| inearizability via Order
Extension Theorems

UNIVERSITY
Ana Sokolova PRefsaLzsurs

IRIF 28.5.2018

 Part |: Concurrent data structures
correctness and performance

structure and power via semantic
relaxations

e Partll: Order extension results for
veritying linearizability

Ana Sokolova PRSAEZER: IRIF 28.5.18

Concurrent Data Structures
Correctness and Relaxations

: H ERUSMVERITY OF
Hannes Payer Ali Sezgin & caumn

: Tom Henzinger Christoph Kirsch
GO - 81‘“ d UNIVERSITY
l’srr AUSTRIA of SALZBURG

Andreas Haas Google Michael Lippautz

Andreas Holzer Helmut Veith

Goc .-Slt'

R SE

Rigorous Systems Engineering

Data structures

N en de
Queue FIFO ena b o I 4 o1l 61 5 q
push } olele
e Stack LIFO
y
INS rem
z \ /'
e Pool unordered ‘ "
_ 0
J
m

Ana Sokolova PRsazitke IRIF 28.5.18

Concurrent data structures

. Queue FIFO —2 .
ueue —| f e d C b || a —>
_> _>

POP
—»| x |[—

° Stack LIFO 5L -

y
Z l /
* Pool unordered LA n
|
: O rem
2 I N
ins

.......... IRIF 28.5.18

Semantics of concurrent
data structures

e.g. gqueues

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

« (Consistency condition = e.qg. linearizability / sequential
consistency

e.g. the concurrent history above is a

linearizable queue concurrent history

Ana Sokolova PRSAEZER: IRIF 28.5.18

Consistency conditions

there exists a legal

sequence that preserves . . -
orecedence order Linearizability [Herlihy,Wing '90]

consistency is
about extending
partial orders to v
total orders

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRSAEZER: IRIF 28.5.18

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PRSAEZER: IRIF 28.5.18

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRSAEZER: IRIF 28.5.18

Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Sequential specification = set of legal sequences

e (Consistency condition = e.qg. linearizability / sequential
consistency

Local linearizability

Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Ana Sokolova PRSAEZER: IRIF 28.5.18

Relaxing
the
sequential
specification

relaxations
REORELS)

Ana Sokolova PRSAEZER: IRIF 28.5.18

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?

Ana Sokolova PRSAEZER: IRIF 28.5.18

HOwW can relaxing
help”?

0P I~ thread 1
} \l\ thread 2

thread n

IIIIIIIIII

Ana Sokolova PRisAZEurs

k-Relaxed stack

1

SN~
%}K

+op

thread 1
thread 2

thread n

IRIF 28.5.18

What we have

for semantic

relaxations

Framework

out-of-order /

* (Generic examples .
stuttering

stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances

Ana Sokolova PRSAEZER: IRIF 28.5.18

The big picture

sequential specification

> - methods with arguments

Ana Sokolova PRSAEZER: IRIF 28.5.18

The big picture

seguential specification

relaxed sequential specification

> - methods with arguments

Ana Sokolova PGSz IRIF 28.5.18

Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)

Ana Sokolova PRSAEZER: IRIF 28.5.18

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRSAEZER: IRIF 28.5.18

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRSAEZER: IRIF 28.5.18

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRSAEZER: IRIF 28.5.18

Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency

Ana Sokolova PRSAEZER: IRIF 28.5.18

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'*\ Sequential Consistency

Ana Sokolova PRSAEZER: IRIF 28.5.18

| ead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes

IRIF 28.5.18

million operations per sec (more is better)

Ana Sokolova

26 n
24 L
22
20
s LL+D MS queue
16 L performs
14 L /ﬁ " significantly better
12 L e o than
10 | Q,E:ffi“"/ MS queue
g L ///x'/fff;“ ______ oo
6 | B R e
; _ /ﬁ”/ |
L |
o =7 B — I E— E—— e e o +
2 10 20 30 40 50 60 70 80
number of threads

. B oo .

LCRQ :----¢----s LLD LCRQ :-----A----:

k-FIFO LLD k-FIFO -2 -

(a) Queues, LL queues, and “queue-like” pools
o IRIF 28.5.18

million operations per sec (more is better)

Ana Sokolova

26 o
24 |
22 |
201 LLD ®
18 L
16 | performs
el o significantly better
12 L A than
10 F ,;g‘:‘:’;;/;f/ O
g | R
S ce N e X--
6 L e S X R
; _ /ﬁ”/ |
e |
o =7 B o M . e rommmmmnees fommmmnee- 4ommoeee- +
2 10 20 30 40 50 60 70 80
number of threads

B - e .

LCRQ :----¢----s LLD LCRQ :-----A----:

k-FIFO LLD k-FIFO -4 -

(a) Queues, LL queues, and “queue-like” pools
B IRIF 28.5.18

26
24 L
22 t i
2r T LL+D MS queue

o e performs better

18 +

.2t :
. .
—" -,
.2 o
L -7
f— *.” P
- *
Lt -
"4’
4"
.
|— Lec ,;/
.
.

12 L AT the best known

Ps
. .
_—"rfz/
Lol
1 PRt
- v
Wt
-7 -
ezt
Dt
| '¢'\-//"// ______
50 R I
L 2T -, aem=mT 0

million operations per sec (more is better)

S D B N X
|
N
|

number of threads

B B o .

LCRQ :---->¢----- LLD LCRQ :-----A----:
k-FIFO LLD k-FIFO -2

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRrsiZsuks IRIF 28.5.18

Linearizability via Order
Extension Theorems

joint work with

17 Ayl
pl i

foundational results
for

veritying linearizability

Y i
Harald Woracek M

As well as

INspiration e

[Bouajjani, Emmi, Enea, Hamza]
[EASPISEE .

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, anad
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(X)eh A deq(y)deq(x)

precedence order

Ana Sokolova PRSAEZER: IRIF 28.5.18

|_inearizability verification
oni

* signature 2 - set of method calls including data values sequences with
* seqguential specification S € 2%, prefix closed s

Seqguential specification via violations

iolatior clation Ich that s € S iff 8 has no violations
It is easy to find a large CV,

but difficult to find a small representative

Extract a set g ot

2s)nV=0

Linearizability ver rication

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

we build concurrent history

CV iteratively legal sequence
from V

IRIF 28.5.18

Pool without empty removals

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence
iff V violations

1. rem(x)es = ins(x)es A ins(x)<s rem(x) rem(x) <s INs(x)

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable CV violations

|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

=V violations

Ana Sokolova PRSAEZER: IRIF 28.5.18

Queue without empty
removals

V violations
deq(x) <s enqg(x)
and
enqg(x) <s enqg(y) A
deq(y) <s deq(x)

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence
|ff
1. deg(x)es = eng(x)es A enqg(x) <s deq(x)

2. enqg(x) <senqg(y) A deqg(y)es = deqgx)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable
|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

CV violations

=V violations

2. eng(x) <neng(y) A dealy)eh = deqg(x)eh A deq(y) «n deq(x)

Ana Sokolova PRSAEZER: IRIF 28.5.18

P O O ‘ ini gzrc]:lttl?/e

violations

V violations
rem(x) <s iINs(x)

s a legal | (with t als) sequence and
s is a legal poo i(f¥v1 empty removals) sequ iNs(x) <s rem(L) <s rem(x)

Pool sequential specification (axiomatic)

1. rem(x)es = Iins(X)es A Ins(X) <s rem(x)

2. rem(L) <s rem(x) = rem(L) <s iNS(X) A ins(X) <s rem(L) = rem(x) <s rem(L)

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable
Iff
1. rem(x)eh = ins(x)eh A rem(x) «n iNns(X)

infinitely many CV violations

iNS(x1) <nh rem(L) A ins(X2) <h rem(x1) A ... A iNS(Xn+1) <h rem(xn) A rem(L) <n rem(Xn+1)

Ana Sokolova PRSAEZER: IRIF 28.5.18

't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue without empty removals nfinite CV violations

without clear

Inductive structure

e Pool

infinite

Inductive

Queue violations

Exploring the space of

o data structures
* Priority queue

Ana Sokolova PRSAEZER: IRIF 28.5.18

How does it work”?

IIIIIIIIII
of SALZBURG

IRIF 28.5.18

Ihe basics

_\7-

PO[V] = {Re PO | P(R) AV = &)

partial orders total orders
Interval orders

V(a,b),(c,d) e R.(a,d) € Rv (c,b) € R

Ana Sokolova PRSAEZER: IRIF 28.5.18

The problem

Given a set of violations 'V |, find a “small” set of violations V' such that

VRecIO[V'].3Re TO[V]. R2 R

this solves the case of

Theorem (singleton violations)

Let V consist only of singletons, and let V' = U\? .

f Vis transitive and not a cycle, then the problem is solved with V' =V .

Ana Sokolova PRSAEZER: IRIF 28.5.18

1he closures

O-closure of a set
of violations

monotone, extensive, idempotent

VR e IO[V']. IR TO[V]. R2 R
Iff
Closto (V) = Closio (V')

Ana Sokolova PRSAEZER: IRIF 28.5.18

How does It work ?

Let 'V consist only of finite sets and assume

(1) Y

(2) VN,MeV.V(ai,as) e N. [{(b,bs) € M | as = by} < 1

then the problem is solved

If we manage
to construct such a set

of violations, we are
done

we provide an
algorithm that produces a

If we are
lucky,
(2) holds too

set of violations such that

Ana Sokolova PRSAEZER: IRIF 28.5.18

The algorithm

Take two violations N1, No € V and an element £ € X and produce a new violation
{(a,b) | (a,x) € N1, (z,b) € No}
u {(a,b) € Ny | b # x}
u {(a,b) € Ny | a # x}

Take two violations N, No € V and a pair (x,y) € X x X and produce a new violation

a,y) | (a,2) € Naj
u {(z,b) | (y,b) € No} until no new
U j\(fa\,f()];fi b£z Aa#y) Vlglflot(ljouncsezre

Ana Sokolova PRSAEZER: IRIF 28.5.18

't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue withe infinite CV violations
without clear

e Pool Inductive structure

° Queue Thank YOU l
Exploring the space of

o data structures
* Priority queB

UNIVERSITY

Ana Sokolova PRrsitzeure IRIF 28.5.18

