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4 giving us
the probability of x executing the trace aa. Our computation
is enabled by having the right algebraic structure on the set
of observations: a semilattice on {0, 1} and a convex algebra
on [0, 1]. The induced semantics is language equivalence and
probabilistic language equivalence, respectively.

This is the approach of trace semantics via a determinisa-
tion [30], founded in the abstract understanding of automata
as coalgebras and computational effects as monads.

We develop a theory of traces for NPLTS using such
approach. For this purpose we take the monad for nondeter-
minism and probability [17] with origins in [14], [18], [19],
[20], [21], [32], namely, the monad C of nonempty convex
subsets of distributions, and provide all necessary and con-
venient infrastructure for generalised determinisation. The
necessary part is having an algebra of observations, the con-
venient part is giving an algebraic presentation in terms of
convex semilattices. These are algebras that are at the same
time a semilattice and a convex algebra, with a distributivity
axiom distributing probability over nondeterminism. Having
the presentation we can write, for example

x
a! x1 � (x3 + 1

2
x2)

for the NPLTS from Figure 1.
The presentation for C is somewhat known, although

not explicitly proven, in the community — proving it and
putting it to good use is part of our contribution which,
in our opinion, drastically clarifies and simplifies the trace
theory of systems with nondeterminism and probability.

Remarkably, necessity and convenience go hand in hand
on this journey. Having the presentation enables us to clearly
identify what are the interesting algebras necessary for
describing trace and testing semantics (with tests being finite
traces). We identify three different algebraic theories: the
theory of pointed convex semilattices, the theory of convex
semilattices with bottom, and the theory of convex semilat-
tices with top. These theories give rise to three interesting
semantics by taking as algebras of observations those freely
generated by a singleton set. We prove their concrete charac-
terisations: the free convex semilattice with bottom is carried
by [0, 1] with max as semilattice operation and standard
convex algebra operations; the free convex semilattice with
top is carried by [0, 1] with min as semilattice operation;
and the pointed convex semilattice freely generated by 1
is carried by the set of closed intervals in [0, 1] where the
semilattice operation combines two intervals by taking their
minimum and their maximum, and the convex operations
are given by Minkowski sum.

We call the resulting three semantics may trace, must
trace and may-must trace semantics since there is a close
correspondence with probabilistic testing semantics [33],
[34], [35], [36] when tests are taken to be just the finite
traces in A

⇤. Indeed, the may trace semantics gives the
greatest probability with which a state passes a given test;
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Figure 1. NPLTS

the must trace semantics gives the smallest probability with
which a state passes a given test, and the may-must trace
semantics gives the closed interval ranging from the smallest
to the greatest.

From the abstract theory, we additionally get that:

1) The induced equivalence can be proved coinductively
by means of proof-techniques known as bisimulations
up-to [37]. More precisely, it holds that up-to � and
up-to +p are compatible [38] techniques.

2) The equivalence is implied by the standard branching-
time equivalences for NPLTS, namely bisimilarity and
convex bisimilarity [7], [39].

3) The equivalence is backward compatible w.r.t. trace
equivalence for LTS and for reactive probabilistic sys-
tems (RPLTS): When regarding an LTS and RPLTS as
a nondeterministic probabilistic system, standard trace
equivalence coincides with our may trace equivalence
and with our three semantics, respectively.

Last but certainly not least, we show that the global view
coincides with the local one, namely that our three semantics
can be elegantly characterised in terms of resolutions. The
may-trace semantics assigns to each trace the greatest prob-
ability with which the trace can be performed, with respect
to any resolution of the system; the must-trace semantics
assigns the smallest one. It is important to remark here that
our resolutions differ from those previously proposed in the
literature in the fact that they are reactive rather than fully
probabilistic. We observe that however this difference does
not affect the greatest probability, and we can therefore show
that the may-trace coincides with the randomized t-trace
equivalence in [25], [26], [40].

Synopsis. We recall monads and algebraic theories in Sec-
tion 2. We provide a presentation for the monad C in
Section 3 (Theorem 4) and combine it with termination
in Section 4. We then recall, in Section 5, the generalised
determinisation and show an additional useful result (The-
orem 16). All these pieces are put together in Section 6,
where we introduce our three semantics and discuss their
properties. The correspondence of the global view with the
local one is illustrated in Section 7 (Theorem 23). The
effectiveness of the bisimulation up-to techniques is shown
in Appendix A (Example 30). All proofs are in the appendix.



It’s all about leaving 
a trace…



Bart Jacobs Alexandra Silva

Harald Woracek

Filippo Bonchi

Joint work with

Ana Sokolova University of Pisa 15.4.19

Valeria Vignudelli

Ichiro Hasuo



I will tell you about: 
  

1. The absolute basics of coalgebra  

2. Trace semantics via determinisation 

3. …enabled by algebraic structure

Ana Sokolova 

Mathematical framework  
based on category theory   

for state-based  
systems semantics

for 
nondeterministic/ 

probabilistic 
systems

systems with 
algebraic effects

University of Pisa 15.4.19



Coalgebras

Uniform framework for dynamic transition systems, based on 
category theory.  

X
cÑ FX generic notion of behavioural equivalence   

(bisimilarity)
«

states

object in the base 
category C

type

functor on the  
base category C 

form a 
category too

Ana Sokolova University of Pisa 15.4.19



Examples

Ana Sokolova 

Rabin PA

The Theory of Traces for Systems with Nondeterminism and Probability

Filippo Bonchi
University of Pisa, Italy

Ana Sokolova
University of Salzburg, Austria

Valeria Vignudelli
CNRS/ENS Lyon, France

Abstract—This paper studies trace-based equivalences for sys-
tems combining nondeterministic and probabilistic choices.
We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 y #1
a

a, b

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.
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Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.

X ➝ [0,1] x (D≤1X)A 
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view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.
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The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 x� y #1

? #0

a

b

a, b

a
b

x #0

x+ 1
2
y # 1

2

x+ 1
4
y # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.
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4 giving us
the probability of x executing the trace aa. Our computation
is enabled by having the right algebraic structure on the set
of observations: a semilattice on {0, 1} and a convex algebra
on [0, 1]. The induced semantics is language equivalence and
probabilistic language equivalence, respectively.

This is the approach of trace semantics via a determinisa-
tion [30], founded in the abstract understanding of automata
as coalgebras and computational effects as monads.

We develop a theory of traces for NPLTS using such
approach. For this purpose we take the monad for nondeter-
minism and probability [17] with origins in [14], [18], [19],
[20], [21], [32], namely, the monad C of nonempty convex
subsets of distributions, and provide all necessary and con-
venient infrastructure for generalised determinisation. The
necessary part is having an algebra of observations, the con-
venient part is giving an algebraic presentation in terms of
convex semilattices. These are algebras that are at the same
time a semilattice and a convex algebra, with a distributivity
axiom distributing probability over nondeterminism. Having
the presentation we can write, for example

x
a! x1 � (x3 + 1

2
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for the NPLTS from Figure 1.
The presentation for C is somewhat known, although

not explicitly proven, in the community — proving it and
putting it to good use is part of our contribution which,
in our opinion, drastically clarifies and simplifies the trace
theory of systems with nondeterminism and probability.

Remarkably, necessity and convenience go hand in hand
on this journey. Having the presentation enables us to clearly
identify what are the interesting algebras necessary for
describing trace and testing semantics (with tests being finite
traces). We identify three different algebraic theories: the
theory of pointed convex semilattices, the theory of convex
semilattices with bottom, and the theory of convex semilat-
tices with top. These theories give rise to three interesting
semantics by taking as algebras of observations those freely
generated by a singleton set. We prove their concrete charac-
terisations: the free convex semilattice with bottom is carried
by [0, 1] with max as semilattice operation and standard
convex algebra operations; the free convex semilattice with
top is carried by [0, 1] with min as semilattice operation;
and the pointed convex semilattice freely generated by 1
is carried by the set of closed intervals in [0, 1] where the
semilattice operation combines two intervals by taking their
minimum and their maximum, and the convex operations
are given by Minkowski sum.

We call the resulting three semantics may trace, must
trace and may-must trace semantics since there is a close
correspondence with probabilistic testing semantics [33],
[34], [35], [36] when tests are taken to be just the finite
traces in A

⇤. Indeed, the may trace semantics gives the
greatest probability with which a state passes a given test;
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Figure 1. NPLTS

the must trace semantics gives the smallest probability with
which a state passes a given test, and the may-must trace
semantics gives the closed interval ranging from the smallest
to the greatest.

From the abstract theory, we additionally get that:

1) The induced equivalence can be proved coinductively
by means of proof-techniques known as bisimulations
up-to [37]. More precisely, it holds that up-to � and
up-to +p are compatible [38] techniques.

2) The equivalence is implied by the standard branching-
time equivalences for NPLTS, namely bisimilarity and
convex bisimilarity [7], [39].

3) The equivalence is backward compatible w.r.t. trace
equivalence for LTS and for reactive probabilistic sys-
tems (RPLTS): When regarding an LTS and RPLTS as
a nondeterministic probabilistic system, standard trace
equivalence coincides with our may trace equivalence
and with our three semantics, respectively.

Last but certainly not least, we show that the global view
coincides with the local one, namely that our three semantics
can be elegantly characterised in terms of resolutions. The
may-trace semantics assigns to each trace the greatest prob-
ability with which the trace can be performed, with respect
to any resolution of the system; the must-trace semantics
assigns the smallest one. It is important to remark here that
our resolutions differ from those previously proposed in the
literature in the fact that they are reactive rather than fully
probabilistic. We observe that however this difference does
not affect the greatest probability, and we can therefore show
that the may-trace coincides with the randomized t-trace
equivalence in [25], [26], [40].

Synopsis. We recall monads and algebraic theories in Sec-
tion 2. We provide a presentation for the monad C in
Section 3 (Theorem 4) and combine it with termination
in Section 4. We then recall, in Section 5, the generalised
determinisation and show an additional useful result (The-
orem 16). All these pieces are put together in Section 6,
where we introduce our three semantics and discuss their
properties. The correspondence of the global view with the
local one is illustrated in Section 7 (Theorem 23). The
effectiveness of the bisimulation up-to techniques is shown
in Appendix A (Example 30). All proofs are in the appendix.
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We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
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[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
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to quantitatively model uncertainty and belief, whereas non-
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unknown environment, implementation freedom, or concur-
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and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.
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The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.
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Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.

trpxq “ pa Y bq˚b “ tw P ta, bu˚ | w ends with a bu
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probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 y #1
a

a, b

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 x� y #1

? #0

a

b

a, b

a
b

x #0

x+ 1
2
y # 1

2

x+ 1
4
y # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.

X ➝ [0,1] x (D≤1X)A 

tr : X Ñ r0, 1sA˚
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Simple NPA

X ➝ ? x (PDX)A 
For example, in the determinised PA we have, since x

a!
x+ 1

2
y and y

a! y:

x+ 1
2
y

a! (x+ 1
2
y) + 1

2
y = x+ 1

4
y

and hence the output of x+ 1
4
y is o(x)+ 1

4
o(y) = 3

4 giving us
the probability of x executing the trace aa. Our computation
is enabled by having the right algebraic structure on the set
of observations: a semilattice on {0, 1} and a convex algebra
on [0, 1]. The induced semantics is language equivalence and
probabilistic language equivalence, respectively.

This is the approach of trace semantics via a determinisa-
tion [30], founded in the abstract understanding of automata
as coalgebras and computational effects as monads.

We develop a theory of traces for NPLTS using such
approach. For this purpose we take the monad for nondeter-
minism and probability [17] with origins in [14], [18], [19],
[20], [21], [32], namely, the monad C of nonempty convex
subsets of distributions, and provide all necessary and con-
venient infrastructure for generalised determinisation. The
necessary part is having an algebra of observations, the con-
venient part is giving an algebraic presentation in terms of
convex semilattices. These are algebras that are at the same
time a semilattice and a convex algebra, with a distributivity
axiom distributing probability over nondeterminism. Having
the presentation we can write, for example

x
a! x1 � (x3 + 1

2
x2)

for the NPLTS from Figure 1.
The presentation for C is somewhat known, although

not explicitly proven, in the community — proving it and
putting it to good use is part of our contribution which,
in our opinion, drastically clarifies and simplifies the trace
theory of systems with nondeterminism and probability.

Remarkably, necessity and convenience go hand in hand
on this journey. Having the presentation enables us to clearly
identify what are the interesting algebras necessary for
describing trace and testing semantics (with tests being finite
traces). We identify three different algebraic theories: the
theory of pointed convex semilattices, the theory of convex
semilattices with bottom, and the theory of convex semilat-
tices with top. These theories give rise to three interesting
semantics by taking as algebras of observations those freely
generated by a singleton set. We prove their concrete charac-
terisations: the free convex semilattice with bottom is carried
by [0, 1] with max as semilattice operation and standard
convex algebra operations; the free convex semilattice with
top is carried by [0, 1] with min as semilattice operation;
and the pointed convex semilattice freely generated by 1
is carried by the set of closed intervals in [0, 1] where the
semilattice operation combines two intervals by taking their
minimum and their maximum, and the convex operations
are given by Minkowski sum.

We call the resulting three semantics may trace, must
trace and may-must trace semantics since there is a close
correspondence with probabilistic testing semantics [33],
[34], [35], [36] when tests are taken to be just the finite
traces in A

⇤. Indeed, the may trace semantics gives the
greatest probability with which a state passes a given test;

x

x1 �2

�1 x2

x3

a a

b

b

c

1
2

1
2

1
2

1
2

y

y1 ⇥2 ⇥3

⇥1 y2 y3

y4

a a a

b

b

c

1
2

1
2

1
2 1

4

1
2

1
2

1
4

Figure 1. NPLTS

the must trace semantics gives the smallest probability with
which a state passes a given test, and the may-must trace
semantics gives the closed interval ranging from the smallest
to the greatest.

From the abstract theory, we additionally get that:

1) The induced equivalence can be proved coinductively
by means of proof-techniques known as bisimulations
up-to [37]. More precisely, it holds that up-to � and
up-to +p are compatible [38] techniques.

2) The equivalence is implied by the standard branching-
time equivalences for NPLTS, namely bisimilarity and
convex bisimilarity [7], [39].

3) The equivalence is backward compatible w.r.t. trace
equivalence for LTS and for reactive probabilistic sys-
tems (RPLTS): When regarding an LTS and RPLTS as
a nondeterministic probabilistic system, standard trace
equivalence coincides with our may trace equivalence
and with our three semantics, respectively.

Last but certainly not least, we show that the global view
coincides with the local one, namely that our three semantics
can be elegantly characterised in terms of resolutions. The
may-trace semantics assigns to each trace the greatest prob-
ability with which the trace can be performed, with respect
to any resolution of the system; the must-trace semantics
assigns the smallest one. It is important to remark here that
our resolutions differ from those previously proposed in the
literature in the fact that they are reactive rather than fully
probabilistic. We observe that however this difference does
not affect the greatest probability, and we can therefore show
that the may-trace coincides with the randomized t-trace
equivalence in [25], [26], [40].

Synopsis. We recall monads and algebraic theories in Sec-
tion 2. We provide a presentation for the monad C in
Section 3 (Theorem 4) and combine it with termination
in Section 4. We then recall, in Section 5, the generalised
determinisation and show an additional useful result (The-
orem 16). All these pieces are put together in Section 6,
where we introduce our three semantics and discuss their
properties. The correspondence of the global view with the
local one is illustrated in Section 7 (Theorem 23). The
effectiveness of the bisimulation up-to techniques is shown
in Appendix A (Example 30). All proofs are in the appendix.

trpxq “ ??? tr : X Ñ ?A
˚

Existing definitions 
are “local” 

given in terms of  
schedulers
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X
cÑ FX

    

(1)  unfold branching + transitions on words 

(2)  trace = bisimilarity after determinisation

‚
a
⇥⇥

a
⌧⌧‚

b✏✏
a
⇥⇥

‚
c✏✏‚

✏✏

‚
✏✏

‚
✏✏˚ ˚ ˚

‚
aa

��
ab
��

ac

��‚
✏✏

‚
✏✏

‚
✏✏˚ ˚ ˚

NFA / LTS

Two ideas:

‚
a
⇥⇥

a
⌧⌧‚

b✏✏
a
⇥⇥

‚
c✏✏‚

✏✏

‚
✏✏

‚
✏✏˚ ˚ ˚

‚
a ✏✏‚
b⇥⇥

a

yy
c
⌧⌧‚

✏✏

‚
✏✏

‚
✏✏˚ ˚ ˚

monads !
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X
cÑ FX

Two approaches:  

(1)  modelling in a Kleisli category  
  
(2)  modelling in an Eilenberg-Moore category  

(1) and (2) are related

Hasuo, 
Jacobs, S.
LMCS ’07

Silva, Bonchi, 
Bonsangue, Rutten 

FSTTCS’10

Jacobs, Silva, S.
JCSS’15

algebras of a monad M
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X
cÑ FX

trace = bisimilarity after 
            determinisation Algebras for M

Automaton with M-effects

X ➝ O x (MX)A 

Determinisation

MX ➝ O x (MX)A 

O has to 
be an  

M-algebra !
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tr : X Ñ O
A˚

trpxqpa1a2 . . . anq “ o ô x
a1Ñ t1

a2Ñ t2 ¨ ¨ ¨ tn´1
anÑ tn ^ tn#o

ideally 
we have a 

presentation

Eilenberg-Moore algebras



Eilenberg-Moore Algebras

• objects 
 

• morphisms

Ana Sokolova 

abstractly

satisfying

EMpMq

hMA
a✏✏

A

MB
b✏✏

B

MA
a✏✏

A

MA
a ✏✏

Mh// MB
b✏✏

A
h // B

A
a

⌘ // MA
a✏✏

A

MMA
Ma ✏✏

µ // MA
a✏✏

MA
a // A
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Abstract—This paper studies trace-based equivalences for sys-
tems combining nondeterministic and probabilistic choices.
We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 y #1
b

a, b

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 x� y #1

? #0

a

b

a, b

a
b

x #0

x+ 1
2
y # 1

2

x+ 1
4
y # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.

x
aÑ tx, y

aÑ ty

x ‘ y
aÑ tx ‘ ty x ‘ y # ox ‘ oy

x#ox, y#oy

Algebras for P join 
semilattices 
with bottomfinite powerset !

2 = P1  
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Abstract—This paper studies trace-based equivalences for sys-
tems combining nondeterministic and probabilistic choices.
We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 (x� y) #1
b

aa

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 (x� y) #1
b

a
a

b

x #0

x+ 1
2
y # 1

2

x+ 1
4
y # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.
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Abstract—This paper studies trace-based equivalences for sys-
tems combining nondeterministic and probabilistic choices.
We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 y #1
a

a, b

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 x� y #1

? #0

a

b

a, b

a
b

x #0

x+ 1
2
y # 1

2

x+ 1
4
y # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.

[0,1] = D≤11
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Abstract—This paper studies trace-based equivalences for sys-
tems combining nondeterministic and probabilistic choices.
We show how trace semantics for such processes can be
recovered by instantiating a coalgebraic construction known
as the generalised powerset construction. We characterise and
compare the resulting semantics to known definitions of trace
equivalences appearing in the literature. Most of our results
are based on the exciting interplay between monads and their
presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps ho, ti : X ! O ⇥ (MX)A where X is
a set of states, A is the set of labels, o : X ! O is the
output function assigning to each state in X an observation,
and t : X ! (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by #.

x #0 (x� y) #1
b

aa

x #0 y #1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x #0 (x� y) #1
b

a
a

b

x #0

(x+ 1
2
y) # 1

2

(x+ 1
4
y) # 3

4

...

a, b

a, b

a, b

Here x � y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1� p.
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? = C 1

Simple NPA

X ➝ ? x (CX)A 
For example, in the determinised PA we have, since x

a!
x+ 1

2
y and y

a! y:

x+ 1
2
y

a! (x+ 1
2
y) + 1

2
y = x+ 1

4
y

and hence the output of x+ 1
4
y is o(x)+ 1

4
o(y) = 3

4 giving us
the probability of x executing the trace aa. Our computation
is enabled by having the right algebraic structure on the set
of observations: a semilattice on {0, 1} and a convex algebra
on [0, 1]. The induced semantics is language equivalence and
probabilistic language equivalence, respectively.

This is the approach of trace semantics via a determinisa-
tion [30], founded in the abstract understanding of automata
as coalgebras and computational effects as monads.

We develop a theory of traces for NPLTS using such
approach. For this purpose we take the monad for nondeter-
minism and probability [17] with origins in [14], [18], [19],
[20], [21], [32], namely, the monad C of nonempty convex
subsets of distributions, and provide all necessary and con-
venient infrastructure for generalised determinisation. The
necessary part is having an algebra of observations, the con-
venient part is giving an algebraic presentation in terms of
convex semilattices. These are algebras that are at the same
time a semilattice and a convex algebra, with a distributivity
axiom distributing probability over nondeterminism. Having
the presentation we can write, for example

x
a! x1 � (x3 + 1

2
x2)

for the NPLTS from Figure 1.
The presentation for C is somewhat known, although

not explicitly proven, in the community — proving it and
putting it to good use is part of our contribution which,
in our opinion, drastically clarifies and simplifies the trace
theory of systems with nondeterminism and probability.

Remarkably, necessity and convenience go hand in hand
on this journey. Having the presentation enables us to clearly
identify what are the interesting algebras necessary for
describing trace and testing semantics (with tests being finite
traces). We identify three different algebraic theories: the
theory of pointed convex semilattices, the theory of convex
semilattices with bottom, and the theory of convex semilat-
tices with top. These theories give rise to three interesting
semantics by taking as algebras of observations those freely
generated by a singleton set. We prove their concrete charac-
terisations: the free convex semilattice with bottom is carried
by [0, 1] with max as semilattice operation and standard
convex algebra operations; the free convex semilattice with
top is carried by [0, 1] with min as semilattice operation;
and the pointed convex semilattice freely generated by 1
is carried by the set of closed intervals in [0, 1] where the
semilattice operation combines two intervals by taking their
minimum and their maximum, and the convex operations
are given by Minkowski sum.

We call the resulting three semantics may trace, must
trace and may-must trace semantics since there is a close
correspondence with probabilistic testing semantics [33],
[34], [35], [36] when tests are taken to be just the finite
traces in A

⇤. Indeed, the may trace semantics gives the
greatest probability with which a state passes a given test;

x

x1 �2

�1 x2

x3

a a

b

b

c

1
2

1
2

1
2

1
2

y

y1 ⇥2 ⇥3

⇥1 y2 y3

y4

a a a

b

b

c

1
2

1
2

1
2 1

4

1
2

1
2

1
4

Figure 1. NPLTS

the must trace semantics gives the smallest probability with
which a state passes a given test, and the may-must trace
semantics gives the closed interval ranging from the smallest
to the greatest.

From the abstract theory, we additionally get that:

1) The induced equivalence can be proved coinductively
by means of proof-techniques known as bisimulations
up-to [37]. More precisely, it holds that up-to � and
up-to +p are compatible [38] techniques.

2) The equivalence is implied by the standard branching-
time equivalences for NPLTS, namely bisimilarity and
convex bisimilarity [7], [39].

3) The equivalence is backward compatible w.r.t. trace
equivalence for LTS and for reactive probabilistic sys-
tems (RPLTS): When regarding an LTS and RPLTS as
a nondeterministic probabilistic system, standard trace
equivalence coincides with our may trace equivalence
and with our three semantics, respectively.

Last but certainly not least, we show that the global view
coincides with the local one, namely that our three semantics
can be elegantly characterised in terms of resolutions. The
may-trace semantics assigns to each trace the greatest prob-
ability with which the trace can be performed, with respect
to any resolution of the system; the must-trace semantics
assigns the smallest one. It is important to remark here that
our resolutions differ from those previously proposed in the
literature in the fact that they are reactive rather than fully
probabilistic. We observe that however this difference does
not affect the greatest probability, and we can therefore show
that the may-trace coincides with the randomized t-trace
equivalence in [25], [26], [40].

Synopsis. We recall monads and algebraic theories in Sec-
tion 2. We provide a presentation for the monad C in
Section 3 (Theorem 4) and combine it with termination
in Section 4. We then recall, in Section 5, the generalised
determinisation and show an additional useful result (The-
orem 16). All these pieces are put together in Section 6,
where we introduce our three semantics and discuss their
properties. The correspondence of the global view with the
local one is illustrated in Section 7 (Theorem 23). The
effectiveness of the bisimulation up-to techniques is shown
in Appendix A (Example 30). All proofs are in the appendix.

DNPA
CX ➝ ? x (CX)A 

x1

a
✏✏

x1 ‘ px3 ` 1
2
x2q
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x

�x1 �2

x1 x2

�1 �x3 �x

x3

a a

b b c

1

1
2 1

1
2

1
2

1
2

1

y

�y1 ⇥2 ⇥3

y1 y2 y3

⇥1 �y4 �y

y4

a a a

b b c

1

1
2

1

1
2

1
21
4

1
2

1
2

1

1
4

Figure 1. NPLTS

If � : MX ! M̂X is an epi monad map, then M̂ is a
quotient of M . If it is a mono, then M is a submonad of
M̂ . If it is an iso, the two monads are isomorphic.

2.3. Distributive Laws

Let (M, ⌘, µ) and (M̂, ⌘̂, µ̂) be two monads. A monad
distributive law of M over M̂ is a natural transformation
� : MM̂ ) M̂M that commutes appropriately with the
units and the multiplications of the monads, see Appendix A.

Given a monad distributive law � : MM̂ ) M̂M , we
get a composite monad M̄ = M̂M with unit ⌘̄ = ⌘̂⌘ and
multiplication µ̄ = µ̂µ � M̂�M .

For any monad M on Sets, there exists a distributive
law ◆ : M + 1 ) M(·+ 1) defined as

◆X =
�
MX + 1

[Mil,⌘X+1�ir]
//M(X + 1)

�
. (1)

As a consequence, M(·+ 1) is a monad. Moreover, we
get the following useful property.

Lemma 2. Whenever � : M ) M̂ is a monad map, also
�(·+1): M(·+1) ) M̂(·+1) is a monad map. Injectivity
of � implies injectivity of �(·+ 1).

2.4. Algebraic Theories

With a monad M one associates the Eilenberg-Moore
category EM(M) of M -algebras. Objects of EM(M) are
pairs A = (A, a) of a set A 2 Sets and a map a : MA ! A,
making the first two diagrams below commute.

A
⌘
//MA

a
✏✏

M
2
A

µ
✏✏

Ma
//MA

a
✏✏

MA

a
✏✏

Mh
//MB

b
✏✏

A MA a
// A A

h
// B

A homomorphism from an algebra A = (A, a) to an algebra
B = (B, b) is a map h : A ! B between the underlying sets
making the third diagram above commute.

In this paper we care for both categorical algebra, alge-
bras of a monad, and their presentations in terms of algebraic

theories and their models. An algebraic theory is a pair
(⌃, E) of signature ⌃ (a set of operation symbols) and a set
of equations E (a set of pairs of terms). A (⌃, E)-algebra,
or a model of the algebraic theory (⌃, E) is an algebra
A = (A,⌃A) with carrier set A and a set of operations
⌃A, one for each operation symbol in ⌃, that satisfies the
equations in E. A homomorphism from a (⌃, E)-algebra
A = (A,⌃A) to a (⌃, E)-algebra B = (B,⌃B) is a
function h : A ! B that commutes with the operations, i.e.,
h � fA = fB � h

n for all n-ary f 2 ⌃, and fA, fB its in-
terpretations in A,B, respectively. (⌃, E)-algebras together
with their homomorphisms form a category and a variety.

Definition 3. A presentation of a monad M is an algebraic
theory, (⌃, E) such that the category (variety) of (⌃, E)-
algebras is isomorphic to EM(M).

Given a presentation (⌃, E) of a monad M , M is
isomorphic to the monad M⌃,E of ⌃-terms modulo E-
equations, i.e., there is an isomorphism monad map between
them.

Given a signature ⌃, the free monad T⌃ = T⌃,; of
terms over ⌃ maps a set X to the set of all ⌃-terms with
variables in X , and a map f : X ! Y to the map that maps
a term over X to a term over Y obtained by substitution
according to f . The unit maps a variable X to itself, and
the multiplication is term composition. We have that T⌃,E

is a quotient of T⌃. Moreover, for two sets of equations
E1 ✓ E2 we have that the monad T⌃,E2 is a quotient of
T⌃,E1 .

In the sequel we present several algebraic theories that
give presentations to the monads of interest.

Presenting the monad Pne. Let ⌃N be the signature
consisting of a binary operation �. Let EN be the following
set of axioms.

(x� y)� z
(A)
= x� (y � z)

x� y
(C)
= y � x

x� x
(I)
= x

The algebraic theory (⌃N , EN ) of semilattices provides
a presentation for the monad Pne. We refer to this theory
as the theory of nondeterminism. To avoid confusion later,
it is convenient to fix here the interpretation of � as a join
(rather than a meet) and, thus, to think of the induced order
as x v y iff x+ y = y.

Presenting the monad D. Let ⌃P be the signature consist-
ing of binary operations +p for all p 2 (0, 1). Let EP be
the following set of axioms.

(x+q y) +p z
(Ap)
= x+pq (y + p(1�q)

1�pq

z)

x+p y
(Cp)
= y +1�p x

x+p x
(Ip)
= x

Here, (Ap), (Cp), and (Ip) are the axioms of parametric as-
sociativity, commutativity, and idempotence. The algebraic
theory (⌃P , EP ) of convex algebras, see [23], [24], [25],
[26], [27], provides a presentation for the monad D.

Another presentation of convex algebras is given by the
algebraic theory with infinitely many operations denoting ar-
bitrary (and not only binary) convex combinations (⌃P̂ , EP̂ )
where ⌃P̂ consists of operations

Pn
i=1 pi(·)i for all n 2 N

and (p1, . . . , pn) 2 [0, 1]n such that
Pn

i=1 pi = 1 and EP̂
is the set of the following two axioms.

nX

i=0

pixi
(P )
= xj if pj = 1

nX

i=0

pi

 
mX

j=0

qi,jxj

!
(BC)
=

mX

j=0

 
nX

i=0

piqi,j

!
xj .

Here, (P ) stands for projection, and (BC) for barycentre.
Convex algebras are known under many names: “con-

vex modules” in [28], “positive convex structures” in [25]
(where X is taken to be endowed with the discrete topol-
ogy), “sets with a convex structure” in [23], and barycentric
algebras [29].

Remark 4. Let X be a (⌃P̂ , EP̂ )-algebra. Then (for pn 6= 1
and pn = 1� pn)

nX

i=1

pixi = pn

 
n�1X

j=1

pj

pn
xj

!
+ pnxn. (2)

Hence, an n-ary convex combination can be written as a
binary convex combination using an (n � 1)-ary convex
combination.

One can also see Equation (2) as a definition – the
classical definition of Stone [29, Definition 1]. The following
property, whose proof follows by induction along the lines
of [29, Lemma 1–Lemma 4], gives the connection:

Let X be the carrier of a (⌃P , EP )-algebra. Define
n-ary convex operations inductively by the projection ax-
iom and the formula (2). Then X becomes an algebra in
(⌃P̂ , EP̂ ).

This allows us to interchangeably use binary convex
combinations or arbitrary convex combinations whenever

more convenient. Moreover, we can write binary convex
combinations +p for p 2 [0, 1] and not just p 2 (0, 1).
We refer to the theory of convex algebras as the algebraic
theory for probability.

Presenting +1. The algebraic theory (⌃T , ET ) for the
termination monad consists of a single constant (nullary
operation symbol) ⌃T = {?} and no equations ET = ;.
This is called the theory of pointed sets.

Combining Algebraic Theories. Algebraic theories can be
combined in a number of general ways []: by taking their ref.

miss-
ing

coproduct, their tensor, or by means of distributive laws.
Unfortunately, these abstract constructions do not lead to a
presentation for the monad we are interested in. We will
thus devote the next two sections to show a “hand-made”
presentation for this monad.

We conclude this section with a well known fact that can
be easily proved by several of the aforementioned general
ways: given a presentation (⌃, E) for a monad M , the
monad M(· + 1) is presented by the theory (⌃0

, E) where
⌃0 is ⌃ together with an extra constant ? (see e.g. []). ref.

miss-
ing

For instance, the subdistributions monad D(· + 1) is
presented by the theory (⌃P [ ⌃T , EP ) of pointed convex
algebras, also known as positive convex algebras. The the-
ory (⌃N [⌃T , EN ) of pointed semilattices provides instead
a presentation for the monad Pne(·+ 1). It is interesting to
observe that the powerset monad P is presented by adding
to (⌃N [ ⌃T , EN ) the equation

x� ?
(B)
= x

leading to the theory of semilattices with bottom. The theory
of semilattices with top can be obtained by adding instead
the following equation:

x� ?
(T )
= ?.

It is interesting to observe that similar axioms can be added
to the theory of pointed convex algebras (⌃P [ ⌃T , EP ).
The axiom

x+p ?
(Bp)
= x

makes the probabilistic structure collapse. Indeed,

x+p y
(Bp)
= (x+q ?) +p y

(Ap)
= x+pq (?+ p(1�q)

1�pq

y)

(Bp)
= x+pq y

(Bp)
= x+pq (?+ q(1�p)

1�pq

y)

(Ap)
= (x+p ?) +q y

(Bp)
= x+q y

for all p, q 2 (0, 1). Therefore, this theory also pro-
duces semilattices with bottom. At the monad level, adding
the axioms (Bp) can be seen as the quotient of monads
supp: D(·+1) ) P mapping each sub-distribution into its
support (e.g., (x+p y) +q ? becomes x+ y).

On the other hand, the axiom

x+p ?
(Tp)
= ?

quotients the monad D(· + 1) into D + 1: intuitively, each
term of this theory is either a sum of only variables (a
distribution) or an extra element (?). This axiom describes
the unique functorial way of adding termination to a convex
algebra, the so-called black-hole behaviour of ?, cf. [?].mis.

ref!
3. Algebraic Theory for Nondeterminism and

Probability

In this section we recall the definition of the monad C

for probability and nondeterminism, give its presentation via
convex semilattices, and present examples of C-algebras.

We would like to emphasise that having the presentation
makes finding examples of algebras and working with them
much easier. The presentation result that we show here is to
some extent known2. However, we could not find a proof of
it in the literature and therefore present a proof of our own
which is valuable on its own right.

3.1. The monad C of convex subsets of distributions

The monad C origins in the field of domain theory [11],
[12], [13], and in the work of Varacca and Winskel [4], [10],
[30]. Jacobs [9] gives a detailed study of (a generalization
of) this monad.

Recall that whenever p 2 [0, 1] we set p = 1� p.
For a set X , CX is the set of non-empty, finitely-

generated convex subsets of distributions on X , i.e.,

CX = {S ✓ DX |S 6= ;, conv(S) = S,

S is finitely generated}.
Recall that, for a subset S of a convex algebra, conv(S) is
the convex closure of S, i.e., the smallest convex set that
contains S, i.e.,

conv(S) = {
X

pixi | pi 2 [0, 1],
X

pi = 1, xi 2 S}.

We say that a convex set S is generated by its subset B if
S = conv(B). In such a case we also say that B is a basis
for S. A convex set S is finitely generated if it has a finite
basis.

For a function f : X ! Y , Cf : CX ! CY is given by

Cf(S) = {Df(d) | d 2 S} = Df(S).

The unit of C is ⌘ : X ! CX given by ⌘(x) = {�x}.
The multiplication of C, µ : CCX ! CX can be

expressed in concrete terms as follows [9]. Given a
nonempty finitely generated convex set S of distributions
over nonempty finitely generated convex sets of distributions
over a set X ,

µ(S) =
[

�2S

{
X

U2supp�

�(U) · d | d 2 U}.

2. Personal communication with Gordon Plotkin.

3.2. The presentation of C

We now introduce the algebraic theory (⌃NP , ENP ) of
convex semilattices, that gives us the presentation of C and
thus provides an algebraic theory for nondeterminism and
probability.

A convex semilattice A is an algebra A = (A,�,+p)
with a binary operation � and for each p 2 (0, 1) a binary
operation +p satisfying the axioms (A), (C), (I) of a semi-
lattice, the axioms (Ap), (Cp), (Ip) for a convex algebra,
and the following distributivity axiom:

(x� y) +p z
(D)
= (x+p z)� (y +p z)

Hence, (⌃NP , ENP ) for ⌃NP = ⌃N [ ⌃P and ENP =
EN [ EP [ {(D)}.

In every convex semilattice there also holds a convexity
law, of which we directly present the generalized version in
the following lemma.

Lemma 5. Let A = (A,�,+p) be a convex semilattice.
Then for all n 2 N, all a1, . . . an 2 A and all p1, . . . , pn 2
[0, 1] with

Pn
i=1 pi = 1 we have

a1 � . . .� an �
nX

i=1

piai
(C)
= a1 � . . .� an.

Let X be an arbitrary set. We define ⌃NP -operations on
CX by

S1 � S2 = conv(S1 [ S2)

and for p 2 (0, 1)

S1+pS2 = {' | ' = p'1+p'2 for some '1 2 S1,'2 2 S2}

where p'1 + p'2 = '1 +p '2 is the binary convex com-
bination of '1 and '2 in DX , defined point-wise. Note
that S1 +p S2 is the Minkowski sum of two convex sets.
If convenient, we may sometimes also write, as usual,
pS1 + pS2 for the Minkowski sum S1 +p S2.

To prove the presentation theorem, we identify a generic
proof method that we only present in the appendix for lack
of space. We encourage the reader to read the appendix,
also for many other useful properties that deepen the under-
standing of convex semilattices.

Theorem 6. The theory for nondeterminism and probability
(⌃NP , ENP ), i.e., the theory of convex semilattices, is a
presentation for the monad C.

Remark 7. Having the presentation enables us to identify
and interchangeably use convex subsets of distributions and
terms in ⌃NP modulo equations in ENP . This is particu-
larly useful in examples and our further developments. Note
that in the syntactic view ⌘(x) is identified with the term x.

Remark 8. Varacca and Winskel give a monad for prob-
ability and nondeterminism starting from a similar alge-
braic theory (with somewhat different basic algebraic struc-
ture) [4], [10], [30]. There is also another possible way of

semilattice

convex 
algebra

distributivity

A “ pA,‘,`pq

p P p0, 1q
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I.pointed 
convex 
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Intervals 

in [0,1] with min-
max, Minkowski, 

and [0,0] = 
“C”1

II. 
with bottom

[0,1] with 
max, +p and 0 = 

“C”1

III. 
with top [0,1] with 

min, +p and 0 = 
“C”1

We explore the whole space 
and   

prove coincidence with “local” 
trace semantics
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Three things to take home: 
  

1. Semantics via determinisation  
    is easy for automata with M-effects  

2. Having a presentation for M gives us syntax 

3. Having the syntax makes determinisation natural !

Many general properties  
follow 

also a sound  
up-to context  

proof technique

combining 
nondeterminism  
and probability  
becomes easy

Thank You !
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