Linearizability via Order Extension Theorems

IRIF, 28.5.2018

 Part I: Concurrent data structures correctness and performance

 Part II: Order extension results for verifying linearizability

Concurrent Data Structures Correctness and Relaxations

Google

Christoph Kirsch

Andreas Haas Google

Michael Lippautz

Andreas Holzer Google

Data structures

Queue FIFO

Stack LIFO

Pool unordered

Concurrent data structures

Queue FIFO

Stack LIFO

Pool unordered

Semantics of concurrent data structures

Sequential specification = set of legal sequences

e.g. queue legal sequence enq(1)enq(2)deq(1)deq(2)

Consistency condition = e.g. linearizability / sequential consistency

e.g. the concurrent history above is a linearizable queue concurrent history

Consistency conditions

there exists a legal sequence that preserves precedence order

Linearizability [Herlihy, Wing '90]

consistency is about extending partial orders to total orders t1: $enq(2)^2 - deq(1)^3$ t2: $enq(1) - deq(2)^4$

Sequential Consistency [Lamport'79]

there exists a legal sequence that preserves per-thread precedence (program order)

Performance and scalability

Relaxations allow trading

correctness for performance

provide the for better-performing implementations

Relaxing the Semantics

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin, S. POPL13

- Sequential specification = set of legal sequences
- Consistency condition = e.g. linearizability / sequential consistency

Local linearizability
Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Relaxing the sequential specification

Cuantilative relaxations (POPL13)

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

- trade correctness for performance
- in a controlled way with quantitative bounds

correct in a relaxed stack ... 2-relaxed? 3-relaxed?

measure the error from correct behaviour

How can relaxing help?

Stack

k-Relaxed stack

What we have

for semantic relaxations

- Framework
- Generic examples

out-of-order / stuttering

- Concrete relaxation examples
- Efficient concurrent implementations

stacks, queues, priority queues,../ CAS, shared counter

of relaxation instances

The big picture

Σ - methods with arguments

The big picture

 Σ - methods with arguments

relaxed sequential specification sequences at distance up to k from S

Relaxing the Consistency Condition

(CONCUR16)

Local Linearizability main idea

Already present in some shared-memory consistency conditions (not in our form of choice)

- Partition a history into a set of local histories
- Require linearizability per local history

no global witness

Local sequential consistency... is also possible

Local Linearizability (queue) example

(sequential) history not linearizable enq(1)t1: deq(2)t2: deq(1)enq(2)t2-induced history, t1-induced history, linearizable linearizable locally linearizable

Local Linearizability (queue) definition

Queue signature $\Sigma = \{enq(x) \mid x \in V\} \cup \{deq(x) \mid x \in V\} \cup \{deq(empty)\}\$

For a history **h** with a thread T, we put

 $I_T = \{enq(x)^T \in \mathbf{h} \mid x \in V\}$

in-methods of thread T are enqueues performed by thread T

 $O_T = \{ deq(x)^T \in \mathbf{h} \mid enq(x)^T \in I_T \} \cup \{ deq(empty) \}$

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

h is locally linearizable iff every thread-induced history $\mathbf{h}_T = \mathbf{h} \mid (I_T \cup O_T)$ is linearizable.

Where do we stand?

In general

Local Linearizability

Linearizability

Sequential Consistency

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizability

Sequential Consistency

Lead to scalable implementations

e.g. k-FIFO, k-Stack

locally linearizable distributed implementation

local inserts / global removes

Performance

(a) Queues, LL queues, and "queue-like" pools

Performance

(a) Queues, LL queues, and "queue-like" pools

Ana Sokolova OFSALZBURG

Performance

(a) Queues, LL queues, and "queue-like" pools

Linearizability via Order Extension Theorems

joint work with

foundational results for verifying linearizability

Inspiration

As well as Reducing Linearizability to State Reachability [Bouajjani, Emmi, Enea, Hamza] ICALP15 + ...

Queue sequential specification (axiomatic)

s is a legal queue sequence

- 1. **s** is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in s$

 \Rightarrow deg(x) \in **s** \land deg(x) <**s** deg(y)

Queue linearizability (axiomatic)

Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable

iff

- 1. **h** is pool linearizable, and
- 2. $enq(x)(<\mathbf{h})enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y)(<\mathbf{h})deq(x)$

precedence order

Data independence => verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking = exclusion of "bad patterns"

Value v dequeued without being enqueued deg ⇒ v

Value v dequeued before being enqueued deg ⇔ v eng(v)

Value v dequeued twice deg ⇒ v deg ⇔ v

Value v₁ and v₂ dequeued in the wrong order

eng(
$$v_1$$
) eng(v_2) deg $\Rightarrow v_2$ deg $\Rightarrow v_1$

Dequeue wrongfully returns empty

Linearizability verification

Data structure

- signature Σ set of method calls including data values
- sequential specification $S \subseteq \Sigma^*$, prefix closed

identify sequences with total orders

Sequential specification via violations

Extract a set of violations V. relations on Σ , such that $\mathbf{s} \in S$ iff \mathbf{s} has no violations

it is easy to find a large CV, but difficult to find a small representative

 $\mathcal{P}(\mathbf{s}) \cap V = \emptyset$

Linearizability ver lication

Find a set of violations CV such that: every interval order with no CV violations extends to a total order with no V violations.

we build CV iteratively from V

Ana

legal sequence

concurrent history

Pool without empty removals

Pool sequential specification (axiomatic)

- **s** is a legal pool (without empty removals) sequence iff
- 1. $rem(x) \in \mathbf{S} \implies ins(x) \in \mathbf{S} \land ins(x) <_{\mathbf{S}} rem(x)$

V violations $rem(x) <_s ins(x)$

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable iff

1. $\operatorname{rem}(x) \in \mathbf{h} \implies \operatorname{ins}(x) \in \mathbf{h} \land \operatorname{rem}(x) \not<_{\mathbf{h}} \operatorname{ins}(x)$

CV violations = V violations

Queue without empty removals

Queue sequential specification (axiomatic)

- **s** is a legal queue (without empty removals) sequence iff
- 1. $deq(x) \in \mathbf{s} \Rightarrow enq(x) \in \mathbf{s} \land enq(x) <_{\mathbf{s}} deq(x)$
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S \Rightarrow deq(x) \in S \land deq(x) <_{s} deq(y)$

 $2 \operatorname{end}(y) < \operatorname{end}(y) \wedge \operatorname{ded}(y) \subset \mathbf{c} \rightarrow \operatorname{ded}(y) \subset \mathbf{c} \wedge$

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable iff

- 1. $rem(x) \in \mathbf{h} \implies ins(x) \in \mathbf{h} \land rem(x) \not<_{\mathbf{h}} ins(x)$
- 2. $enq(x) <_{\mathbf{h}} enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y) <_{\mathbf{h}} deq(x)$

V violations $deq(x) <_{s} enq(x)$ and $enq(x) <_{s} enq(y) \land$ $deq(y) <_{s} deq(x)$

CV violations

= V violations

Pool

infinite inductive violations

Pool sequential specification (axiomatic)

s is a legal pool (with empty removals) sequence iff

- 1. $rem(x) \in \mathbf{S} \implies ins(x) \in \mathbf{S} \land ins(x) <_{\mathbf{S}} rem(x)$
- 2. $\operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{rem}(x) \Rightarrow \operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{ins}(x) \land \operatorname{ins}(x) <_{\mathbf{s}} \operatorname{rem}(\bot) \Rightarrow \operatorname{rem}(x) <_{\mathbf{s}} \operatorname{rem}(\bot)$

 $rom(1) \rightarrow rom(2) \leftarrow rom(1)$

V violations

 $rem(x) <_s ins(x)$

and

 $ins(x) <_{s} rem(\bot) <_{s} rem(x)$

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable

- 1. $rem(x) \in \mathbf{h} \Rightarrow ins(x) \in \mathbf{h} \land rem(x) \not<_{\mathbf{h}} ins(x)$
- 2.

infinitely many CV violations

 $\operatorname{ins}(x_1) <_{\mathbf{h}} \operatorname{rem}(\bot) \land \operatorname{ins}(x_2) <_{\mathbf{h}} \operatorname{rem}(x_1) \land \dots \land \operatorname{ins}(x_{n+1}) <_{\mathbf{h}} \operatorname{rem}(x_n) \land \operatorname{rem}(\bot) <_{\mathbf{h}} \operatorname{rem}(x_{n+1})$

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue
- Priority queue

infinite inductive violations

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases

How does it work?

The basics

$$PO[\mathcal{V}] = \{R \in PO \mid \mathcal{P}(R) \cap \mathcal{V} = \emptyset\}$$

$$IO[\mathcal{V}] = \{R \in IO \mid \mathcal{P}(R) \cap \mathcal{V} = \emptyset\}$$

$$TO[\mathcal{V}] = \{R \in TO \mid \mathcal{P}(R) \cap \mathcal{V} = \emptyset\}$$

partial orders

interval orders

total orders

 $\forall (a,b), (c,d) \in R. (a,d) \in R \lor (c,b) \in R$

The problem

Given a set of violations $\mathcal V$, find a "small" set of violations $\mathcal V'$ such that

$$\forall R \in IO[\mathcal{V}']. \ \exists \overline{R} \in TO[\mathcal{V}]. \ \overline{R} \supseteq R$$

this solves the case of pool without empty removals

Theorem (singleton violations)

Let $\mathcal V$ consist only of singletons, and let $V=\bigcup \mathcal V$.

If V is transitive and not a cycle, then the problem is solved with $\mathcal{V}'=\mathcal{V}$.

The closures

$$\operatorname{Clos}_{\mathcal{O}}(\mathcal{V}) = \bigcap_{S \in \mathcal{O}[\mathcal{V}]} \mathcal{P}(S)^{c}$$

O-closure of a set of violations

monotone, extensive, idempotent

Proposition

$$\forall R \in IO[\mathcal{V}']. \ \exists \overline{R} \in TO[\mathcal{V}]. \ \overline{R} \supseteq R$$
iff
$$Clos_{TO}(\mathcal{V}) = Clos_{IO}(\mathcal{V}')$$

How does it work?

Theorem

Let $\mathcal V$ consist only of finite sets and assume

(1)

(2) $\forall N, M \in \mathcal{V}. \ \forall (a_1, a_2) \in N. \ |\{(b_1, b_2) \in M \mid a_2 = b_1\}| \leq 1$

then the problem is solved

we provide an algorithm that produces a set of violations such that holds

if we are lucky, (2) holds too

if we manage to construct such a set of violations, we are done

The algorithm

Take two violations $N_1, N_2 \in \mathcal{V}$ and an element $x \in X$ and produce a new violation

$$\{(a,b) \mid (a,x) \in N_1, (x,b) \in N_2\}$$

$$\cup \{(a,b) \in N_1 \mid b \neq x\}$$

$$\cup \{(a,b) \in N_2 \mid a \neq x\}$$

Take two violations $N_1, N_2 \in \mathcal{V}$ and a pair $(x, y) \in X \times X$ and produce a new violation

$$\{(a,y) \mid (a,x) \in N_2\}$$

$$\cup \{(x,b) \mid (y,b) \in N_2\}$$

$$\cup \{(a,b) \in N_2 \mid b \neq x \land a \neq y\}$$

$$\cup N_1 \setminus \{(x,y)\}$$

until no new violations are produced

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without amount removals
- Pool
- Queue

Priority que

Thank You!

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases