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Abstract—The technique of lumping of Markov chains is
one of the main tools for recovering from state explosion in
the quantitative analysis of large probabilistic systems. Use-
ful results regarding relational properties of general, ordi-
nary and exact lumpability, in particular transitivity and
strict confluence, are rather scattered or implicit in the lit-
erature. These are collected and reformulated here from a
process-theoretic point of view. Additionally, counterexam-
ples are provided that complete the picture.

Keywords—Probabilistic systems, general lumpability, or-
dinary and exact lumpability, transitivity, strict confluence

I. INTRODUCTION

The PROGRESS project (a)MaPAoTS focusses on the
modelling and performance analysis of larger telecommu-
nication and network systems. Central in this research
is the system specification and analysis language POOSL
([Voe94], [PV97]) as been developed by Voeten and Van
der Putten. Using POOSL and the simulation toolkit based
on it, large systems with probabilistic and timed behav-
ior have been modelled and evaluated, see e.g. [TVP+99],
[TVB+01], [HVT02], [HVP+02]. The models arising in
these industrial case studies suffer from state space ex-
plosion problem, i.e., the set of states of the models is
too large to fit in the simulation tool. Therefore, reduc-
tion techniques are needed that transform the systems at
hand into smaller, necessary more abstract systems, while
the characteristic behavior and performance metrics re-
main. Since the models under consideration are in essence
Markov chains, we study notions and techniques related to
the reduction of the state space of Markov chains. Some
such techniques were proposed in [PVT01] and [BVP01].
Lumpability of Markov chains is another reduction tech-
nique from the theory of Markov chains. In this paper
we study lumpability and two its variants together with re-
lational properties that are relevant in the context of the
project.

The notion of general lumpability can be defined quite
naturally. States of the one Markov chain can be identi-
fied into a single state of the other Markov chain. Global
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conditions ensure that the probabilistic behavior of the two
chains is essentially the same: it is the same for the initial
distributions; it remains the same for any arbitrary number
of steps in the respective chains.

What makes the notion of general lumpability unattrac-
tive from a practical point of view is the infinite nature of
the global conditions. In order to verify that one chain can
be lumped to another according to this definition an in-
finite number of equations should be checked. Although
structural and inductive arguments may apply, such is un-
desirable for computational reasons. Therefore, two spe-
cial instances of general lumpability have been proposed
in the literature, viz. that of ordinary lumpability [KS76]
and that of exact lumpability [Sch84]. Lumpability was
also studied in [SR89] and [Buc94a]. In the context of
stochastic process algebra, ordinary lumpability appears
in [Hil95], [Buc94b], [BB01], as well as in several sur-
vey papers collected in [BHK00]. The applicability of ex-
act lumpability for stochastic process algebra was first ex-
ploited in [Buc94b]. In this paper we collect some relevant
facts for these notions, in particular relating to transitivity
and strict confluence.

When reducing larger systems to smaller ones, one
prefers to have transitivity. This means that the abstrac-
tion obtained after a number of behaviour and performance
preserving steps, probably based on time and memory con-
sideratons, is still a correct abstraction of the orginal sys-
tem. One does not want the essentials to have been van-
ished during the processes of iterated lumping. The notion
of strict confluence is important when the analysis focuses
on different aspects of the system that later are combined
into a single abstraction. As the efforts spent on the ear-
lier analysis should remain valuable, it need to be possible
to reconcile the intermediate models into a single common
lumping.

In this paper we focus on the properties of transitivity
and strict confluence for general lumping and for ordinary
and exact lumping. A better understanding of these notion
is pivotal for further improvement of the toolkit support-
ing POOSL. It also helps in linking the concrete ideas and
heuristics learned from the many case studies conducted
within the project with existing algebraic process theory,
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enabling the transfer of results and techniques available
there to the (a)MaPAoTS setting.

II. PRELIMINARIES

A Markov chain M will be represented as a triple
(S, P, π) where S is the finite set of states of M , P the
transition probability matrix indicating the probability of
getting from one state to another, and π is the initial prob-
ability distribution representing the likelyhood for the sys-
tem to start in a certain state. For more details on finite
Markov chains we refer to [How71], [KS76], [Tij94].

Let f : X → Y and h: X → Z be two mappings. The
equivalence relation ∼ induced by f and h on X is given
by

x ∼ x′ ⇐⇒ ∃n∃x0, . . . , xn ∈ X: x0 = x ∧ xn = x′ ∧
∀i < n: f(xi) = f(xi+1) ∨ h(xi) = h(xi+1).

For x ∈ X its equivalence class with respect to ∼ is de-
noted by [x]. For any x ∈ X and y ∈ Y we have,
by the definition of ∼, that either f−1(y) ⊆ [x] or
f−1(y) ∩ [x] = ∅. Hence, the class [x] is a disjoint union
over { f−1(y) | y ∈ Y, f−1(y) ⊆ [x] }. Similarly for h.

III. LUMPABILITY

The concept of lumpability captures the idea of aggre-
gating several states into a single one. As the state space
will become smaller, performance analysis (calculation of
the steady state distribution, the average throughput, etc.)
will be easier. However, the behavior of the Markov chain
obtained from the lumping should reflect faithfully that of
the original chain. After all, one wants to relate the per-
formance figures computed for the former to performance
figures of the latter.

We first present a rather liberal notion of lumping called
general lumping.

Definition III.1 Let M1, M2 be two Markov chains. A
surjective mapping `: S1 → S2 is said to be a general
lumping of M1 to M2, notation M1

`
→g M2, if the follow-

ing two conditions hold:
(i) π2(u) =

∑

s∈`−1(u) π1(s) for all u ∈ S2;
(ii) π2(u) ·P i

2(u, v) =
∑

s∈`−1(u)

∑

t∈`−1(v) π1(s) ·P
i
1(s, t)

for all u, v ∈ S2 and i ≥ 0.

Suppose Markov chain M1 lumps to the Markov chain M2

via the lumping `, i.e. M1
`
→g M2. The first condition

states that, with respect to the initail distribution π1 of M1

and π2 of M2, the total weight of all the states of M1 that
are combined into a single new state in M2 is the same
as the weight of this new state in M2. The second condi-
tion explicitly connects multi-step behavior of M1 and M2.

The probability of getting in M2 from a state u to a state v
in i-steps is the same as summing up all possible ways of
getting in M1 in i-steps from any state s that is lumped
to u to any state t that is lumped to v.

Note that given a Markov chain M1 and a surjective
mapping `:S1 → S2 there is not necessarily a Markov
chain M2 with state set S2 and a probability matrix P2

satisfying condition III.1(i) and condition III.1(ii). How-
ever, if M1

`
→g M2 then the so-called steady state prob-

ability vectors π̂1 of M1 and π̂2 of M2 satisfy π̂2(u) =
∑

s∈`−1(u) π̂1(s), for all u ∈ S2. This also holds for the
transient state probability vectors. As steady state proba-
bility vectors and transient state probability vectors are key
notions of performance analysis, it follows that lumpabil-
ity is a useful concept in this setting.

The second condition of Definition III.1 is problem-
atic from a computational point of view as, in principle,
infinitely many equations need to be checked. For con-
crete cases this might be feasible, but no general method is
known. The way out here is to refine condition III.1(ii) into
a condition that represents one equation only. We discuss
below two possible options: ordinary lumpability (Defini-
tion III.2) and exact lumpability (Definition III.3).

Definition III.2 Let M1, M2 be two Markov chains. A
surjective mapping `: S1 → S2 is said to be an ordinary
lumping of M1 to M2, notation M1

`
→o M2, if the follow-

ing two conditions hold:
(i) π2(u) =

∑

s∈`−1(u) π1(s) for all u ∈ S2;
(ii) P2(`(s), v) =

∑

t∈`−1(v) P1(s, t) for all s ∈ S1, v ∈
S2.

Note that condition (ii) above implies that if two states s, s′

of M1 lump to the same state u of M2, i.e. `(s) = `(s′) =
u, then

∑

t∈`−1(v) P1(s, t) =
∑

t∈`−1(v) P1(s
′, t) =

P2(u, v) for any state v of M2.
We check that ordinary lumpability is indeed a special

case of general lumpability. The inductive argument for
this is based on splitting a sequence of i + 1 steps from
u to v with probability P i+1

2 (u, v) into a first step from u
to some u′ with probability P2(u, u′) and a sequence of
i-steps from u′ to v with probability P i

2(u
′, v).

Lemma III.3 If M1
`
→o M2 then M1

`
→g M2.

Proof We need to check condition (ii) of Defintion III.1.
First we verify P i

2(`(s), v) =
∑

t∈`−1(v) P i
1(s, t) for any

s ∈ S1, v ∈ S2 and i ≥ 0 by induction on i.
• [i = 0] Straightforward.
• [i + 1] We have for s ∈ S1, v ∈ S2, i ≥ 0 that

∑

t∈`−1(v) P i+1
1 (s, t)

=
∑

t∈`−1(v)

∑

s′∈S1
P1(s, s

′) · P i
1(s

′, t)
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= [induction hypothesis]
∑

s′∈S1
P1(s, s

′) · P i
2(`(s

′), v)
= [S1 =

⋃

{ `−1(u′) | u′ ∈ S2 }]
∑

u′∈S2

∑

s′∈`−1(u′) P1(s, s
′) · P i

2(`(s
′), v)

=
∑

u′∈S2
P i

2(u
′, v) ·

∑

s′∈`−1(u′) P1(s, s
′)

= [M1
`
→o M2]

∑

u′∈S2
P i

2(u
′, v) · P2(`(s), u

′)

= P i+1
2 (`(s), v).

From the property above we get for u, v ∈ S2 and i ≥ 0,
π2(u) · P i

2(u, v)
= [condition III.2(i)]

∑

s∈`−1(u) π1(s) · P
i
2(u, v)

=
∑

s∈`−1(u)

∑

t∈`−1(v) π1(s) · P
i
1(s, t)

which was to be shown.

Next we define the notion of exact lumpability.

Definition III.4 Let M1, M2 be two Markov chains. A
surjective mapping `: S1 → S2 is said to be an exact lump-
ing of M1 to M2, notation M1

`
→e M2, if the following two

conditions hold:
(i) π2(u) = #`−1(u) · π1(s) for any u ∈ S2, s ∈ `−1(u);
(ii)

∑

s∈`−1(u) P1(s, t) = #`−1(u)
#`−1(`(t))

P2(u, `(t)) for all u ∈
S2, t ∈ S1.

The idea of condition (i) is that states that are lumped into
the same new state have equal weight initially. Moreover,
condition (ii) implies, for states u, v of M2,

∑

s∈`−1(u)

P1(s, t) =
#`−1(u)

#`−1(v)
P2(u, v)

for any t of M1 such that `(t) = v. Thus, if `(t) =
`(t′) = v then

∑

s∈`−1(u) P1(s, t) and
∑

s∈`−1(u) P1(s, t
′)

are equal, viz. the same as #`−1(u)
#`−1(v)

P2(u, v).

Lemma III.5 If M1
`
→e M2 then M1

`
→g M2.

Proof As condition III.1(i) directly follows from condi-
tion III.4(i) we only need to check condition III.1(ii). First
we prove P i

2(u, v) = #`−1(v)
#`−1(u)

∑

s∈`−1(u) P i
1(s, t) for any

u, v ∈ S2, t ∈ `−1(v) and i ≥ 0 by induction on i.
• [i = 0] Straightforward.
• [i + 1] Pick u, v ∈ S2, t ∈ `−1(v). We then have

P i+1
2 (u, v)

=
∑

v′∈S2
P i

2(u, v′) · P2(v
′, v)

= [condition III.4(ii)]
∑

v′∈S2
P i

2(u, v′) · #`−1(v)
#`−1(v′)

∑

t′∈`−1(v′) P1(t
′, t)

= [induction hypothesis]
∑

v′∈S2

(

#`−1(v′)
#`−1(u)

∑

s∈`−1(u) P i
1(s, t

′′)
)

·
#`−1(v)
#`−1(v′)

∑

t′∈`−1(v′) P1(t
′, t)

with t′′ ∈ `−1(v′) arbitrary

= #`−1(v)
#`−1(u)

∑

s∈`−1(u)
∑

v′∈S2

∑

t′∈`−1(v′) P i
1(s, t

′) · P1(t
′, t)

= [S1 =
⋃

{ `−1(v′) | v′ ∈ S2 }]
#`−1(v)
#`−1(u)

∑

s∈`−1(u)

∑

t′∈S1
P i

1(s, t
′) · P1(t

′, t)

= #`−1(v)
#`−1(u)

∑

s∈`−1(u) P i+1
1 (s, t).

From the property above we obtain, for u, v ∈ S2, t ∈
`−1(v), and i ≥ 0,
π2(u) · P i

2(u, v)

= π2(u) · #`−1(v)
#`−1(u)

∑

s∈`−1(u) P i
1(s, t)

= π2(u)
#`−1(u)

∑

t′∈`−1(v)

∑

s∈`−1(u) P i
1(s, t

′)
= [condition III.4(i)]
∑

s∈`−1(u)

∑

t′∈`−1(v) π1(s) · P
i
1(s, t

′)
using that

∑

s∈`−1(u) P1(s, t) =
∑

s∈`−1(u) P1(s, t
′) if

`(t) = `(t′) for all #`−1(v) elements of `−1(v). This was
to be shown.

An example of a general lumping that is neither ordinary
nor exact lumping is shown with the following.

Example Consider the chains M1 and M2 given below.

M1 1[0]GFED@ABCGFED
1

BC
oo

2[1]GFED@ABC
1

3

=={{{{{{{{

BC@A
2

3

GF // 3[0]GFED@ABC
2

3

aaCCCCCCCC

@ABC
1

3

EDoo

M2

a[0]GFED@ABCEDGF
1

@A
// b[1]GFED@ABC1

3oo
GFED

2

3

BC
oo

One can easily check that M1
`
→g M2 with `: S1 → S2

given by `(1) = a, `(2) = `(3) = b by an inductive ar-
gument. However, ` does not meet the requirements for an
ordinary and an exact lumping. For the ordinary case we
note that although 2 and 3 are identified by ` we do not
have that P1(2, 1) = P1(3, 1). For the exact case we note
that π1(2) 6= π1(3).

The example also illustrates the usefulness of general
lumping. The state 3 of chain M1 is an irrelevant part of
that chain and can be cut off via the lumping `.

IV. TRANSITIVITY

In this section we address the transitivity of the lumpa-
bility relation introduced above. Transitivity is not merely
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of theoretical interest. It justifies repeated lumpings.
Suppose we have constructed a sequence of lumping

M1
`1→g M2, M2

`2→g M3, . . ., Mn−1
`n−1
→ g Mn and that we

have calculated some performance measure of Mn (which
typically could not be obtained for M1 though Mn−1 di-
rectly because of memory limitations). Is the computed re-
sult relevant for M1? The transitivity result, Lemma IV.1,
implies that we also have M1

`
→g Mn where the lumping `

is given in terms of `1, . . . , `n−1. So, every analysis on Mn

that is respected by general lumping can be propagated
back to M1. We will show transitivity of general and ordi-
nary lumping and provide a counterexample to the case of
exact lumping.

Lemma IV.1 Let M1, M2, M3 be three Markov chains
such that M1

`
→g M2 and M2

k
→g M3. Then it holds that

M1
k◦`
→g M3.

Proof We check condition (ii) of Definition III.1. Con-
dition (i) is similar and slightly easier. Pick w, x ∈ S3

and i ≥ 0. Note, for w ∈ S3, we have (k ◦ `)−1(w) =
⋃

{ `−1(u) | u ∈ k−1(w) }. So,
π3(w) · P i

3(w, x)

= [condition (ii) for M2
k
→g M3]

∑

u∈k−1(w)

∑

v∈k−1(x) π2(u) · P i
2(u, v)

= [condition (ii) for M1
`
→g M2]

∑

u∈k−1(w)

∑

v∈k−1(x)
∑

s∈`−1(u)

∑

t∈`−1(v) π1(s) · P
i
1(s, t)

=
∑

s∈(k◦`)−1(w)

∑

t∈(k◦`)−1(x) π1(s) · P
i
1(s, t)

which was to be shown.

Ordinary lumping is transitive as well as implied by the
next lemma.

Lemma IV.2 Let M1, M2, M3 be three Markov chains
such that M1

`
→o M2 and M2

k
→o M3. Then it holds that

M1
k◦`
→o M3.

Proof We verify condition (ii) of Definition III.2: Pick
s ∈ S1, x ∈ S3. We then have
∑

t∈(k◦`)−1(x) P1(s, t)

= [(k ◦ `)−1(x) =
⋃

{ `−1(v) | v ∈ k−1(x) }]
∑

v∈k−1(x)

∑

t∈`−1(v) P1(s, t)

= [M1
`
→o M2]

∑

v∈k−1(x) P2(`(s), v)

= [M2
k
→o M3] P3((k ◦ `)(s), x).

Exact lumping is not a transtive notion. We provide an
counterexample for this. Note that the eample below in-
volves initial Dirac distributions, where there is a single
relevant initial state only. Therefore, also in the special
case of unique starting states transitivity for exact lumpa-
bility fails.

Example Consider the Markov chains M1, M2, M3 de-
picted below.

M1 1[0]GFED@ABC
1

��

2[0]GFED@ABC
1

4

=={{{{{{{{ 1

2
//

BC@A
1

4

GF // 3[0]GFED@ABC
3

4

aaCCCCCCCC

1

4
oo

4[1]GFED@ABC
1

2

OO

1

4

=={{{{{{{{1

4

aaCCCCCCCC

M2 a[0]GFED@ABC
1

!!C
CC

CC
CC

C

b[0]GFED@ABC
1

2

=={{{{{{{{EDGF
1

2

@A
// c[1]GFED@ABC1

2

aaCCCCCCCC
1

2
oo

M3

x[0]GFED@ABC 1

2
//EDGF

1

2

@A
// y[1]GFED@ABC

1oo

Let `: S1 → S2 and k: S2 → S3 be such that `(1) = a,
`(2) = `(3) = b, `(4) = c and k(a) = k(b) = x,
k(c) = y. The reader easily verifies that M1

`
→e M2 and

M2
k
→e M3. However, M1 admits no lumping to a two el-

ement chain such as M3. The mapping h: S1 → S3 with
h(1) = h(2) = h(3) = x, h(4) = y fails to satisfy condi-
tion III.4(ii).

V. STRICT CONFLUENCE

Strict confluence can be interpreted as a reconciliation
property: Suppose we have lumped a Markov chain M
into a Markov chain M1 via a lumping ` when focussing
on one aspect A of a systems and that we have lumped M
into another Markov chain M2 via a lumping k for the
analysis of some other aspect B. Is it possible to combine
these intermediate chains to obtain quantitative informa-
tion on A and B at the same time? The result we provide
for ordinary lumping below constructs a Markov chain M ′

and lumpings h, f (determined by M1, M2 and the lump-
ings `, k) such that M1 and M2 lump to M ′ via h and f ,
respectively.

Lemma V.1 Suppose M
`
→o M1 and M

k
→o M2 for

Markov chains M , M1, M2. Let ∼ be the equivalence re-
lation on S induced by ` and k. Define the Markov chain
M ′ = (S′, P ′, π′) as follows:

S′ = S/∼, P ′([s], [t]) =
∑

t′∼t

P (s, t′), π′([s]) =
∑

s′∼s

π(s).
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Then it holds that M1
h
→o M ′ and M2

f
→o M ′ where

h(u) = [s] for any s ∈ `−1(u) and f(w) = [s] for any
s ∈ k−1(w).

Proof As to the well-definedness of M ′, suppose s ∈ S.
Then we have, for any t ∈ S,
∑

t′∼t P (s, t′)
= [[t] =

⋃

{ `−1(v) | `−1(v) ⊆ [t] }]
∑

`−1(v)⊆[t]

∑

t′∈`−1(v) P (s, t′)
= [` is ordinary lumping]

∑

`−1(v)⊆[t] P1(`(s), v).
Thus

∑

t′∼t P (s,′ t) =
∑

t′∼t P (s′, t′) for s, s′ ∈ S such
that `(s) = `(s′). Likewise, using that k is an ordinary
lumping, we get if k(s) = k(s′) then

∑

t′∼t P (s,′ t) =
∑

t′∼t P (s′, t′). From this we obtain that s ∼ s′ implies
∑

t′∼t P (s,′ t) =
∑

t′∼t P (s′, t′) and that P ′([s], [t]) is
well-defined. (See Section II for the definition of ∼.)

Clearly, h: S1 → S′ and f : S2 → S′ are well-defined
and surjective. We have, by defintion of h, that v ∈
h−1([t]) ⇐⇒ t ∈ `−1(v) ⇐⇒ `−1(v) ⊆ [t] for
v ∈ S1, t ∈ S. Thus, for any u ∈ S1, s, t ∈ S such that
`(s) = u it holds that
P ′(h(u), [t])

= P ′([s], [t])
= [definition P ′]

∑

t′∼t P (s, t′)
= [decompostion [t]]

∑

`−1(v)⊆[t]

∑

t′∈`−1(v) P (s, t′)

= [M `
→o M1]

∑

v∈h−1([t]) P1(u, v)

from which M1
h
→o M ′ follows. Similarly we obtain

M2
f
→o M ′.

Every Markov chain can be generally lumped to the de-
generated one element Markov chain, as can be readily
checked from Definition III.1. However, this is not what
one wants when analyzing concrete systems. Unfortu-
nately, the notion of general lumpability does not allow
for the construction used for ordinary lumpability in the
Lemma V.1 above. The next counterexample illustrates
this.

Example Consider the Markov chains M , M1, M2 given
by

M 1[13 ]ONMLHIJK
1

2

��

1

2

!!B
BB

BB
BB

B

2[0]GFED@ABC

1

4

>>||||||||

1

8

  B
BB

BB
BB

B

1

8
//

BC@A
1

2

GF // 3[13 ]ONMLHIJK1

4

aaBBBBBBBB

3

8
oo

1

8}}||
||

||
||
@A BC

1

4

EDoo
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Here we have `(1) = a, `(2) = `(3) = b, `(4) = c
and k(1) = x, k(2) = y, k(3) = k(4) = z. With ap-
peal of Lemma III.3 and Lemma III.5, it is easy to ver-
ify that M

`
→g M1 and M

k
→g M2, since M

`
→o M1 and

M
`
→e M2. However, the construction in the proof of

Lemma V.1 would violate condition III.1(ii) already for
the case where i = 2 as the industrious reader may verify.

Next we show that the notion of exact lumpability is not
strictly confluent at all.

Example Let the Markov chains M , M1, M2 be depicted
as follows:
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It holds that M
`
→e M1 and M

k
→e M2 with ` and k given

by `(1) = a, `(2) = `(3) = b, `(4) = c and k(1) =
x, k(2) = y, k(3) = k(4) = z. However, M1 and M2

do not admit a common exact lumping. Because of con-
dition III.3(i) on the initial probability distribution, for M1

the states b and c should be lumped and for M2 the states
y and z, but they lead to different transition probabilities.

VI. CONCLUDING REMARKS

In the above we have reviewed the concept and some
properties of lumpability for discrete time Markov chains.
Some of the results presented here are implicitly available
in other work, see e.g. [Hil95], [Buc94b]. The present
paper presents a self-contained and complete picture on
transitivity and strict confluence, two properties relevant
to tool based analysis of probabilistic systems.

It should be noted that the concepts discussed above
and the results obtained, apply to continuous time Markov
chains and Markov reward processes too. In the near fu-
ture we plan to study the superposition of lumpability and
the reduction techniques proposed by Voeten et al. reported
in [PVT01], [BVP01].
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