Brief Announcement:
Scalability versus Semantics of Concurrent FIFO Queues:

Christoph M. Kirsch Hannes Payer

Harald Rock Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria
firstname.lastname @cs.uni-salzburg.at

ABSTRACT

Maintaining data structure semantics of concurrent queues such as
first-in first-out (FIFO) ordering requires expensive synchroniza-
tion mechanisms which limit scalability. However, deviating from
the original semantics of a given data structure may allow for a
higher degree of scalability and yet be tolerated by many concur-
rent applications. We introduce the notion of a k-FIFO queue which
may be out of FIFO order up to a constant k (called semantical devi-
ation). Implementations of k-FIFO queues may be distributed and
therefore be accessed unsynchronized while still being starvation-
free. We show that k-FIFO queues whose implementations are
based on state-of-the-art FIFO queues, which typically do not scale
under high contention, provide scalability. Moreover, probabilis-
tic versions of k-FIFO queues improve scalability further but only
bound semantical deviation with high probability.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programming

General Terms

Algorithms, Performance

1. INTRODUCTION

The scalability of applications is limited by Amdahl’s Law, which
states that the degree to which we can speed up an application on a
multi-core system is limited by the amount of code that cannot be
parallelized and must be executed sequentially. Since operations
on shared data structures may not be fully parallelized there is an
intrinsic concurrency bottleneck in many applications using shared
data structures that gets increasingly problematic with an increas-
ing number of cores.

Even basic concurrent data structures such as stacks and queues
have negative scalability under high contention due to synchroniza-
tion. However, maintaining data structure semantics may actually
not be needed in some concurrent applications. Consider, for exam-
ple, a webserver which stores incoming requests in a shared FIFO
queue running on a server machine with possibly hundreds of cores.
The requests are dequeued and handled by worker threads at a later

*Supported by the EU ArtistDesign Network of Excellence on Em-
bedded Systems Design, the National Research Network RiSE on
Rigorous Systems Engineering (Austrian Science Fund S11404-
N23), and an Elise Richter Fellowship (Austrian Science Fund
V00125).

Copyright is held by the author/owner(s).
PODC’11, June 6-8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

point in time. In such a scenario it may not be important to pro-
cess the requests in perfect FIFO order. Instead, it may be suffi-
ciently fair to handle the requests FIFO up to a constant that bounds
the deviation from FIFO order. A detailed evaluation of the trade-
off between scalability and semantical deviation of concurrent data
structures can be found in [3]. A more recent survey exemplifies
the trend towards scalable but semantically weaker concurrent data
structures [5].

2. k-FIFO QUEUE

A k-FIFO queue provides an enqueue and a dequeue operation
similar to a regular FIFO queue. Logically, a k-FIFO queue is a
queue where an enqueue operation adds an element to the queue
tail and a dequeue operation removes one of the k — e oldest ele-
ments from the queue with e being the number of dequeue oper-
ations since the most recent dequeue operation that removed the
oldest element from the queue, i.e., e < k always holds. Thus, re-
trieving the oldest element from the queue may require up to k de-
queue operations, which may not return any element younger than
the k oldest elements in the queue and which may be interleaved
with any number of enqueue operations. This implies that k-FIFO
queues are starvation-free. Note that a 0-FIFO queue is equivalent
to a regular FIFO queue.

We implement a k-FIFO queue using p versions of a regular
FIFO queue, so-called partial FIFO queues, and a load balancer
that distributes data structure operations among the p partial FIFO
queues [3]. The value of p and the type of load balancer deter-
mine k (semantical deviation), as discussed below, as well as the
scalability of the k-FIFO queue, i.e., how many data structure op-
erations can potentially be performed concurrently and in parallel
without causing contention. Note that p and the load balancer can
be configured by the programmer at compile time or dynamically
at runtime with the help of performance counters. For example, a
load balancer may be chosen with p = 1 under low contention and
with increasing p as contention increases.

A metric for the quality of the load balancer is the maximum im-
balance of operations of a given operation type, which we define as
the difference between the partial FIFO queue on which the most
and the fewest operations of a given type have been performed at
a given point in time. Starvation of elements in a k-FIFO queue is
prevented if the maximum imbalance of operations for each oper-
ation type is bounded. In this case the semantical deviation of a
k-FIFO queue from a regular FIFO queue is also bounded.

A load balancer that provides bounded semantical deviation for
a k-FIFO queue can be implemented with two global counters in-
dicating on which partial FIFO queue the last enqueue and the last
dequeue operation was performed. We refer to it as perfect load
balancer. The global counters are accessed and modified using

atomic operations, which can cause cache conflicts when multi-
ple threads try to modify the same memory locations concurrently.
However, scalability may still be achieved under low concurrent
load since the load balancer itself is simple and contention on the
shared memory locations may rarely happen. It can be shown that if
t threads perform concurrent data structure operations on a k-FIFO
queue using the perfect load balancer the semantical deviation is
k<t-(p—1).

A load balancer that randomly distributes operations over the
partial FIFO queues bounds the semantical deviation probabilisti-
cally. This approach, also known as randomized load balancing [2],
has been shown to provide good distribution quality if the random
numbers are distributed independently and uniformly. However,
generating such random numbers may be computationally expen-
sive. Therefore, it is essential to find the right trade-off between
quality and overhead of random number generation. Suppose that
m enqueue operations and n dequeue operations have been per-
formed on p partial FIFO queues using a random load balancer,
then it can be shown that with high probability the semantical de-

viation is bounded by k < ® (. /%) (p—1).

In order to improve the balancing quality of the random load
balancer, d partial FIFO queues with 1 < d < p may be chosen
randomly. Out of the d partial FIFO queues the queue that con-
tributes most to a better balance is then selected. For example, an
enqueue operation may be performed on the partial FIFO queue
that contains the fewest elements. We refer to such a load balancer
as d-random load balancer. The runtime overhead of the d-random
load balancer increases linearly in d since the random number gen-
erator is called d times. It can be shown that a d-random load
balancer bounds the semantical deviation with high probability to

k<2 @(“’g‘%y(p—n.

3. EVALUATION

The experiments ran on a 24-core server machine (four 6-core
2.1GHz AMD Opteron processors). The benchmarks start with
empty queues. Then, each thread enqueues and dequeues elements
in alternating order. We use the number of operations performed by
all threads per millisecond as our metric of throughput. Addition-
ally, we compute from benchmark traces the average semantical
deviation per operation of the different queues. We compare our
k-FIFO queues with the lock-free Michael-Scott FIFO queue [4]
(baseline) and a modified version of that FIFO queue called Ran-
dom Dequeue Queue (RDQ) [1]. RDQ is semantically equivalent
to a k-FIFO queue where k can be configured at compile time. The
implementation of our k-FIFO queue uses the previously described
load balancers and the Michael-Scott FIFO queue for the partial
FIFO queues.

The throughput results are depicted in Figure 1(a). The through-
put of the Michael-Scott baseline and RDQ decreases with an in-
creasing number of threads. The k-FIFO queue with the perfect
load balancer does not scale but performs better than the baseline.
The k-FIFO queues with the random and the 2-random load bal-
ancers provide scalability.

The semantical deviation results are depicted in Figure 1(b). The
average semantical deviation of the k-FIFO queue with the random
load balancer is high. In comparison, the average semantical devi-
ation of the k-FIFO queue with the 2-random load balancer is three
orders of magnitude lower. The lowest average semantical devia-
tion is achieved by RDQ and the k-FIFO queue with the perfect load
balancer. Note that the semantical deviation of the Michael-Scott
baseline is zero.

16000

14000 |- e |
12000 |- rx |

L *]
10000 o
**
8000 | Sal) 4
¥x
x5

6000 ** 4

x
4000 | /¢ g
WW+HH/\F77747 — |
L
-

2000

operations/ms (more is better)

B,

.,
SEhstsanungeg. ! 5
0 L L L L L L L L
1 4 8 12 16 20 24 32 48 64

number of threads

perfect p=24 — 2-random p=24 - baseline
random p=24 RDQ k=24 &

(a) Throughput

10000

1000 b

o

average semantical deviation/operation
*
I
X
X
i

- g 4

1 1 1 1 1 1
12 16 20 24 32 48 64
number of threads

perfect p=24 —+ _ 2-random p=24 ¥ baseline
random p=24 RDQ k=24 ©

(b) Semantical Deviation

Figure 1: Increasing number of threads on a 24-core server
machine

The k-FIFO queue with the 2-random load balancer provides
the best compromise between scalability and semantical deviation
for the presented workload. Depending on the workload a k-FIFO
queue may be configured with the smallest p value and the most ac-
curate load balancer to provide the best adherence to data structure
semantics while still providing scalability. Interesting future work
includes applying our implementation concept to other concurrent
data structures and transaction-based systems such as software-
transactional memory.

4. REFERENCES

[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability:

Relaxed consistency for improved concurrency. In Proc.

Conference on Principles of Distributed Systems (OPODIS),

pages 395-410. Springer, 2010.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking.

Balanced allocations: The heavily loaded case. SIAM Journal

on Computing, 35(6):1350-1385, 2006.

[3] C.Kirsch, H. Payer, and H. Réck. Scal &: Non-linearizable
computing breaks the scalability barrier. Technical Report
2010-07, Department of Computer Sciences, University of
Salzburg, November 2010.

[4] M. Michael and M. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proc. Symposium on Principles of Distributed Computing
(PODC), pages 267-275. ACM, 1996.

[5] N. Shavit. Data structures in the multicore age.
Communications of the ACM, 54:76-84, March 2011.

[2

—

