Sound and Complete Axiomatization of Trace Semantics for Probabilistic Transition Systems

Alexandra Silva and Ana Sokolova Radboud University Nijmegen and University of Salzburg

QAIS seminar 2011, Minho University, 17.10.2011

We will discuss

- history
- probabilistic transition systems
- (finite) trace semantics

generative PTS, fully probabilistic, with labels

- the sound and complete axiomatization
- o in a coalgebraic setting

- For LTS Milner '84, JCSS
- expressions for LTS
- Kleene style theorem
- axiomatization
- sound and complete for bisimilarity

- For LTS Milner '84, JCSS

$$P :: = 0 \mid a.P \mid P + P \mid \mu x.P^g$$

- Kleene style theorem
- axiomatization
- sound and complete for bisimilarity

behaviors of processes are characterized by expressions and vice-versa

- For LTS Milner '84, JCSS
- expressions for LTS

$$P := 0 \mid a.P \mid P + P \mid \mu x.P^g$$

- Kleene style theorem
- axiomatization
- sound and complete for bisimilarity

behaviors of processes are characterized by expressions and vice-versa

- For LTS Milner '84, JCSS
- expressions for LTS <math>P:: $= 0 \mid a.P \mid P+P \mid \mu x.P^g$

$$P :: = 0 \mid a.P \mid P + P \mid \mu x.P^{g}$$

- Kleene style theorem
- axiomatization $P+Q\equiv Q+P, P+0\equiv P, \mu x.P\equiv P[\mu x.P/x], \dots$
- sound and complete for bisimilarity

behaviors of processes are characterized by expressions and vice-versa

- For LTS Milner '84, JCSS
- expressions for LTS $P := 0 \mid a.P \mid P + P \mid \mu x.P^g$

$$P :: = 0 \mid a.P \mid P + P \mid \mu x.P^g$$

- Kleene style theorem
- axiomatization $P+Q\equiv Q+P, P+0\equiv P, \mu x.P\equiv P[\mu x.P/x], \dots$
- sound and complete for bisimilarity

$$P \equiv Q \iff P \sim Q$$

- Milner's result was extended by Rabinovich '93 MFPS for trace semantics
- expressions for LTS
- Kleene style theorem
- axiomatization
- sound and complete for trace semantics

- Milner's result was extended by Rabinovich '93 MFPS for trace semantics
- expressions for LTS

- Kleene style theorem
- axiomatization
- sound and complete for trace semantics

remains the same (bisimilarity implies trace equivalence)

- Milner's result was extended by Rabinovich '93 MFPS for trace semantics
- expressions for LTS

- Kleene style theorem
- axiomatization
- sound and complete for trace semantics

remains the same (bisimilarity implies trace equivalence)

- Milner's result was extended by Rabinovich '93 MFPS for trace semantics
- expressions for LTS

- Kleene style theorem
- axiomatization < Milner's axioms plus $a.(P+Q) \equiv a.P + a.Q$
- sound and complete for trace semantics

remains the same (bisimilarity implies trace equivalence)

- Milner's result was extended by Rabinovich '93 MFPS for trace semantics
- expressions for LTS

- Kleene style theorem
- axiomatization Milner's axioms plus $a.(P+Q) \equiv a.P + a.Q$
- sound and complete for trace semantics

$$P \equiv Q \iff \operatorname{tr}(P) = \operatorname{tr}(Q)$$

- Expressions/axioms for PTS come in many flavors (mainly for bisimilarity)
 we build on Silva, Bonchi, Bonsangue, Rutten '09/'10
- Trace semantics for PTS also exists in variants we build on Hasuo, Jacobs, S. '06/'07

expressions, Kleene style theorem, sound and complete axiomatization for bisimilarity (generic approach applicable to a large class of systems)

- Expressions/axioms for PTS come in many flavors (mainly for bisimilarity)
 we build on Silva, Bonchi, Bonsangue, Rutten '09/'10
- Trace semantics for PTS also exists in variants we build on Hasuo, Jacobs, S. '06/'07

expressions, Kleene style theorem, sound and complete axiomatization for bisimilarity (generic approach applicable to a large class of systems)

- Expressions/axioms for PTS come in many flavors (mainly for bisimilarity)
 we build on Silva, Bonchi, Bonsangue, Rutten '09/'10
- Trace semantics for PTS also exists in variants we build on Hasuo, Jacobs, S. '06/'07

generic coalgebraic approach applicable to PTS

expressions, Kleene style theorem, sound and complete axiomatization for bisimilarity (generic approach applicable to a large class of systems)

- Expressions/axioms for PTS come in many flavors (mainly for bisimilarity)
 we build on Silva, Bonchi, Bonsangue, Rutten '09/'10
- Trace semantics for PTS also exists in variants we build on Hasuo, Jacobs, S. '06/'07

same expressions, one more axiom, sound and complete for trace semantics

generic coalgebraic approach applicable to PTS

Probabilistic transition systems

PTS here are generative, labelled, with explicit termination

$$X \to \mathcal{D}_{\omega}(1 + A \times X)$$

Probabilistic transition systems

PTS here are generative, labelled, with explicit termination

$$(X o \mathcal{D}_{\omega}(1+A imes X))$$
 coalgebras on Sets

Probabilistic transition systems

PTS here are generative, labelled, with explicit termination

$$\left(X o \mathcal{D}_{\omega}(1+A imes X)
ight)$$
 coalgebras on Sets

$$\mathcal{D}_{\omega}X = \{\mu: X \to [0, 1] \mid \sum_{x \in X} \mu(x) \le 1, \text{supp}(X) \text{ is finite} \}$$

Probabilistic transition systems

PTS here are generative, labelled, with explicit termination

$$\left(X o \mathcal{D}_{\omega}(1+A imes X)
ight)$$
 coalgebras on Sets

$$\mathcal{D}_{\omega}X = \{\mu: X \to [0, 1] \mid \sum_{x \in X} \mu(x) \le 1, \text{supp}(X) \text{ is finite} \}$$

Example:

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

Coalgebra basics

Category ${\bf C}$, functor F, category of coalgebras:

 \mathbf{Coalg}_F

Objects:

$$X \xrightarrow{c} FX$$

$$\begin{array}{c} X \xrightarrow{c} FX \end{array} \quad \text{Arrows:} \qquad \begin{array}{c} X \xrightarrow{h} Y \\ c \downarrow & \forall d \\ FX \xrightarrow{Fh} FY \end{array}$$

Coalgebra basics

Category ${\bf C}$, functor F, category of coalgebras:

 \mathbf{Coalg}_F

$$X \xrightarrow{c} FX$$

Objects:
$$X \xrightarrow{c} FX$$
 Arrows:
$$X \xrightarrow{h} Y$$
 $c \downarrow c \downarrow fh$
 $FX \xrightarrow{Fh} FY$

Final coalgebra semantics:

$$X \xrightarrow{\exists ! \text{ beh}} \Omega_F$$

$$c \downarrow \qquad \qquad \downarrow \cong$$

$$FX \xrightarrow{F} \text{ beh} F\Omega_F$$

Coalgebra basics

Category C, functor F, category of coalgebras:

 \mathbf{Coalg}_F

$$X \xrightarrow{c} FX$$

Objects:
$$X \xrightarrow{c} FX$$
 Arrows:
$$X \xrightarrow{h} Y$$
 $c \downarrow c \downarrow fh$
 $FX \xrightarrow{Fh} FY$

Final coalgebra semantics:

$$X \xrightarrow{\exists ! \text{ beh}} \Omega_F$$

$$c \downarrow \qquad \qquad \downarrow \cong$$

$$FX \xrightarrow{F} \text{ beh} F\Omega_F$$

bisimilarity in Sets (for wpp functors) trace semantics in $\mathcal{K}\ell(T)$ (for TF -coalgebras)

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

Coalgebraic trace semantics [HJS'06/'07] applies to PTS

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

Coalgebraic trace semantics [HJS'06/'07] applies to PTS

trace-map as final coalgebra map in $\mathcal{K}\!\ell(\mathcal{D})$

 $\operatorname{tr}:X\to \mathcal{D}(A^*)$ in **Sets**

Coalgebraic trace semantics [HJS'06/'07] applies to PTS

trace-map as final coalgebra map in $\mathcal{K}\!\ell(\mathcal{D})$

$$X \xrightarrow{\operatorname{tr}} A^*$$

$$c \nmid \qquad \qquad \qquad \downarrow \cong$$

$$1 + A \times X \longrightarrow 1 + A \times A^*$$

 $\operatorname{tr}:X\to \mathcal{D}(A^*)$ in Sets

It instantiates to finite trace distribution:

$$tr(x)(\varepsilon) = c(x)(*)$$

$$tr(x)(aw) = \sum_{x' \in X} c(x)(a, x') \cdot tr(x)(w)$$

Ana Sokolova Uni Salzburg

Coalgebraic trace semantics [HJS'06/'07] applies to PTS

trace-map as final coalgebra map in $\mathcal{K}\!\ell(\mathcal{D})$

 $\operatorname{tr}:X\to \mathcal{D}(A^*)$ in Sets

It instantiates to finite trace distribution:

$$tr(x)(\varepsilon) = c(x)(*)$$

$$tr(x)(aw) = \sum_{x' \in X} c(x)(a, x') \cdot tr(x)(w)$$

$$a, \frac{1}{2} \quad x_1 \quad a, \frac{1}{4}$$

$$x_2 \quad x_3$$

$$b, \frac{1}{3} \quad \forall c, \frac{1}{2}$$

$$x_4 \quad x_5$$

$$1 \quad \forall 1$$

$$*$$

$$tr(x_1)(ab) = \frac{1}{6}$$

$$tr(x_1)(ac) = \frac{1}{8}$$

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

$$\mathsf{E} ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \mid x \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leq 1)$$

$$\mathsf{E}^g ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leq 1)$$

$$\mathsf{F}_i ::= * \mid a \cdot \mathsf{E}$$

carry a scalar product

$$\mathsf{E} ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \mid x$$

$$\mathsf{E}^g ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g$$

$$\mathsf{F}_i ::= * \mid a \cdot \mathsf{E}$$

$$(p_i \in [0, 1], \sum_{i \in I} p_i \le 1)$$
 $(p_i \in [0, 1], \sum_{i \in I} p_i \le 1)$

expressions behave! (Kleene-style theorem)

carry a scalar product

$$\mathsf{E} ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \mid x \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leqslant 1)$$

$$\mathsf{E}^g ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leqslant 1)$$

$$\mathsf{F}_i ::= * \mid a \cdot \mathsf{E}$$

expressions behave! (Kleene-style theorem)

carry a scalar product

$$\mathsf{E} ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \mid x \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leqslant 1)$$

$$\mathsf{E}^g ::= \bigoplus_{i \in I} p_i \cdot \mathsf{F}_i \mid \mu x. \mathsf{E}^g \qquad (p_i \in [0, 1], \sum_{i \in I} p_i \leqslant 1)$$

$$\mathsf{F}_i ::= * \mid a \cdot \mathsf{E}$$

$$a, \frac{1}{2} \qquad \bullet \qquad a, \frac{1}{2} \qquad \\ a \frac{1}{2} \qquad \bullet \qquad \bullet \qquad a, \frac{1}{3} \qquad \\ \psi \frac{1}{2} \qquad \frac{1}{4} \psi \qquad * \qquad *$$

$$\frac{1}{2} \cdot a \cdot \mu x. \left(\frac{1}{2} \cdot a \cdot x \oplus \frac{1}{2} \cdot * \right)$$

$$\oplus \frac{1}{2} \cdot a \cdot \mu x. \left(\frac{1}{3} \cdot a \cdot x \oplus \frac{1}{4} \cdot * \right)$$

Axioms

bisimilarity

$$E_{1} \oplus (E_{2} \oplus E_{3}) \equiv (E_{1} \oplus E_{2}) \oplus E_{3} \qquad (A)$$

$$E_{1} \oplus E_{2} \equiv E_{2} \oplus E_{1} \qquad (C)$$

$$E \oplus \emptyset \equiv E \qquad (E)$$

$$\mu x.E \equiv E[\mu x.E/x] \qquad (FP)$$

$$\gamma[E/x] \equiv E \Rightarrow \mu x.\gamma \equiv E \qquad (UFP)$$

$$\mu x.E \equiv \mu y.E[y/x] \text{ if } y \text{ is not free in E} \qquad (\alpha - equiv)$$

$$E_{1} \equiv E_{2} \Rightarrow E[E_{1}/x] \equiv E[E_{2}/x] \qquad (Cong)$$

$$0 \cdot E \equiv \emptyset \qquad (Z)$$

$$p \cdot E \oplus p' \cdot E \equiv (p + p') \cdot E \qquad (S)$$

$$p \cdot a \cdot (p_1 \mathsf{E}_1 \oplus p_2 \mathsf{E}_2) \equiv p_1 \cdot a \cdot p \mathsf{E}_1 \oplus p_2 \cdot a \cdot p \mathsf{E}_2 \quad (D)$$

trace

Ana Sokolova Uni Salzburg

QAIS 17.10.2011

Example

Example

$$\begin{pmatrix}
\frac{1}{2} \cdot a \cdot \frac{1}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \begin{pmatrix}
\frac{1}{4} \cdot a \cdot \frac{1}{2} \cdot c \cdot 1 \cdot * \end{pmatrix} \stackrel{(D)}{\equiv} \frac{1}{2} \cdot a \cdot \begin{pmatrix}
\frac{1}{2} \begin{pmatrix} \frac{2}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \frac{1}{4} (1 \cdot c \cdot 1 \cdot *) \end{pmatrix}$$

$$= \frac{1}{2} \cdot a \cdot \begin{pmatrix} \frac{1}{3} \cdot b \cdot 1 \cdot * \oplus \frac{1}{4} \cdot c \cdot 1 \cdot * \end{pmatrix}$$

Ana Sokolova Uni Salzburg

Example

$$\frac{1}{3} \cdot b \cdot 1 \cdot * = \frac{1}{2} \left(\frac{2}{3} \cdot b \cdot 1 \cdot * \right), \quad \frac{1}{2} \cdot c \cdot 1 \cdot * = \frac{1}{2} \left(1 \cdot c \cdot 1 \cdot * \right)$$

$$\begin{pmatrix}
\frac{1}{2} \cdot a \cdot \frac{1}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \begin{pmatrix}
\frac{1}{4} \cdot a \cdot \frac{1}{2} \cdot c \cdot 1 \cdot * \end{pmatrix} \stackrel{(D)}{\equiv} \frac{1}{2} \cdot a \cdot \begin{pmatrix}
\frac{1}{2} \begin{pmatrix} \frac{2}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \frac{1}{4} (1 \cdot c \cdot 1 \cdot *) \end{pmatrix}$$

$$= \frac{1}{2} \cdot a \cdot \begin{pmatrix} \frac{1}{3} \cdot b \cdot 1 \cdot * \oplus \frac{1}{4} \cdot c \cdot 1 \cdot * \end{pmatrix}$$

Find an injective map out_{\equiv} with $tr = out_{\equiv} \circ [-]$

Ana Sokolova Uni Salzburg

Find an injective map out_{\equiv} with $tr = out_{\equiv} \circ [-]$

canonical map to ≡ - classes

Find an injective map out_{\equiv} with $tr = out_{\equiv} \circ [-]$

Soundness

$$\begin{array}{ll}
\mathsf{E}_1 \equiv \mathsf{E}_2 \\
\Leftrightarrow & [\mathsf{E}_1] = [\mathsf{E}_2] \\
\stackrel{(*)}{\Rightarrow} & out_{\equiv}([\mathsf{E}_1]) = out_{\equiv}([\mathsf{E}_2]) \\
\stackrel{(\triangle)}{\Leftrightarrow} & tr(\mathsf{E}_1) = tr(\mathsf{E}_2)
\end{array}$$

Completeness

$$tr(\mathsf{E}_1) = tr(\mathsf{E}_2)$$

$$\Leftrightarrow out_{\equiv}([\mathsf{E}_1]) = out_{\equiv}([\mathsf{E}_2])$$

$$\Leftrightarrow [\mathsf{E}_1] = [\mathsf{E}_2]$$

$$\Leftrightarrow \mathsf{E}_1 \equiv \mathsf{E}_2$$

canonical map to ≡ - classes

Find an injective map out_{\equiv} with $tr = out_{\equiv} \circ [-]$

Soundness

$$\begin{array}{ll}
\mathsf{E}_1 \equiv \mathsf{E}_2 \\
\Leftrightarrow & [\mathsf{E}_1] = [\mathsf{E}_2] \\
\stackrel{(*)}{\Rightarrow} & out_{\equiv}([\mathsf{E}_1]) = out_{\equiv}([\mathsf{E}_2]) \\
\stackrel{(\triangle)}{\Leftrightarrow} & tr(\mathsf{E}_1) = tr(\mathsf{E}_2)
\end{array}$$

Completeness

$$tr(\mathsf{E}_{1}) = tr(\mathsf{E}_{2})$$

$$\Leftrightarrow out_{\equiv}([\mathsf{E}_{1}]) = out_{\equiv}([\mathsf{E}_{2}])$$

$$\Leftrightarrow [\mathsf{E}_{1}] = [\mathsf{E}_{2}]$$

$$\Leftrightarrow \mathsf{E}_{1} \equiv \mathsf{E}_{2}$$

(*) - existence of
$$out_{\equiv}$$
 (\triangle) - $\mathrm{tr} = out_{\equiv} \circ [-]$ (\heartsuit) - injectivity

Bisimilarity case, F-coalgebras

Bisimilarity case, F-coalgebras

Bisimilarity case, F-coalgebras

 $final in Coalg_F$

Bisimilarity case, F-coalgebras

final in $Coalg_F$

Ana Sokolova Uni Salzburg

Hence, e is iso, and out = beh is injective

Ana Sokolova Uni Salzburg

Hence, e is iso, and out = beh is injective

Silva et al. '08/'09/'10, Jacobs'06

there are also algebras around

Ana Sokolova Uni Salzburg

- It is tough to work in Kleisli categories
- Factorization?
- So we find a way to stay in Sets or rather in $\mathbf{Sets}^{\mathcal{D}_{\omega}}$
- A way out determinization

PTS example

Its determinization

a G-coalgebra

PTS example

$$GX = [0, 1] \times X^A$$

Its determinization

$$X \xrightarrow{out} > [0,1]^{A^*}$$

$$c \downarrow \cong$$

$$GX \xrightarrow{Gout} > G([0,1]^{A^*})$$

a G-coalgebra

PTS example

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 $c, \frac{1}{2}$
 x_4
 x_5
 1
 x_4
 x_5

$$GX = [0, 1] \times X^A$$

Its determinization

final G-coalgebra

a G-coalgebra

Ana Sokolova Uni Salzburg

PTS example

$$GX = [0, 1] \times X^A$$

Its determinization

Gout

a G-coalgebra

final G-coalgebra

Ana Sokolova Uni Salzburg

PTS example

$$GX = \begin{bmatrix} 0, 1 \end{bmatrix} \times X^{A}$$

$$X \xrightarrow{\eta} \mathcal{D}_{\omega}(X)$$

$$\downarrow c \qquad \qquad \downarrow (\delta \circ c)^{\#}$$

$$\mathcal{D}_{\omega}(1 + A \times X) \xrightarrow{\delta} G\mathcal{D}_{\omega}(X)$$

Its determinization

 a G-coalgebra

final G-coalgebra

Ana Sokolova Uni Salzburg

Trace case, almost G-coalgebras on $\mathbf{Sets}^{\mathfrak{D}_{\omega}}$

PCA
Eilenberg-Moore
algebras

Trace case, almost G-coalgebras on $\mathbf{Sets}^{\mathfrak{D}_{\omega}}$

Trace case, almost G-coalgebras on $\mathbf{Sets}^{\mathfrak{D}_{\omega}}$

Trace case, almost G-coalgebras on $\mathbf{Sets}^{\mathcal{D}_{\omega}}$

Trace case, almost G-coalgebras on $\operatorname{Sets}^{\mathcal{D}_{\omega}}$

final elsewhere

final

PCA
Eilenberg-Moore
algebras

Trace case, almost 6-coalgebras on $\operatorname{Sets}^{\mathcal{D}_{\omega}}$ final there

elsewhere

final out

PCA Eilenberg-Moore algebras

Trace case, almost G-coalgebras on Sets \mathcal{D}_{ω} final elsewhere \mathcal{C}_{α} there \mathcal{C}_{α} final $\mathcal{C}_$

Hence, e is iso, and out is injective

Trace case, almost 6-coalgebras on $\operatorname{Sets}^{\mathcal{D}_{\omega}}$

there

elsewhere

final

PCA
Eilenberg-Moore
algebras

Hence, e is iso, and out is injective

Moreover: $tr = out \circ [-]$

Ana Sokolova Uni Salzburg

Conclusions

we present a solution to a concrete problem

sound and complete axiomatization of traces for PTS

bisimilarity expressions and axioms plus one new axiom

- o in a coalgebraic setting
- ø it opens many generalization questions...
- all about algebra and coalgebra

Conclusions

we present a solution to a concrete problem

sound and complete axiomatization of traces for PTS

bisimilarity expressions and axioms plus one new axiom

- o in a coalgebraic setting
- ø it opens many generalization questions...
- all about algebra and coalgebra

Thank you!