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We study parametric Markov decision processes (PMDPs) and their reachability probabilities ”inde-
pendent” of the parameters. Different to existing work on parameter synthesis (implemented in the
tools PARAM and PRISM), our main focus is on describing different types of optimal determinis-
tic memoryless schedulers for the whole parameter range. We implement a simple prototype tool
SEA-PARAM that computes these optimal schedulers and show experimental results.

1 Introduction

A Markov decision process (MDP) [2] is a state-based Markov model in which a state can perform one
of the available action-labeled transitions after which it ends up in a next state according to a probability
distribution on states. The choice of a transition to take is nondeterministic, but once a transition is chosen
the behaviour is probabilistic. MDPs provide a valuable mathematical framework to solve control and
dependability problems in a wide range of applications, including the control of epidemic processes [20],
power management [24], queueing systems [28], and cyber-physical systems [21]. MDPs are also known
as reactive probabilistic systems [19, 10] and closely related to probabilistic automata [27].

In this paper, we study parametric Markov decision processes (PMDPs) [6, 12]. These are models in
which (some of) the transition probabilities depend on a set of parameters. An example of an action in a
PMDP is tossing a (possibly unfair) coin which lands heads with probability p and tails with probability
1− p where p ∈ [0,1] is a parameter. Hence, a PMDP represents a whole family of MDPs—one for each
valuation of the parameters.

We study reachability properties in PMDPs. To explain what we do exactly, let us take a step back.
If an MDP can only perform a single action in each state, then it is a Markov chain (MC). If a PMDP can
perform a single action in each state, then it is a parametric Markov chain (PMC). Given a start state and
a target state in a PMC, the probability of reaching the target from the start state is a rational function
in the set of parameters. This rational function can be elegantly computed by the method of Daws [8]
providing arithmetic interpretation for regular expressions. The method has been further developed and
efficiently implemented in the tool PARAM [13, 11, 12].

Clearly, there is no such thing as the probability of reaching a target state from a starting state in
an MDP: such a reachability probability depends on which actions were taken along the way, i.e., of
how the nondeterministic choices were resolved. What is usually of interest though are the min/max
reachability probabilities, i.e., among all possible ways to resolve the nondeterministic choices, those
that provide minimal/maximal probability of reaching a state. Nondeterministic choices are resolved
using schedulers or policies, and luckily when it comes to min/max reachability probabilities simple
schedulers suffice [2]. Simple schedulers are deterministic and memoryless, i.e., history independent.
Given an MDP, a simple scheduler induces an MC, and the reachability probabilities under this scheduler
are simply the reachability probabilities of the induced MC.

http://creativecommons.org
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With PMDPs, the situation is even more delicate. The probability of reaching a target state from
a starting state depends on the scheduler, i.e., on how the nondeterministic choices were resolved, as
well as on the values of the parameters. The full reachability picture looks like a sea — each scheduler
imposes a rational function — a wave — over the parameter range; the sea then consists of all the waves.

There are two possible scenarios of interest:

(1) We have access to the parameters.

(2) We have no access to the parameters, they represent uncertainty or noise or choices of the environ-
ment.

In case (1), parameter synthesis is the problem to solve. The parameter synthesis problem comes in
two flavours: (a) Find the parameter values that maximise / minimise the reachability probability; (b) For
each value of the parameters, find the max/min reachability probability. These are the problems that have
attracted most attention in the analysis of PMCs [4, 14, 23, 9, 25] and PMDPs [6, 12], see Section 2 for
more details.

In this paper, we consider case (2) and propose solutions for imposing bounds on the reachability
probabilities throughout the whole parameter range.

In particular we:

• Start by enumerating all simple schedulers and computing their corresponding rational functions.

• Identify classes of optimal schedulers, for different problems of interest, see Section 5.

• Provide a tool that computes optimal schedulers in each of the classes for a given PMDP, see
Section 7.

We admit that we take upon this task knowing that it is computationally hard. Already the number of
simple schedulers is exponential in the number of states of the involved PMDP. Optimisation is in general
also hard (computing maxima, minima, and integrals of the involved rational functions), see Section 7
for references and more details. Nevertheless, the analysis that we aim at is not an online analysis, but
rather a preprocessing step, and even if it may only work on small examples, it provides insight in the
behaviour of a system and its schedulers.

Our tool extensively uses the state-of-the-art tools PARAM1 [13, 11] and PARAM2 [12] for efficient
computation of the rational functions, see Section 2 and Section 7 for details. Once we have all schedulers
and their respective waves, we feed the waves to a numerical tool that allows us to calculate the optimal
schedulers.
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Figure 1: 2× 2 Labyrinth with
sink at (1,2)

We experiment with a class of examples describing the behaviour
of a robot walking in a labyrinth grid. Each position on the grid is a
state of the MDP, and the available actions are N, S, E, and W , describ-
ing the directions (north, south, east, and west) of a possible move.
Not all actions are available in every state. Some states represent holes
(sinks) in which no action is available, others correspond to border-
positions, and hence some actions are disabled. See Section 6 for fur-
ther description of our class of examples. One small concrete example
in this class is the PMDP describing a 2×2 grid with a sink at position
(1,2). In (1,1) the actions N and E are available, in (2,1) the actions N and W , and in (2,2), the actions
S and W .

The model is parametric with two parameters l and r having the following meaning: In a state s with
an enabled action M, the robot moves forward with probability 1− l− r to its intended state s′, or ends
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Figure 2: The behavior of state (1,1)

(a) Fixed failure (b) Fixed success

Figure 3: The sea of reachability probabilities from state (1,1) to state (2,2)

up in the state sl left of s (in the direction of the move) with probability l, and in the state sr right of s (in
the directions of the move) with probability r, provided both states sl and sr exist. If one of sl or sr does
not exist, then we consider two scenarios:

• Fixed failure: In this scenario, the probability to the existing state sl or sr remains l or r, but the
probability of reaching s′ increases to 1− l or 1− r, respectively.

• Fixed success: Here, the probability to s′ remains the same, and the probability to sl or sr (whichever
exists) becomes l + r.

Figure 2 shows the behaviour of state (1,1) in both scenarios and Figure 3 pictures all waves – rational
functions corresponding to reachability of target state (2,2) from the starting state (1,1) – in each of the
two scenarios.

As we can see even in this small example, the reachability probability varies through the parameter
range and significantly depends on the chosen scheduler. For different purposes, different schedulers
may be preferred. We identify ten classes of optimal schedulers that may be preferred in certain cases.
For example, one may wish to use a scheduler that guarantees highest reachability probability for any
value of the parameter, if such a scheduler exists. We call such a scheduler dominant. That would be
the red scheduler in Figure 3a. In Figure 3b there is no dominant scheduler. However, one may prefer
a scheduler that reaches the maximum value (reachability probability 1 in this case) for some value of
the parameter. We call such schedulers optimistic. In Figure 3b the red and the green schedulers are
optimistic. In addition, one may prefer the red over the green, as under the assumption of a uniform
distribution of parameters, the red has a higher value over a larger parameter region — we call such
schedulers expecation schedulers. For yet another purpose, one may prefer the yellow or the blue sched-
uler, as its difference in reachability probabilities is the smallest — the bound scheduler according to our
definition.

See Section 5 for the exact definitions of all classes of optimal schedulers.
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Finally, we mention that we started analysing simple schedulers as a first step in the scheduler anal-
ysis of PMDPs. As we discuss in Section 8, we are aware that optimal schedulers (in our classes) need
not be simple. Nevertheless, we believe that conquering simple schedulers is an important first step.

2 Related Work

In the last decade there has been a growing interest in studying parametric probabilistic models [8, 18]
where some of the probabilities (or rates) in the models are not known a-priori. These models are very
useful when certain quantities (e.g. fault rates, packet loss ratios, etc.) are partially available (which is
often the case) or unavailable at the design time of a system. In his seminal work [8], Daws studies the
problem of symbolic model checking of parametric probabilistic Markov chains. He provides a method
based on regular expressions extraction and state elimination to symbolically express the probability to
reach a target state from a starting state as a multivariate rational function whose domain is the param-
eter space. This technique was further investigated and implemented in the PARAM1 and PARAM2
tools [13, 11] and it is now also included in the popular PRISM model checker [17]. In this context, the
problem of parameter synthesis for a parametric Markov chain consists of solving a constrained nonlin-
ear optimisation problem where the objective function is a multivariate rational function representing the
probability to satisfy a given reachability property depending on the parameters. As discussed in [16, 18]
and later in this paper, when the order of these multivariate rational functions is high, such constrained
optimisation problem can become computationally very expensive.

In [4] Bartocci et al. introduce a complementary technique to parameter synthesis, called model
repair, that exploits the PARAM1 tool in combination with a nonlinear optimisation tool to find auto-
matically the minimal change of the parameter values required for a model to satisfy a given reachability
property that the model originally violates. In this case the problem boils down to solving a nonlinear
optimisation program having for objective function an L2-norm (quadratic and indeed suitable for con-
vex optimisation) measuring the distance between the original parameter values and the new ones and
having as constrains the multivariate rational function associated with the reachability property.

Recently, more sophisticated symbolic parameter synthesis techniques [14, 23, 9, 25] based also on
SMT solvers and greedy approaches [23] have further improved this field of research. At the same time
statistical-based approaches leveraging powerful machine learning techniques [5, 3] have been shown
to provide better scaling of the model checking problem for large parametric continuous Markov chains
when the number of parameters is limited and the event of satisfying the property is not rare.

All the aforementioned methods do not natively support nondeterministic choice and are indeed not
suitable for solving parametric Markov decision processes. The parametric model checking problem for
this class of models has been addressed so far in the literature using two complementary methods [6, 12].

The first method, implemented in PARAM2 [12], is a region-based approach where the parameter
space is divided into regions representing sets of parameter valuations. For each region, lower and upper
bounds on optimal parameter values are computed by evaluating the edge points of the regions. Given
a desired level of precision for the result as input, the algorithm decides whether to further split the
region into smaller ones to be explored or to terminate with the intervals found. The correctness and
the termination of this algorithm is guaranteed only under certain assumptions as discussed in [12]. The
second method [6] is a sampling-based approach (i.e., based on sampling methods like the Metropolis-
Hastings algorithm, particle swarm optimisation, and the cross-entropy method) that are used to search
the parameter space. These heuristics usually do not guarantee that global optimal parameters will be
found. Furthermore, when the regions of the parameters satisfying a requirement are very small, a large
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amount of simulations is required.
We just became aware of a very recent work of Cubuktepe et al. [7] (to appear in TACAS’17) where

the authors consider the problem of parameter synthesis in parametric Markov decision processes using
signomial programs, a class of nonconvex optimisation problems for which it is possible to provide
suboptimal solutions.

3 Markov Chains and Markov Decision Processes

Definition 1 (Markov chain). A (discrete-time) Markov chain (MC) is a pair M = (S,P) where:

• S is a countable set of states, and

• P : S×S→ [0,1] is a transition probability function such that for all s in S, ∑s′∈S P(s,s′) = 1. �
Given an MC M = (S,P) and two states s, t ∈ S, we denote the probability to reach t from s by

PrM(s, t). If M is clear from the context, we will omit the superscript in the reachability probability.
We next present the definition of an MDP without atomic propositions and rewards, as they do not

play a role for what follows.

Definition 2 (Markov decision process). A (discrete-time) Markov Decision Process (MDP) is a triple
M = (S,Act,P) where:

• S is a countable set of states,

• Act is a set of actions,

• P : S×Act×S→ [0,1] is a transition probability function such that forall s in S and a in Act we
have ∑s′∈S P(s,a,s′) ∈ {0,1}. �

In this paper we only consider finite MCs and MDPs, that is MCs and MDPs in which the set of
states S (and actions Act) is finite. If needed, we may also specify a distinguished initial state s0 ∈ S in
an MC or an MDP.

An action a is enabled in an MDP state s iff ∑s′∈S P(s,a,s′) = 1. We denote by Act(s) the set of
enabled actions in state s. It is often required that Act(s) 6= /0 in an MDP, but we omit this requirement.
A state s for which Act(s) = /0 is called a sink. A simple scheduler resolves the nondeterministic choice,
selecting at each non-sink state s one of the enabled actions a∈Act(s). A synonym for a simple scheduler
is deterministic memoryless/history-independent scheduler.

Definition 3 (Simple scheduler). Given an MDP M = (S,Act,P), a simple scheduler ξ of M is a function
ξ : S→ Act+1 where 1 = {⊥} and + denotes disjoint union, satisfying ξ (s) ∈ Act(s) for all s ∈ S such
that Act(s) 6= /0, and ξ (s) =⊥ otherwise. �
Definition 4 (Scheduler-induced Markov chain). Let ξ be a simple scheduler of an MDP M. Then the
ξ -induced Markov chain is the Markov chain Mξ = (S,Pξ ) where Pξ (s, t) = P(s,ξ (s), t) if ξ (s) 6=⊥ and
Pξ (s,s) = 1 otherwise. �

Note that in this work we only consider simple schedulers. This justifies our nonstandard (and much
simpler) definition of an induced Markov chain. From now on we will sometimes simply say scheduler
for a simple scheduler.

Definition 5 (Maximum/Minimum reachability probabilities). Given an MDP M = (S,Act,P) and two
states s, t ∈ S, the maximum reachability probability from s to t is

PrM
max(s, t) = max

ξ

PrMξ (s, t),
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and similarly, the minimum reachability probability from s to t is given by

PrM
min(s, t) = min

ξ

PrMξ (s, t),

where ξ ranges over all simple schedulers. We call a scheduler ξ a maximal (minimal) scheduler from s
to t iff PrMξ (s, t) is the maximal (minimal) reachability probability from s to t. �

4 Parametric MCs and MDPs

We first recall the notion of a rational function (following [13, 11], with a small restriction). Let V =
{x1, . . . ,xn} be a fixed set of variables. An evaluation is a function v : V → R. A polynomial over V is a
function

g(x1, . . . ,xn) = ∑
i1,...,in

ai1,...,inxi1
1 · · ·x

in
n ,

where i j ∈ N for 1≤ j ≤ n and each ai1,...,in ∈ R. A rational function over V is a quotient

f (x1, . . . ,xn) =
g1(x1, . . . ,xn)

g2(x1, . . . ,xn)

of two polynomials g1 and g2 over V . By FV we denote the set of rational functions over V . Hence,
a rational function is a symbolic representation of a function from Rn to R. Given f ∈ FV and an
evaluation v, we write f 〈v〉 for f (v(x1), . . . ,v(xn)).

It is now straightforward to extend MCs and MDPs with parameters [8, 18, 13, 11]. Again, we only
consider finite models.

Definition 6 (Parametric Markov chain). A parametric (discrete-time) Markov chain (PMC) is a triple
M = (S,V,P) where:

• S is a finite set of states,

• V is a finite set of parameters, and

• P : S×S→FV is the parametric probability transition function. �

Given a PMC M = (S,V,P), a valuation v of the parameters induces an MC Mv = (S,Pv) where
Pv(s,s′) = P(s,s′)〈v〉 for all s,s′ ∈ S, if for all s in S we have ∑s′∈S P(s,s′)〈v〉= 1. If a valuation v induces
a Markov chain on M, then we call v admissible. The set of all admissible valuations for M is the
parameter space of M.

Similarly, we define parametric MDPs.

Definition 7 (Parametric Markov Decision Process). A parametric (discrete-time) Markov Decision Pro-
cess (PMDP) is a tuple M = (S,Act,V,P) where:

• S is a finite set of states,

• Act is a finite set of actions,

• V is a finite set of parameters, and

• P : S×Act×S→FV is the parametric transition probability function. �
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Also here a valuation may induce an MDP from a PMDP, in which case we call it admissible. Given
a PMDP M = (S,Act,V,P), a valuation v of the parameters induces an MDP Mv = (S,Act,Pv) where
Pv(s,a,s′) = P(s,a,s′)〈v〉, if for all s in S and a in Act we have ∑s′∈S P(s,a,s′)〈v〉 ∈ {0,1}. Also here, the
set of admissible valuations is the parameter space of M.

Notice that a PMDP M and its v-induced MDP Mv have the same set of states and actions, as well as
the same sets of enabled actions in each state, and therefore they have the same simple schedulers. Now,
starting from a PMDP M, and given its scheduler ξ , one may: (1) first consider the ξ -induced PMC Mξ

and then the v-induced MC (Mξ )v for a valuation v, or (2) one first takes the valuation-induced MDP
Mv and then its scheduler-induced MC (Mv)ξ . The result is the same and hence we write Mξ ,v for the
ξ -and-v-induced MC.

We now fix a source state s in a PMDP, and a target state t and discuss the reachability probabilities
that are now dependent on both the choice of a scheduler ξ and the choice of a parameter valuation
v. Given a valuation v and a scheduler ξ , the reachability probability is PrMξ ,v(s, t). The (reachability
probability) wave corresponding to ξ is a rational function fξ in the set of parameters, such that fξ 〈v〉=
PrMξ ,v(s, t). The (reachability probability) sea consists of all fξ for all schedulers ξ .

We also write (for a PMDP M):

PrMv
max(s, t) = maxξ PrMξ ,v(s, t),

Pr
Mξ

max(s, t) = maxv PrMξ ,v(s, t),
PrM

max(s, t) = maxξ ,v PrMξ ,v(s, t),

and similarly for the minimum reachability probabilities.

5 Classes of Optimal Schedulers

In this section we define and discuss a selection of types of optimal schedulers. This is meant to serve as
an invitation for the reader to further develop useful notions of optimality.

Our initial idea is the following: Once we have generated all rational functions (corresponding to all
schedulers), a type of optimality assigns a score to each rational function (and hence to the scheduler
inducing it). The optimal schedulers of this type then maximise or minimise the assigned score.

We introduce the notion of a dominant scheduler and nine additional types of optimal schedulers.
These types are: the optimistic, the pessimistic, the bound, the expectation, the stable, the ε-bounded,
the ε-stable, and the ε-bounded- and ε-stable-robust. We next present the definition for each of them.
For simplicity, we may use scheduler and function interchangeably — thus identifying a scheduler and
its induced rational function when no confusion may arise.

Definition 8 (Dominant scheduler). A scheduler ω is dominant if at any parameter valuation v, its func-
tion has the maximal value of all functions of all schedulers, i.e., ∀v.∀ξ . fω〈v〉 ≥ fξ 〈v〉. �

Definition 9 (Optimistic scheduler). A scheduler ω is optimistic, if its function has the maximal maxi-
mum value of all functions of all schedulers, i.e.,

PrMω

max(s, t) = maxξ Pr
Mξ

max(s, t) = PrM
max(s, t). �

Definition 10 (Pessimistic scheduler). A scheduler is pessimistic, if its function has the maximal mini-
mum value of all functions of all schedulers, i.e.,

PrMω

min(s, t) = maxξ Pr
Mξ

min(s, t). �



8 SEA-PARAM

Definition 11 (Bound scheduler). A scheduler is bound, if its function has the minimal range, i.e., mini-
mal difference between its maximal and minimal value of all functions of all schedulers, i.e.,

PrMω

max(s, t)−PrMω

min(s, t) = minξ

(
Pr

Mξ

max(s, t)−Pr
Mξ

min(s, t)
)
. �

Definition 12 (ε-Bounded scheduler). A scheduler ξ is ε-bounded if the length of the (closed-interval)
range of its function is bounded by ε , i.e.,

Pr
Mξ

max(s, t)−Pr
Mξ

min(s, t)≤ ε

for a non-negative real number ε . �

Definition 13 (ε-Bounded robust scheduler). A scheduler ω is ε-bounded robust if it is the maximal
among all ε-bounded schedulers, i.e., ∀v.∀ ε-bound ξ . fω〈v〉 ≥ fξ 〈v〉. �

The intuition behind these types of optimal schedulers is the following. If a user does not know the
value of the parameters, then taking the

• dominant scheduler guarantees that one can do as good as it gets independent of the parameters;

• optimistic scheduler guarantees that one can do as good as it gets in case the parameters are the
best possible;

• pessimistic scheduler guarantees that no matter what the parameters are, even in the worst case we
will perform better than the worst case of any other scheduler;

• bound scheduler guarantees that one will see minimal difference in reachability probability by
varying the parameters;

• ε-boundness is an absolute notion guaranteeing that such a scheduler never has a larger difference
in reachability probability than ε;

• finally, ε-bounded robustness gives the maximal scheduler among all ε-bounded ones.

Dominant, ε-bounded, and ε-bounded robust schedulers need not exist.
Note that computing optimistic, pessimistic, bound, ε-bounded, and ε-bounded robust schedulers

requires computing the maximum and the minimum of the involved functions, which is in general
hard [16], see Section 7 for more details.

The following classes do not require computing extremal values and may provide a better global
picture of the reachability probabilities. Their optimality is based on maximising/minimising or bound-
ing the probability mass over the whole parameter space, also allowing for specifying a probability
distribution on the parameter space. If the distribution of parameters is unknown, we assume uniform
distribution. However, it is likely that a distribution of parameters is known or can be estimated, in which
case these schedulers take it into account. From now on, Let p denote a probability density function over
the parameter space.

Before we proceed, let us define the expectation and variance of a scheduler. The expectation of
a scheduler ξ is E(ξ ) = E( fξ ) =

∫
fξ d p and the variance is Var(ξ ) = E(ξ −E(ξ ))2. Note that here

ξ −E(ξ ) denotes the rational function fξ −E(ξ ).

Definition 14 (Expectation Scheduler). A scheduler is an expectation scheduler, if its function has the
maximal expected value of all functions of all schedulers, i.e., ω is an expectation scheduler if E(ω) =
maxξ E(ξ ). �

Definition 15 (Stable scheduler). A scheduler ω is stable, if its function has the minimal variance, i.e.,
Var(ω) = minξ Var(ξ ). �
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Definition 16 (ε-Stable scheduler). A scheduler ξ is ε-stable if its variance is bounded by ε , i.e.,
Var(ξ )≤ ε

for a non-negative real number ε . �

Definition 17 ( ε-Stable robust scheduler). A scheduler ω is ε-stable robust if it its expectation is maxi-
mal among all ε-stable schedulers, i.e., E(ω) = max ε-stable ξ E(ξ ). �

If a dominant scheduler exists, then it is also optimistic, pessimistic, and expectation optimal.

Example 1. Consider the 2×2 labyrinth with sink at (1,2) from Figure ?? in the introduction.
In the fixed failure case, Figure 3a, the red scheduler is dominant (and hence optimistic, pessimistic,

and expectation optimal). All schedulers are optimistic, pessimistic, and bound. The yellow scheduler is
stable, and the blue is (median variance)-stable.

In the fixed success case, Figure 3b, there is no dominant scheduler. The red and green schedulers
are optimistic, all are pessimistic, the yellow and the blue are bound. The red is expectation optimal, the
yellow is stable, and the blue is (median variance)-stable robust.

6 Parametric Labyrinths

The class of examples of a robot in a labyrinth provides a wide playground for studying parametric
models. We consider n×n labyrinths. States are the positions in the labyrinth, and the set of actions is
{N,S,E,W}.

Taking an action probabilistically determines the next state, as the robot may indeed reach the in-
tended new position or fail to do so and end up in another unintended position. There are many ways
to specify what happens if the robot fails, we chose the way as in the example in the introduction: our
robot can fail to reach the intended position and instead end up left or right of its current position with a
certain probability.

A most general way to turn this into a parametric model is to consider all probabilities depending on
a parameter, e.g. in every state, for every action, there is a parameter that provides the probability to fail
left and another that provides the probability to fail right, and the probability of success is determined by
the values of these two parameters. This results in a model with 8|S|= 8n2 parameters.

We simplify this general scenario and limit the parameters to smaller numbers. In particular, we
consider models with k parameters where

(1) k = 8 and we take per action two parameters (e.g. for action N, the probability to fail left with
action N and the probability to fail right), which are then the same in every state whenever this
action is taken.

(2) k = 2 and we take two parameters l and r that serve the purpose like in (1) and in the example in
the introduction for every state and every action.

(3) k = 1 and we have a single parameter p in the model that serves the purpose like in (2) for every
state and every action.

In all of these cases for states on the boundary we consider one of the two scenarios – fixed failure
or fixed success – as specified for the example in the introduction.

In addition, we experiment with making some states sink states, just like we did with state (1,2) in
the introduction example.
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7 Implementation and Experiments

We have implemented a first prototype of SEA-PARAM leveraging the open-source parametric model
checking framework of the PRISM model checker [17] and Wolfram Mathematica1.

SEA-PARAM receives as input a PMDP and a reachability property. Firstly, it explores all the pos-
sible memoryless schedulers generating for each of them a multivariate rational function that maps the
parameter space into the probability to satisfy the desired property. For the generation and the manipula-
tion of the multivariate rational functions, PRISM leverages the Java Algebra Systems (JAS)2. This task
is embarrassingly parallel, since each memoryless scheduler can be treated independently from the oth-
ers. We exploit this with a concurrent implementation, which leads to constant (given by the number of
cores) speed-up. However, in the worst-case the number of schedulers (which we straightforwardly enu-
merate in this first attempt) can be exponential in the number of states, resulting in exponential running
time.

After the memoryless schedulers enumeration and function computation, the corresponding multi-
variate rational functions are evaluated according to a chosen optimality criterion using a script developed
within the Wolfram Mathematica framework. We chose Mathematica for the ability to quickly imple-
ment our different formal notions of optimality criteria for the schedulers provided in the paper. The
Mathematica program takes as input the list of schedulers with their corresponding functions generated
in the previous step and computes a score for each multivariate rational function. This task can again
be computed in parallel for each multivariate rational function. Nevertheless, again, in general the com-
putation of the score of a multivariate rational function is NP-hard [15, 26, 22]. For example, already
the minimisation of a multi-variate quadratic function over the unit cube is NP-hard, see e.g. [22] for a
reduction from SUBSET-SUM. For several classes of well-behaved functions (e.g. convex functions or
unimodal ones) our scores can be efficiently computed. We know for sure that not all our functions are
convex or unimodal, but there is still a chance that the functions form another well-behaved class. We
intend to explore this possibility in future work.

Note that, since we generate a list of schedulers together with their rational functions, it is straight-
forward to find the scheduler corresponding to a rational function.

7.1 Experiments

The experiments reported here ran on a unified memory architecture (UMA) machine with four 10-core
2GHz Intel Xeon E7-4850 processors supporting two hardware threads (hyper-threads) per core, 128GB
of main memory, and Linux kernel version 4.4.0. The first part (based on PRISM SVN revision 11807)
was compiled and run with OpenJDK 1.8.0. The second part was executed in Mathematica 11.0 using
16 parallel kernels. During our experiments we identified a bug in a greatest-common-divisor (gcd)
procedure of the JAS library, that resulted in computing wrong functions. We work around this bug by
substituting a simpler gcd procedure. All of our code and detailed results of the experiments can be found
at [1].

Table 1 gives an overview of our experimental results. We present 23 experiments in total, for the
various scenarios described in Section 6. For each scenario the table shows the number of schedulers,
the number of unique functions (as two schedulers might have the same rational function), as well as the
running times of key parts of our system. In particular, we show the running time for the computation
of the rational functions (column PRISM) and the computation of the expectation and optimistic optimal

1https://www.wolfram.com/mathematica/
2http://krum.rz.uni-mannheim.de/jas/
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Grid scenario Number of Execution time in seconds
k size type target sinks schedulers functions PRISM optimistic expectation
8 2x2 ff (2,2) (1,2) 4 4 0.11 1.39 1.40
8 2x2 fs (2,2) (1,2) 4 4 0.10 2.19 19.09
2 2x2 ff (2,2) (1,2) 4 4 0.07 0.58 0.71
2 2x2 fs (2,2) (1,2) 216 63 1.76 1.90 0.26
2 3x3 ff (1,3) (1,2),(2,2) 432 120 5.68 3.94 0.69
2 3x3 ff (2,2) (1,2) 864 398 13.53 15.36 2.11
2 3x3 ff (3,3) (1,2) 648 246 6.95 7.83 0.98
2 3x3 ff (3,3) (2,2) 4 4 0.06 0.31 0.05
2 3x3 fs (1,3) (1,2), (2,2) 216 63 1.85 1.85 0.42
2 3x3 fs (2,2) (1,2) 432 120 6.53 4.29 0.78
2 3x3 fs (3,3) (1,2) 864 399 12.14 18.64 2.63
2 3x3 fs (3,3) (2,2) 648 234 9.18 8.13 1.32
1 2x2 ff (2,2) (1,2) 4 4 0.06 1.40 0.04
1 2x2 fs (2,2) (1,2) 216 60 0.78 5.67 0.16
1 3x3 ff (1,3) (1,2), (2,2) 432 114 2.29 9.72 0.18
1 3x3 ff (2,2) (1,2) 864 390 6.46 34.48 0.52
1 3x3 ff (3,3) (1,2) 648 122 3.48 12.57 0.19
1 3x3 ff (3,3) (2,2) 4 4 0.05 1.41 0.04
1 3x3 fs (1,3) (1,2), (2,2) 216 63 1.09 4.87 0.12
1 3x3 fs (2,2) (1,2) 432 114 1.72 11.21 0.19
1 3x3 fs (3,3) (1,2) 864 391 5.63 34.01 0.54
1 3x3 fs (3,3) (2,2) 648 124 2.42 10.21 0.17
1 4x4 fs (4,4) (1,2) 4478976 2010270 89677.00 42824.00 32986.00

Table 1: Overview of the experimental results

schedulers. We selected these two classes of optimal schedulers as they illustrate the characteristics of
our two score classes (integral/mass vs extremal values) the best. Our largest experiments involves a
4x4 labyrinth with a single parameter; it results in over 2 million distinct rational functions (and takes
significant amount of time to compute).

In Figure 4 we plot the rational functions of two 3x3 labyrinths with one parameter, to give a flavour
of the different schedulers encountered. In both cases no scheduler is dominant and several of them are
optimistic. In Figure 4a we see a single expectation scheduler (actually two schedulers with a single
rational function) and a single pessimistic scheduler (again actually two schedulers), while in Figure 4b
there are two symmetric expectation schedulers, and all schedulers are pessimistic (as they all have
minimal value 0). In both scenarios the stable and the bound schedulers coincide - in Figure 4a the
corresponding function is constant 0. We also show an ε-stable robust scheduler with ε chosen to be the
median variance of the rational functions. In Figure 4b this yields a function very close to the expectation
scheduler function with slightly lower variance.

Note that we plot the rational functions for the optimal schedulers. From these functions we can look
up the corresponding schedulers. For instance, the function labeled expectation in Figure 4a corresponds
to the two expectation optimal schedulers that in (1,1) take E or N respectively; take N in (1,2), (3,1),
and (3,2); and take E in (1,3), (2,3) (and of course in (2,1) where there is no other choice).



12 SEA-PARAM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

optimistic

expectation

stable, bound

ϵ-stable robust

pessimistic

(a) fixed failure from (1,1) to (3,3) with a sink at (2,2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

optimistic

expectation

stable, bound

ϵ-stable robust

(b) fixed success from (1,1) to (2,2) with a sink at (1,2)

Figure 4: The rational functions of schedulers for two 3x3 labyrinths with k = 1

8 Discussion

In our first-version prototype implementation of SEA-PARAM we focus on simple schedulers, which
are already exponentially many. However, not always simple schedulers are optimal according to our
optimality definitions. A history dependent (hence not simple) scheduler may estimate the parameters
and thus provide better behaviour than any simple scheduler, as we show with the following example.
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(b) Induced MC by a history-dependent scheduler

Figure 5: History dependency

Consider the PMDP M in Figure 5a where p is a parameter. There are two simple schedulers for M:
α with α(c) = a and β with β (c) = b (all other states are mapped to the single available action and t and
x are sink states). Their corresponding rational functions are fα(p) = p and fβ (p) = 1− p.
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Consider now the history-dependent scheduler χ of M that schedules a in state c if and only if
the state a has been visited before. The χ-induced MC is shown in Figure 5b. The rational function
corresponding to χ is fχ(p) = p2 +(1− p)2. All three rational functions are depicted in Figure 6, and χ

wins in all optimality classes against α and β .

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

fα(p) = p

fβ(p) = 1-p

fχ(p) = p2+(1-p)2

Figure 6: The rational functions of α , β , and χ; χ wins in optimality

We aim at broadening our scheduler exploration to history-dependent schedulers in the near future.
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