l∗i,j = li,j +
l

li,j
λi,j−δi,j

m
δi,j u∗i,j =

λi,j

πi,j

P
i∈I maxj≥0

λi,j

πi,j
≤ 1

UA δb
i,j = 0, δu

i,j = δi,j l∗i,j = li,j +
l

li,j
λi,j

m
δi,j u∗i,j =

λi,j + δi,j

πi,j

P
i∈I maxj≥0

λi,j + δi,j

πi,j
≤ 1

RUA δb
i,j , δu

i,j > 0 l�i,j = li,j +

‰
li,j

λi,j−δb
i,j

ı
δb
i,j , l∗i,j = l�i,j +

‰
l�i,j
λi,j

ı
δu
i,j u∗i,j =

λi,j + δu
i,j

πi,j

P
i∈I maxj≥0

λi,j + δu
i,j

πi,j
≤ 1

TABLE I
SCHEDULER OVERHEAD ACCOUNTING

There are three cases:
• Response accounting (RA), δi,j = δb

i,j , when the entire
overhead is executing within the limit of the action,
keeping both the limit and period (and thus the utilization)
of the actions constant but increasing the response-time
bounds.

• Utilization accounting (UA), δi,j = δu
i,j , when the entire

overhead increases the limit of the action, and thus
the utilization, but the response-time bounds remain the
same.

• Combined accounting (RUA), with δi,j = δb
i,j + δu

i,j ,
δb
i,j > 0, and δu

i,j > 0, which offers the possibility to
trade-off utilization for response time, for each action, in
the presence of scheduler overhead.

For an action αi,j , in the presence of overhead, we denote
the new load by l∗i,j , the new limit by λ∗i,j , and the new
utilization by u∗i,j . Using these new parameters for an action
we determine the new upper and lower response-time bounds
which we denote with bu∗

i,j and bl∗
i,j , respectively. The upper

response-time bound bu∗
i,j for action αi,j is

bu∗
i,j =

�
l∗i,j
λ∗i,j

�
πi,j + πi,j − 1. (6)

The lower response-time bound bl∗
i,j for αi,j using the late

release strategy is

bl∗
i,j =

�
l∗i,j
λ∗i,j

�
πi,j , (7)

whereas using the early release strategy is

bl∗
i,j =

�
l∗i,j
λ∗i,j

�
πi,j . (8)

In the previous section we have given an upper bound on the
number of preemptions that an action will experience during
one period. This number is used to compute the scheduler
overhead and hence the new response-time bounds for the
respective action. As shown in Figure 3 and discussed in
the remainder of this section, both the upper and the lower
bounds increase if we assume that the worst-case number of
preemptions actually occurs. However, our analysis does not

jitter

response time

bl∗
i,j bu∗

i,j

bl
i,j bu

i,j

Fig. 3. Bounds and jitter with and without overhead

provide information on the actual number of scheduler invo-
cations during one period. Hence, when determining the upper
bound on response-time jitter, the assumption that an action
always experiences the worst-case number of preemptions is
invalid. Therefore, the jitter is at most the difference between
the new upper response-time bound bu∗

i,j and the ideal lower
response-time bound bl

i,j , as shown in Figure 3.
Table I summarizes the three cases which we discuss in

detail in the remainder of this section. We elaborate on the
change in response-time bounds, utilization, and jitter for each
case.

A. Response Accounting
In the response accounting case each action executes for

less time than its actual limit so that enough time remains
for the scheduler execution. As a result, the action will not
execute more than its limit even when scheduler overhead is
considered. In this way the utilization of the action remains
the same but its response-time bounds increase. We have that
δi,j = δb

i,j .

0 40 80 120

0 60 120

0 100

P

P

P

1

2

3

R L R,L R L R R,L L R,L

Fig. 4. Example of response accounting of scheduler overhead

Example 2: Consider the same processes as in Example 1.
The schedule in Figure 4 shows how the scheduler overhead
can be accounted for. At each scheduler invocation due to
release (labeled with R), the process that is scheduled to run
accounts for the overhead. Note that in our analysis, unlike in
this example schedule, we account for an over-approximation
of the number of scheduler invocations due to release. In the
case of preemptions due to limit or completion (labeled with
L or C) the preempted process accounts for the overhead. This
implies that in case of preemptions due to limit, the action has
to be preempted before the limit is exhausted so that there is
time for the scheduler to execute within the limit.

The response-time bounds for each action differ from the
ones given in Section III-B due to the fact that each action
can execute less of its own load in the presence of scheduler
overhead. We compute the new load of the action αi,j as

l∗i,j = li,j +
�

li,j
λi,j − δi,j

�
δi,j .

An obvious condition for the system to be feasible is δi,j <
λi,j . Intuitively, if δi,j = λi,j , the action αi,j would make
no progress within one period as it will just be executing
the scheduler, and hence it will never complete its load. If
δi,j > λi,j , given that the execution of the scheduler is
nonpreemptable, αi,j will exceed its limit λi,j , which may
result in process actions missing their deadlines or processes
not being schedulable anymore. The new limit and utilization
of the action are the same as without overhead, i.e. λ∗i,j = λi,j

and u∗i,j = ui,j = λi,j

πi,j
. Since l∗i,j > li,j and λ∗i,j = λi,j , we

get that both the upper and the lower response-time bound
increases in case of response accounting.

Proposition 2: Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of
VBS processes each with bandwidth cap ui. If

�
i∈I ui ≤ 1

and δi,j < λi,j , with δi,j , λi,j as defined above, then the
set of processes are schedulable with respect to the new
response-time bounds bu∗

i,j and bl∗
i,j , in the presence of worst-

case scheduler overhead.
Proof: The proof follows from Proposition 1, and the

discussion above, when substituting the load li,j with the new
load l∗i,j .

The jitter for any action αi,j in the response accounting case
is at most bu∗

i,j − bl
i,j .

For further reference, we write the new load in the response
accounting case as a function

RA(l,λ, δ) = l +
�

l

λ− δ

�
δ.

B. Utilization Accounting

In the utilization accounting case an action is allowed to
execute for more time than its original limit within a period
in order to account for scheduler overhead. Thus, we have that
δi,j = δu

i,j . The new load of action αi,j becomes

l∗i,j = li,j +
�

li,j
λi,j

�
δi,j .

The new limit is λ∗i,j = λi,j + δi,j , and the new utilization is

u∗i,j =
λi,j + δi,j

πi,j
.

Proposition 3: Given a set of processes P = {Pi(ui) | 1 ≤
i ≤ n}, let

u∗i = max
j≥0

λi,j + δi,j

πi,j
.

If
�

i∈I u∗i ≤ 1, then the set of processes P is schedulable
with respect to the original response-time bounds bu

i,j and
bl
i,j defined in Section III-B, in the presence of worst-case

scheduler overhead.
Proof: We consider a modified set of processes P∗ =

{P ∗
i (u∗i) | 1 ≤ i ≤ n}. By Proposition 1, this set of processes

is schedulable with respect to the response-time bounds bu∗
i,j

and bl∗
i,j calculated using the new load l∗i,j and the new limit

λ∗i,j . We will prove that the upper response-time bounds with
the new load and limit for action αi,j are the same as the
original upper bounds without overhead (bu∗

i,j = bu
i,j), and the

new lower bound is not lower than the old lower bound (bl∗
i,j ≥

bl
i,j). We start by showing that

�
l∗i,j

λ∗i,j

�
=

�
li,j

λi,j

�
.

Let d ∈ R be the difference

d =
�

li,j
λi,j

�
−

l∗i,j
λ∗i,j

.

It suffices to establish that d ∈ [0, 1) in order to prove our
claim. We have,

d =
�

li,j
λi,j

�
−

li,j +
�

li,j

λi,j

�
δi,j

λi,j + δi,j
=

�
li,j

λi,j

�
λi,j − li,j

λi,j + δi,j
.

Both
�

li,j

λi,j

�
λi,j − li,j ≥ 0 and λi,j + δi,j > 0, so d ≥ 0.

If
�

li,j

λi,j

�
= li,j

λi,j
, then d = 0 and we are done. If

�
li,j

λi,j

�
�=

li,j

λi,j
, we can write

li,j =
�

li,j
λi,j

�
λi,j + ∆ =

�
li,j
λi,j

�
λi,j − (λi,j −∆),

for 0 < ∆ < λi,j . Therefore,

d =
λi,j −∆
λi,j + δi,j

<
λi,j

λi,j + δi,j
< 1.

Hence we have established
�

l∗i,j

λ∗i,j

�
=

�
li,j

λi,j

�
. We then show

that
�

l∗i,j

λ∗i,j

�
≥

�
li,j

λi,j

�
. There are three cases to consider:

1) If λi,j does not divide li,j , and λ∗i,j does not divide l∗i,j ,
then

�
l∗i,j

λ∗i,j

�
=

�
li,j

λi,j

�
.

2) If λi,j does not divide li,j , but λ∗i,j divides l∗i,j , then�
l∗i,j

λ∗i,j

�
=

�
l∗i,j

λ∗i,j

�
>

�
li,j

λi,j

�
.

3) The case when λi,j divides li,j , but λ∗i,j does not divide
l∗i,j is not possible, since if λi,j divides li,j , then d = 0
(see above) implying that λ∗i,j divides l∗i,j .

Hence, the set of processes is schedulable with respect to
the old upper bound and the new lower bound (which is
greater than or equal to the old lower bound), which makes it
schedulable with respect to the old bounds.

In the utilization accounting case, the jitter for any action
is the same as in the analysis without overhead, because the
response-time bounds are the same.

We write the new load again as a function

UA(l,λ, δ) = l +
�

l

λ

�
δ.

C. Combined Accounting

In the combined accounting case, both the response-time
bounds and the utilization of an action increase. We have that
δi,j = δb

i,j + δu
i,j , δb

i,j > 0, and δu
i,j > 0. Given an action αi,j

with its associated virtual periodic resource Ri,j = (λi,j , πi,j),
and load li,j , the new load l∗i,j is computed in two steps. First
we account for the overhead that increases the response time

l�i,j = li,j +

�
li,j

λi,j − δb
i,j

�
δb
i,j

 180

 200

 220

 240

 260

 0 20 40 60 80 100

 40

 42

 44

 46

 48

 50
re

sp
o

n
se

 t
im

e
[m

s]

u
ti

li
za

ti
o

n
 (

%
)

δb
 [µs]

ji
tt

er

late strategy

b
l

b
l*

b
u

b
u* u u

*

Fig. 5. Response time and utilization with δb varying in [0µs, 100µs] for
α = (7300µs, (400µs, 1000µs)) using the late strategy

and then we add the overhead that increases the utilization

l∗i,j = l�i,j +
�

l�i,j
λi,j

�
δu
i,j .

The load function for the combined case is therefore

RUA(l,λ, δb, δu) = UA(RA(l,λ, δb), λ, δu).

The new limit for action αi,j is λ∗i,j = λi,j + δu
i,j , and the

utilization becomes

u∗i,j =
λi,j + δu

i,j

πi,j
.

The upper response-time bound bu∗
i,j for action αi,j is now

bu∗
i,j =

�
RUA(li,j , λi,j , δb

i,j , δ
u
i,j)

λi,j + δu
i,j

�
πi,j + πi,j − 1.

The lower response-time bound bl∗
i,j for the same action using

the late release strategy is

bl∗
i,j =

�
RUA(li,j , λi,j , δb

i,j , δ
u
i,j)

λi,j + δu
i,j

�
πi,j ,

and using the early release strategy is

bl∗
i,j =

�
RUA(li,j , λi,j , δb

i,j , δ
u
i,j)

λi,j + δu
i,j

�
πi,j .

Proposition 4: Given a set of processes P = {Pi(ui) | 1 ≤
i ≤ n}, let

u∗i = max
j≥0

λi,j + δu
i,j

πi,j
.

If
�

i∈I u∗i ≤ 1, then the set of processes P is schedulable
with respect to the response-time bounds bu∗

i,j and bl∗
i,j , in the

presence of worst-case scheduler overhead.
Proof: This schedulability result is derived by combining

Proposition 2 and Proposition 3 in the response accounting
and utilization accounting case, respectively.

Figure 5 shows the effect of the scheduler overhead distribu-
tion on the response time and utilization for an example action.
We consider the action α with limit λ = 400µs, period π =
1000µs, and load l = 7300µs. The total scheduler overhead
of δ = 100µs corresponds to 100 scheduler invocations, each
with overhead ξ = 1µs. If δb = 0 (utilization accounting),
the lower and upper response-time bounds bl∗ and bu∗ remain
the same as the respective bounds bl and bu without scheduler

0 40 80 120

0 60 120

0 100

0 20 40 60 80 100 120

P

P

P

P

1

2

3

S

R L R,L R L R L L LRR

Fig. 6. Example of scheduler overhead as a separate, virtual VBS process PS
for the combined accounting case

overhead accounting but the utilization u∗ is 10% higher than
the utilization u without scheduler overhead accounting. If
δb = δ (response accounting), we have that u∗ = u but bl∗

and bu∗ are several periods larger than bl and bu, respectively,
also resulting in a larger bound bu∗ − bl on the response-time
jitter. As δb increases, u∗ decreases while bu∗ increases along
with bl∗ and the jitter bound. Note that, depending on the
involved parameters, we can change the overhead distribution
within some intervals such that the utilization decreases but the
response-time bounds remain the same, for example, when δb

varies between 0µs and 16µs.

VI. OPTIMIZATION

There is a natural division of the VBS scheduler overhead
into overhead due to release δR

i,j and overhead due to limit/-
completion δL

i,j . In Section IV we bounded the overhead due
to release for each period of an action as δR

i,j = NR
i,j · ξ.

In this estimate, each action accounts for the release of each
of the other actions in the system, or in other words, when
an action is activated all other processes account for the
overhead, although at most one process is truly preempted.
This is clearly an over-approximation. As already discussed,
all preemptions due to release occur at time instants given by
the set {k ·gcd({πi,j | i ∈ I, j ≥ 0}) | k ∈ N}. Hence, instead
of letting other processes account for the release overhead, the
overhead can be modeled as a separate, virtual VBS process
with the same action repeated infinitely many times. We
call this process the scheduler process. Introducing a virtual
process allows accounting for the overhead due to release only
once, and not (as before) in every process. As a result, the
estimate on scheduler invocations may improve. A sufficient
condition for improvement of the estimate is that there exists a
process Pm that accounts, in the original estimate, for as many
scheduler invocations as the scheduler process, i.e., gcd({πi,j |
i ∈ I, j ≥ 0}) equals gcd({πi,j | i ∈ I, j ≥ 0, i �= m}).

In addition to a set of VBS processes (as before) there is the
scheduler process PS with all actions equal αS,j = (ξ, RS)
where RS = (λS , πS) = (ξ, gcd({πi,j | i ∈ I, j ≥ 0}). Thus,
the utilization of the scheduler process is

uS =
ξ

gcd({πi,j | i ∈ I, j ≥ 0}) .

Note that the scheduler process accounts only for the preemp-
tions due to the release of an action but not for the actions
using all their limit or completing their load.

Case Overhead distribution Load Utilization Schedulability test

RA δb
i,j = δL

i,j + δR
i,j , δu

i,j = 0 l∗i,j = li,j +
l

li,j
λi,j−δi,j

m
δi,j u∗i,j =

λi,j

πi,j

P
i∈I maxj≥0

λi,j

πi,j
≤ 1

UA δb
i,j = 0, δu

i,j = δL
i,j + δR

i,j l∗i,j = li,j +
l

li,j
λi,j

m
ξ u∗i,j =

λi,j + ξ

πi,j

P
i∈I maxj≥0

λi,j + ξ

πi,j
≤ 1− uS

RUA δb
i,j = δL

i,j , δu
i,j = δR

i,j l∗i,j = li,j +
l

li,j
λi,j−ξ

m
ξ u∗i,j =

λi,j

πi,j

P
i∈I maxj≥0

λi,j

πi,j
≤ 1− uS

TABLE II
CASES WITH OPTIMIZATION

Example 3: Consider the same processes as in Example 1.
The schedule in Figure 6 shows how the scheduler overhead
resulting from releases is integrated into the scheduler process.
In cases where preemption can occur due to multiple reasons,
such as at time 20, we prioritize the release and let the
scheduler process run. Note that the non-optimized estimate
on scheduler invocations for this example is larger than the
optimized estimate, which happens to coincide with the actual
number of scheduler invocations in this case.

Table II summarizes the effect of the optimization to all
cases. Note that the response accounting case cannot be
optimized, since δu

i,j = 0 in this case.

A. Combined accounting
In the combined accounting case an optimization is possible

only in the case δu
i,j = δR

i,j and δb
i,j = δL

i,j = ξ. The overhead
due to limit/completion continues to add to the response time
of each process and thus the new load for action αi,j is

l∗i,j = li,j +
�

li,j
λi,j − ξ

�
ξ

and the utilization remains the same. The bounds bu∗
i,j and bl∗

i,j

are given by (6), (7) and (8), as before. The next result presents
an optimization to Proposition 4.

Proposition 5: Given a set of processes P = {Pi(ui) | 1 ≤
i ≤ n}, if

�
i∈I ui ≤ 1 − uS , then the set of processes P is

schedulable with respect to the response-time bounds bu∗
i,j and

bl∗
i,j , in the presence of worst-case scheduler overhead.

Proof: Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of
VBS processes each with bandwidth cap ui. Let PS be the
scheduler process as defined above. It is important to note
that the scheduler process generates tasks that always have the
highest priority when released. This is because the action αS,k

has the period πS = gcd({πi,j | i ∈ I, j ≥ 0})) ≤ πi,j ,∀i ∈
I, ∀j ≥ 0. Hence, at every invocation time of the action its
deadline is earlier or at the same time as any other deadline
in the system and thus we can be sure it is never preempted
by any other task using EDF. By Proposition 4 we get that the
extended set of processes (together with the scheduler process)
is schedulable with respect to the new bounds if

uS +
�

i∈I

max
j≥0

λi,j

πi,j
≤ 1.

B. Utilization accounting
In the case when the entire overhead increases the utilization

of an action, optimization is possible. For the preemptions due

to limit or completion, the limit of the action αi,j becomes
λ∗i,j = λi,j + ξ and therefore the utilization is

u∗i,j =
λi,j + ξ

πi,j
.

Note that it is not possible to account for such preemptions in
the scheduler process as that would mean that the scheduler
process could execute at every time instant of the “fine-grained
timeline”. The next result presents the optimized version of
Proposition 3.

Proposition 6: Given a set of processes P = {Pi(ui) | 1 ≤
i ≤ n}, let

u∗i = max
j≥0

λi,j + ξ

πi,j
.

If
�

i∈I u∗i ≤ 1−uS , then the set of processes P is schedulable
with respect to the response-time bounds bu

i,j and bl
i,j defined

in Section III-B, in the presence of worst-case scheduler
overhead.

Proof: The proof is similar to Proposition 3 and Propo-
sition 5 with the difference that at any time the system
consists of tasks with the type (λi,j +ξ,πi,j) generated by the
processes in P and tasks generated by the scheduler process.
The response-time bounds are proven to remain unchanged by
substituting δi,j with ξ in Proposition 3.
The set of processes is not schedulable if ξ ≥ gcd({πi,j |
i ∈ I, j ≥ 0}), since then the scheduler process has already
utilization at least 1. The utilization that can be used by
processes may drop to 0 if ξ = c. The system is thus better
suited for values of c that respect the condition ξ � c ≤
gcd({πi,j | i ∈ I, j ≥ 0}).

VII. EXPERIMENTS

We have conducted a series of experiments, using different
simulated processes and actions, that show the accuracy of
the estimate on scheduler invocations. First, we measure the
number of scheduler invocations during a period of an action
with a virtual periodic resource of (256, 512), averaged over
the whole execution of the action. We compare this to the
estimate on scheduler invocations computed in Section IV.
If the concurrently running actions have periods that are
harmonic to the period of the measured action, the estimate
equals the actual number of scheduler invocations. We show
the accuracy of the estimate for non-harmonic periods. The
first experiment (Figure 7(a)) shows the estimate and the
actual number of scheduler invocations (y-axis) when two
other actions run concurrently with the measured action. We
vary the concurrent actions such that their periods result in an
increasing gcd (logarithmic x-axis). The periods are chosen
as multiples of the gcd. As can be seen from the figure,

 20

 40

 60

 80

 100

 120

 140

 160

3 5 7 11 17 31 59 127

sc
h

ed
u

le
r

in
v

o
ca

ti
o

n
s

gcd

estimate
average for π1 = 2•gcd, π2 = 3•gcd
average for π1 = 3•gcd, π2 = 5•gcd
average for π1 = 5•gcd, π2 = 7•gcd

average for π1 = 7•gcd, π2 = 11•gcd

(a) estimate vs. actual scheduler invocations

4 5
13

29
71

151
293 509

45
13

29
71

151
293

509

 360

 380

 400

 420

 440

 460

 480

 500

π1
π2

 360
 380
 400
 420
 440
 460
 480
 500
 520

(b) difference of estimate and actual scheduler invocations

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

3 5 7 11 17 31 59 127

sc
h

ed
u

le
r

in
v

o
ca

ti
o

n
s

gcd

non-optimized estimate
optimized estimate

actual scheduler invocations

(c) optimized vs. non-optimized estimate

Fig. 7. Accuracy of the estimate on scheduler invocations

the difference between the estimate and the actual number
of scheduler invocations depends not only on the gcd of the
periods involved but also on their values, i.e., if smaller periods
result in the same gcd, then the approximation is better.

The second experiment (Figure 7(b)) shows the difference
between the estimate and the actual number of scheduler
invocations (z-axis) when there are two actions running con-
currently with the measured action and the gcd of their periods
is 1. We measure the difference for every combination of
periods (logarithmic x- and y-axis) that are chosen from a set
of pairwise coprime numbers. This situation corresponds to
the worst possible scenario for the accuracy of the estimate.
Again, it can be seen that smaller periods result in a better
approximation.

In the third experiment (Figure 7(c)) we compare the
global optimized and non-optimized estimates, and the total
number of actual scheduler invocations measured for three
concurrently running actions over 100, 000 time units. The
periods of the actions are chosen so that they result in an
increasing gcd (logarithmic x-axis). The periods are actually
multiples of the gcd by 2, 3, and 5. For small values of the
gcd the accuracy of the optimized estimate is considerably
better than the accuracy of the non-optimized estimate. For
large values of the gcd, the estimates converge.

VIII. CONCLUSIONS

We have introduced response and utilization accounting of
scheduler overhead in the schedulability analysis of VBS. Re-
sponse accounting maintains CPU utilization at the expense of
increased response-time bounds whereas utilization accounting
maintains the bounds at the expense of increased utilization.
Our analysis may improve when accounting for scheduler
overhead due to releasing processes in a separate, virtual
VBS process. Combined response and utilization accounting is
possible and may be used in future work to trade-off response
time and utilization in solutions to finding appropriate server
configurations that also consider scheduler overhead (server
design problem).

REFERENCES

[1] S. S. Craciunas, C. M. Kirsch, H. Payer, H. Röck, and A. Sokolova,
“Programmable temporal isolation through variable-bandwidth servers,”
in Proc. SIES. IEEE Computer Society, 2009.

[2] S. S. Craciunas, C. M. Kirsch, H. Röck, and A. Sokolova, “Real-time
scheduling for workload-oriented programming,” University of Salzburg,
Tech. Rep. 2008-02, September 2008.

[3] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Systems, vol. 27, no. 2, pp. 123–167, 2004.

[4] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time
processes,” in Proc. RTSS. IEEE Computer Society, 2003, pp. 396–408.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp.
344–357, 1993.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. SIGCOMM. ACM, 1989, pp. 1–12.

[7] L. Abeni, G. Lipari, and G. Buttazzo, “Constant bandwidth vs. pro-
portional share resource allocation,” in Proc. ICMCS, vol. 2. IEEE
Computer Society, 1999, pp. 107–111.

[8] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
Proc. MMCN. ACM, 1998, pp. 150–164.

[9] G. Buttazzo and L. Abeni, “Adaptive workload management through
elastic scheduling,” Real-Time Systems, vol. 23, no. 1-2, pp. 7–24, 2002.

[10] T. Nakajima, “Resource reservation for adaptive QoS mapping in Real-
Time Mach,” in Proc. WPDRTS. IEEE Computer Society, 1998.

[11] G. Beccari, M. Reggiani, and F. Zanichelli, “Rate modulation of soft
real-time tasks in autonomous robot control systems,” in Proc. ECRTS.
IEEE Computer Society, 1999, pp. 21–28.

[12] M. A. C. Simoes, G. Lima, and E. Camponogara, “A GA-based approach
to dynamic reconfiguration of real-time systems,” in Proc. APRES.
IEEE Computer Society, 2008, pp. 1–4.

[13] K. Jeffay and D. Stone, “Accounting for interrupt handling costs in
dynamic priority task systems,” in Proc. RTSS. IEEE Computer Society,
1993, pp. 212–221.

[14] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Kluwer Academic Publishers, 1997.

[15] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engineer-
ing real-time fixed-priority schedulers,” IEEE Transactions on Software
Engineering, vol. 21, no. 5, pp. 475–480, 1995.

[16] G. Buttazzo and E. Bini, “Optimal dimensioning of a constant bandwidth
server,” in Proc. RTSS. IEEE Computer Society, 2006, pp. 169–177.

[17] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis of
fixed-priority schedulers,” IEEE Transactions on Software Engineering,
vol. 19, no. 9, pp. 920–934, 1993.

[18] J. Echague, I. Ripoll, and A. Crespo, “Hard real-time preemptively
scheduling with high context switch cost,” in Proc. ECRTS. IEEE
Computer Society, 1995, pp. 184–190.

[19] G. Buttazzo, “Rate monotonic vs. EDF: Judgment day,” Real-Time
Systems, vol. 29, no. 1, pp. 5–26, 2005.

[20] R. Gopalakrishnan and G. M. Parulkar, “Bringing real-time scheduling
theory and practice closer for multimedia computing,” in Proc. SIGMET-
RICS. ACM, 1996, pp. 1–12.

[21] R. Dobrin and G. Fohler, “Reducing the number of preemptions in fixed-
priority scheduling,” in Proc. ECRTS. IEEE Computer Society, 2004,
pp. 144–152.

[22] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” IEEE Transactions on Computers,
vol. 47, no. 6, pp. 700–713, 1998.

[23] H. Ramaprasad and F. Mueller, “Bounding preemption delay within data
cache reference patterns for real-time tasks,” in Proc. RTAS. IEEE
Computer Society, 2006, pp. 71–80.

[24] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. RTSS. IEEE Computer Society, 2003, pp. 2–14.

