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Abstract

A parallel composition is defined for Markov reward chains with stochastic disconti-
nuity, and with fast and silent transitions. In this setting, compositionality with re-
spect to the relevant aggregation preorders is established. For Markov reward chains
with fast transitions the preorders are τ -lumping and τ -reduction. Discontinuous
Markov reward chains are ‘limits’ of Markov reward chains with fast transitions,
and have related notions of lumping and reduction. Markov reward chains with
silent transitions are equivalence classes of Markov reward chains with fast transi-
tions and come equipped with the lifted preorders τ∼-lumping and τ∼-reduction. In
total, six compositionality results are presented. Additionally, the parallel operators
involved are related by a continuity result.

Keywords: Markov reward chains, fast transitions, silent transitions, parallel com-
position, aggregation

1 Introduction

Compositionality is a central issue in the theory of concurrent processes. Dis-
cussing compositionality requires three ingredients: (1) a class of processes or
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models; (2) an operation to compose processes; and (3) a notion of behaviour,
usually given by a semantic preorder or equivalence relation on the class of
processes. For the purpose of this paper, we will have semantic preorders and
the parallel composition as operation. Therefore, the compositionality result
can be stated as

P1 > P1, P2 > P2 =⇒ P1 ‖ P2 > P1 ‖ P2 ,

where P1, P2, P1, and P2 are arbitrary processes and ‖ and > denote their
parallel composition and the semantic preorder relation, respectively. Hence,
compositionality enables the narrowing of a parallel composition by composing
simplifications of its components, thus avoiding the construction of the actual
parallel system. In this paper, we study compositionality for augmented types
of Markov chains.

Homogeneous continuous-time Markov chains, Markov chains for short, are
among the most important and wide-spread analytical performance models. A
Markov chain is given by a graph with nodes representing states and outgoing
arrows labelled by exponential rates determining the stochastic behavior of
each state. An initial probability vector indicates which states may act as
starting ones. Markov chains often come equipped with rewards that are used
to measure their performance, such as throughput, utilization, etc. (cf. [1]). In
this paper, we focus on state rewards only, and refer to a Markov chain with
rewards as a Markov reward chain. A state reward is a number associated to a
state, representing the rate at which gain is received while the process resides
in the state. Transition (impulse) rewards [1] can similarly be dealt with.

To cope with the ever growing complexity of systems, several performance
modeling techniques have been developed to support the compositional gener-
ation of Markov reward chains. This includes stochastic process algebras [2,3],
(generalized) stochastic Petri nets [4,5], probabilistic I/O automata [6,7], sto-
chastic automata networks [8], etc. The compositional modeling enables com-
posing a bigger system from several smaller components. The size of the state
space of the resulting system is in the range of the product of the sizes of the
constituent state spaces. Hence, compositional modeling usually suffers from
state space explosion.

In the process of compositional modeling, performance evaluation techniques
produce intermediate constructs that are typically extensions of Markov chains
featuring transitions with communication labels [2–8]. In the final modeling
phase, all labels are discarded and communication transitions are assigned in-
stantaneous behavior. The models that we consider here are intended to sup-
port direct performance analysis of systems that exhibit both stochastic and
instantaneous behavior. We elaborate this for two simple modeling examples
using generalized stochastic Petri nets [4] and Interactive Markov Chains [2].
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Fig. 1. a) A generalized stochastic Petri net, b) its extended reachability graph, and
c) the derived Markov chain.

Example 1 Fig. 1a) depicts an example of a generalized stochastic Petri net
with its corresponding reachability graph in Fig. 1b). The graph contains the
markings of the only token placed initially in p1. The vanishing marking is 0100
because of the enabled immediate transitions t2 and t3 with probabilities p
and 1−p, respectively. The Markov chain in Fig. 1c) is obtained by a reduction
procedure that splits the incoming normal rate λ according the probabilities of
the vanishing marking into two rates pλ and (1 − p)λ that reach the final
markings 0010 and 0001, respectively.

a) 765401231
a

®®

b

¶¶765401232

λ
##

765401233

λ
{{765401234

µ

OO b) 765401231
τ

®®

τ

¶¶765401232

λ
##

765401233

λ
{{765401234

µ

OO c) 765401231

λ
¸¸765401232

µ

UU

Fig. 2. a) An Interactive Markov Chain, b) the intermediate model with τ -tran-
sitions, and c) the induced Markov chain.

Next, consider the Interactive Markov Chain depicted in Fig. 2a). Assuming
that the system is closed, the transitions labeled by a and b are renamed into the
instantaneous transition τ and an equivalent model is obtained. This interme-
diate transition system is depicted in Fig. 2b). Now, assume that the process in
Fig. 2b) starts from state 1. There it exhibits classical non-determinism, i.e.,
the probability of taking the τ -transitions is unspecified. Note, however, that
the process has the same behavior in states 2 and 3. No matter which tran-
sition is taken from state 1, after performing an instantaneous τ -transition
and delaying exponentially with rate λ, the process enters state 4. According
to a bisimulation-based reduction procedure the instantaneous transitions are
eliminated and the performance of the process in Fig. 2b) is considered to be
the performance of the Markov chain in Fig. 2c).

In both cases in Example 1 the intermediate models depicted in Fig. 1b) and
Fig. 2b) are treated only on syntactic level and their performance is defined
to be the performance of the final Markov chains from Fig. 1c) and Fig. 2c).
Here, we wish to treat the intermediate models as stochastic processes with
well-defined notion of performance, which corresponds to the performance of
the resulting Markov chain. Markov reward chains with fast transitions were
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introduced in [9–11] to formalize stochastically the elimination of immediate
transitions and the vanishing markings of Fig. 1b). They are extensions of
the standard Markov reward chains with transitions decorated with a real-
valued linear parameter. To capture the intuition that the labeled transitions
are instantaneous, a limit for the parameter to infinity is taken. The resulting
process is a generalization of the standard Markov reward chain that can per-
form infinitely many transitions in a finite amount of time. This model was
initially studied in [12,13] without rewards, and it is called a (stochastically)
discontinuous Markov reward chain. The process exhibits stochastic disconti-
nuity and it is often considered pathological. However, as shown in [13,14,5],
it proves very useful for the explanation of results. To deal with the non-
deterministic case of Fig. 2b), Markov reward chains with silent transitions
were introduced, which generalize Markov reward chains with fast transitions
by leaving the linear parameter unspecified.

Here, we consider discontinuous Markov reward chains, Markov reward chains
with fast transitions, and Markov reward chains with silent transitions. To
summarize, these three models are intimately related: Markov reward chains
with fast and silent transitions are used for modeling, but some notions for
these processes are expressed asymptotically in terms of discontinuous Markov
reward chains. A limiting process of a Markov reward chain with fast tran-
sitions is a discontinuous Markov reward chain; a Markov reward chain with
silent transitions is identified with an equivalence class of a relation ∼ on
Markov reward chains with fast transitions relating chains with the ‘same
shape of fast transitions’. We define parallel composition of all models in vein
of standard Markov reward chains using Kronecker products and sums [15].

As already mentioned, compositional modeling may lead to state space explo-
sion. Current analytical and numerical methods can efficiently handle Markov
reward chains with millions of states [16,17]. However, they only alleviate the
problem and many real world problems still cannot be feasibly solved. Sev-
eral aggregation techniques have been proposed to reduce the state space of
Markov reward chains. Ordinary lumping is the most prominent one [18,15].
The method partitions the state space into partition classes. In each class, the
states exhibit equivalent behavior for transiting to other classes, i.e., the cu-
mulative probability of transiting to another class is the same for every state
of the class. If non-trivial lumping exists, i.e., at least one partition contains
more than one state, then the method produces a smaller Markov chain that
retains the performance characteristics of the original one. For example, the
expected reward rate at a given time is the same for the original as for the
reduced, so-called lumped, process.

Another lumping-based method is exact lumping [19,15]. This method requires
that each partition class of states has the same cumulative probability of
transiting to every state of another class and, moreover, each state in the
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class has the same initial probability. The gain of exact lumping is that the
probabilities of the original process can be computed for a special class of
initial probability vectors by using the lumped Markov reward chain only.

A preliminary treatment of relational properties of lumping-based aggrega-
tions of Markov chains has been given in [20]. It has been shown that the
notion of exact lumping is not transitive, i.e., there are processes which have
exactly lumped versions that can be non-trivially exactly lumped again, but
the original process cannot be exactly lumped directly to the resulting process.
On the other hand, ordinary lumping of Markov reward chains is transitive
and, moreover, it has a property of strict confluence. Strict confluence means
that whenever a process can be lumped using two different partitions, there
is always a smaller process to which the lumped processes can lump to.

Coming back to our models of interest, ordinary lumping is defined for dis-
continuous Markov reward chains in [9–11]. It is an extension of the standard
lumping method that accounts for instantaneous states as well. A lumping
method is also defined for Markov reward chains with fast transitions, referred
to as τ -lumping [9–11]. The general idea is that two states can be lumped to-
gether whenever they can be lumped in the asymptotic discontinuous Markov
reward chain, when the parameter tends to infinity. The following commuting
diagram gives the agreement of ordinary and τ -lumping. The diagram also
shows that τ -lumping is a proper extension of ordinary lumping for standard
Markov reward chains.

Markov reward chain
with fast transitions

limit

²²

τ -lumping
//

τ -lumped
Markov reward chain
with fast transitions

limit

²²
discontinuous

Markov reward chain

ordinary
lumping

// lumped discontinuous
Markov reward chain.

For Markov reward chains with silent transitions, a lifting of τ -lumping to
the ∼ - equivalence classes is proposed, referred to as τ∼-lumping [9–11]. More
precisely, a partition is a τ∼-lumping of a Markov reward chain with silent
transitions, if it is a τ -lumping for every Markov reward chain with fast tran-
sitions in its ∼-equivalence class and the τ -lumped process does not depend
on the choice of the representative. This situation is depicted in the following
figure.
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Markov reward chain
with fast transitions P1

τ -lumping

²²

∼ Markov reward chain
with fast transitions P2

τ -lumping

²²
τ -lumped Markov reward chain

with fast transitions P1
∼ τ -lumped Markov reward chain

with fast transitions P2.

In addition, [10,11] study an aggregation method by reduction that eliminates
the stochastic discontinuity and reduces a discontinuous Markov reward chain
to a Markov reward chain. The reduction method is an extension of a well-
known method in perturbation theory [21,22,13]. Its advantage is the ability
to split states. The lumping method, in contrast, provides more flexibility:
also states that do not exhibit discontinuous behavior can be aggregated.
The reduction-based aggregation straightforwardly extends to τ -reduction of
Markov reward chains with fast transitions [10,11]:

Markov reward chain
with fast transitions

limit
²²

τ -reduction

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUU

discontinuous
Markov reward chain

reduction // Markov reward chain.

In the case of Markov reward chains with silent transitions, a direct lifting
of the τ -reduction to equivalence classes does not aggregate many processes,
as most of the time the reduced process depends on the actual fast transi-
tions [10,11]. In an attempt to remedy the effect of the fast transitions, we
combine τ -reduction and standard ordinary lumping for Markov reward chains
to obtain τ∼-reduction as depicted below. 1

Markov reward chain
with fast transitions P1

τ -reduction

²²

τ∼-reduction

--

∼ Markov reward chain
with fast transitions P2

τ -reduction

²²

τ∼-reduction

qq

Markov
reward chain P1

ordinary
lumping

$$IIIIIIIIIIIIIII
∼ Markov

reward chain P2

ordinary
lumping

zzuuuuuuuuuuuuuuu

Markov
reward chain P3.

1 The method is called total τ∼-reduction in [10,11], since there more τ∼-reduction
methods are considered.

6



Hence, a Markov reward chain with silent transitions can be τ∼-reduced if all
Markov reward chains with fast transitions in its equivalence class τ -reduce
to Markov reward chains that can be ordinary lumped to the same Markov
reward chain.

Both the lumping-based and the reduction-based aggregation method induce
semantic relations. Namely, for two processes P and P, we say that P > P if P is
an aggregated version of P. In our initial study [23], we investigated the prop-
erties of these relations for discontinuous Markov reward chains and Markov
reward chains with fast transitions. Here we extend the approach to include
Markov reward chains with silent transitions as well.

As already mentioned, compositionality is very important as it allows us to
aggregate the smaller parallel components first, and then to combine them into
the complete aggregated system. This approach can find its way into Marko-
vian model-checkers [24–26] where a huge Markov chain can be (syntactically)
decomposed to feasibly-sized components, which can then be aggregated to ob-
tain the aggregated version of the original process. The technique also serves
as a validation of existing bisimulation-based reduction methods that treat
the intermediate performance models as transition systems. We show that the
relations induced by the lumping and reduction methods are indeed preorders,
i.e., reflexive and transitive relations. Having all the ingredients in place, we
show the compositionality of the aggregation preorders with respect to the
defined parallel composition(s). We also show continuity of the parallel com-
position(s). In short, the parallel operators preserve the diagrams above.

The structure of the rest of the paper is as follows. We start by recalling the
three types of Markovian models in Section 2. Section 3 and Section 4 focus
on the aggregation methods based on lumping and reduction for each of the
models, respectively. Therefore, Section 2 to Section 4 can be understood as
an overview of a fairly recent line of research and an introduction to the re-
sults that follow. In Section 5, we show that the aggregation methods define
preorders on the models. Section 6 contains the main results of the paper:
compositionality of the new parallel operators for each type of Markov chains
with respect to both aggregation preorders. Section 7 wraps up with conclu-
sions. Throughout the paper we present examples to illustrate the proposed
approaches. Whenever we use results from (our) previous work, we state them
as propositions with appropriate references. The novel results are stated as
theorems.

Notation All vectors are column vectors if not indicated otherwise. By 1n

we denote the vector of n 1’s; by 0n×m the n × m zero matrix; by In the
n× n identity matrix. We omit the dimensions n and m when they are clear
from the context. By A[i, j] we denote an element of the matrix A ∈ Rm×n

assuming 1 6 i 6 m and 1 6 j 6 n. We write A > 0 when all elements of A
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are non-negative. The matrix A is called stochastic if A > 0 and A · 1 = 1.
By AT we denote the transpose of A.

Let S be a finite set. A set P = {S1, . . . , SN} of N subsets of S is called a
partition of S if S = S1 ∪ . . . ∪ SN , Si 6= ∅ and Si ∩ Sj = ∅ for all i, j, with

i 6= j. The partitions
{
S

}
and ∆ =

{
{i} | i ∈ S

}
are the trivial partitions.

Let P1 = {S1, . . . , SN} be a partition of S and P2 = {T1, . . . , TM}, in turn,
a partition of P1. The composition P1 ◦ P2 of the partitions P1 and P2 is a
partition of S, given by P1 ◦ P2 = {U1, . . . , UM }, where Ui =

⋃
C∈Ti

C.

2 Markovian Models

In this section we introduce the Markovian models studied in this paper:
discontinuous Markov reward chains as generalizations of standard Markov
reward chains where infinitely many transitions can be performed in a finite
amount of time; Markov reward chains with fast transitions as Markov re-
ward chains parametrized by a real variable τ ; and Markov reward chains
with silent transitions as equivalence classes of Markov reward chains with
fast transitions with the same structure and unspecified ‘speeds’ of the fast
transitions. The fast transitions explicitly model stochastic behavior, while
the silent transitions model non-deterministic internal steps.

2.1 Discontinuous Markov Reward Chains

In the standard theory (cf. [27,28,1]) Markov chains are assumed to be stochas-
tically continuous. This means that the probability is 1 for the process occu-
pying the same state at time t as at time 0, when t → 0. As we include in-
stantaneous transitions in our theory [13], this requirement must be dropped.
Therefore, we work in the more general setting of discontinuous Markov chains
originating from [12].

A discontinuous Markov reward chain is a time-homogeneous finite-state
stochastic process with an associated (state) reward structure that satisfies
the Markov property. It is completely determined by: (1) a stochastic initial
probability row vector that gives the starting probabilities of the process for
each state, (2) a transition matrix function P : R+ → Rn×n that defines
the stochastic behavior of the transitions at time t > 0, and (3) a state re-
ward rate vector that associates a number to each state representing the gain
of the process while spending time in the state. The transition matrix func-
tion gives a stochastic matrix P (t) at any time t > 0, and has the property
P (t+s) = P (t) ·P (s) [27,28]. It has a convenient characterization independent
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of time [13,29], which allows for the following equivalent definition.

Definition 2 A discontinuous Markov reward chain D is a quadruple
D = (σ, Π, Q, ρ), where σ is a stochastic initial probability row vector, ρ is
a state reward vector and Π ∈ Rn×n and Q ∈ Rn×n satisfy the following six
conditions: (1) Π > 0, (2) Π · 1 = 1, (3) Π2 = Π, (4) ΠQ = QΠ = Q,
(5) Q · 1 = 0, and (6) Q + cΠ > 0, for some c > 0. The matrix function
P (t) = ΠeQt is the transition matrix of D.

We note that the transition matrix uniquely determines the matrices Π and Q
as given in Definition 2. It is continuous at zero if and only if Π = I. In
this case, Q is a standard generator matrix [13,9]. Otherwise, the matrix Q
might contain negative non-diagonal entries. We note that, unlike for standard
Markov reward chains, a meaningful graphical representation of discontinuous
Markov reward chains when Π 6= I is not common. The intuition behind the
matrix Π is that Π[i, j] denotes the probability that a process occupies two
states via an instantaneous transition. Therefore, in case of no instantaneous
transitions, i.e., when Π = I, we get a standard (stochastically continuous)
Markov reward chain denoted by M = (σ,Q, ρ).

Π =




Π1 . . . ΠM 0

Π1 . . . 0 0
...

. . .
...

...

0 . . . ΠM 0




L =




µ1 . . . 0 0
...

. . .
...

...

0 . . . µM 0




R =




δ1 . . . δM

1 . . . 0
...

. . .
...

0 . . . 1




Fig. 3. The ergodic form of Π

For every discontinuous Markov reward chain D = (σ, Π, Q, ρ), Π gets an
‘ergodic’ form after a suitable renumbering of states [13] as depicted in Fig. 3.
Here, for all 1 6 k 6 M , Πk = 1 · µk and Πk = δk · µk for a row vector µk > 0
such that µk ·1 = 1 and a vector δk > 0 such that

∑M
k=1 δk = 1. Then the pair

of matrices (L,R) depicted above forms a canonical product decomposition
of Π (cf. Section 4.1), which is needed for the definition of the reduction-based
method of aggregation.

The new numbering induces a partition E = {E1, . . . , EM , T} of the state
space S = {1, . . . , n}, where E1, . . . , EM are the ergodic classes, determined
by Π1, . . . , ΠM , respectively, and T is the class of transient states, determined
by any Πi, 1 6 i 6 M . The partition E is called the ergodic partition. For
every ergodic class Ek, the vector µk is the vector of ergodic probabilities. If
an ergodic class Ek contains exactly one state, then µk = ( 1 ) and the state is
called regular. The vector δk contains the trapping probabilities from transient
states to the ergodic class Ek.
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We next discuss the behavior of a discontinuous Markov reward chain D =
(σ, Π, Q, ρ). It starts in a state with a probability given by the initial proba-
bility vector σ. In an ergodic class with multiple states the process spends a
non-zero amount of time switching rapidly (infinitely many times) among the
states. The probability that it is found in a specific state of the class is given
by the vector of ergodic probabilities. The time the process spends in the class
is exponentially distributed and determined by the matrix Q. In an ergodic
class with a single state the row of Q corresponding to that state has the form
of a row in a generator matrix, and Q[i, j] for i 6= j is interpreted as the rate
from i to j. In a transient state the process spends no time (with probability
one) and it immediately becomes trapped in some ergodic class. The process
in i ∈ T can be trapped in Ek if and only if the trapping probability δk[i] > 0.

The expected reward (rate) at time t > 0, notation R(t), is obtained as R(t) =
σP (t)ρ. It is required in the calculation of the expected accumulated reward
up to time t, given by

∫ t
0 R(s)ds. We have that the expected reward remains

unchanged if the reward vector ρ is replaced by Πρ. To see this, we use that
P (t) = P (t)Π (cf. [13,11]), so σP (t)Πρ = σP (t)ρ = R(t). Intuitively, the
reward in a transient state can be replaced by the sum of the rewards of
the ergodic states that it can get trapped in as the process gains no reward
while transiting through transient states. The reward of an ergodic state is the
sum of the rewards of all states inside its ergodic class weighted according to
their ergodic probabilities. This alternative representation of the reward vector
alleviates the presentation of some aggregation methods in later sections.

2.2 Markov Reward Chains with Fast Transitions

A Markov reward chain with fast transitions is obtained by adding
parametrized, so-called fast, transitions to a standard Markov reward chain.
The remaining standard transitions are referred to as slow. The behavior of
a Markov reward chain with fast transitions is determined by two generator
matrices S and F , which represent the rates of the slow transitions and the
rates (called speeds) of the fast transitions, respectively.

Definition 3 A Markov reward chain with fast transitions F = (σ, S, F, ρ) is
a function assigning to each τ > 0, the parametrized Markov reward chain

Mτ = (σ, S + τF, ρ)

where σ ∈ R1×n is an initial probability vector, S, F ∈ Rn×n are two generator
matrices, and ρ ∈ Rn×1 is the reward vector.

By taking the limit when τ → ∞, fast transitions become instantaneous.
Then, a Markov reward chain with fast transitions behaves as a discontinuous
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Markov reward chain [13,9–11].

Definition 4 Let F = (σ, S, F, ρ) be a Markov reward chain with fast transi-
tions. The discontinuous Markov reward chain D = (σ, Π, Q, Πρ) is the limit
of F, where the matrix Π is the so-called ergodic projection at zero of F , that
is Π = limt→∞ eFt, and Q = ΠSΠ. We write F →∞ D.

The initial probability vector is not affected by the limit construction. We
will later motivate the choice of using the reward vector Πρ instead of just ρ.
In addition, we define the ergodic partition of a Markov reward chain with
fast transitions to be the ergodic partition of its limit discontinuous Markov
reward chain.

To illustrate the relation between the Markov reward chains with fast transi-
tions and discontinuous Markov reward chains we give an example.

Example 5 We depict Markov reward chains with fast transitions as in
Fig. 4. The initial probabilities are depicted left above, and the reward rates
right above each state. Here, a, b, and c are speeds, whereas λ, µ, ν, and ξ are
rates of slow transitions. As in the definition, τ denotes the real parameter.

a) 765401231
1 r1

aτ

®®

λ

¶¶765401232
r2

µ
44765401233

r3νtt

b) 765401231

bτ

¸¸

π r4

765401232
1−π r5

cτ

UU

ξ

²²765401233
0

c) 765401231
1 r1

aτ

®®

bτ

¶¶765401232
r2

λ

""

765401233
r3

µ

||765401234 0

Fig. 4. Markov reward chains with fast transitions

The limit of the Markov reward chain with fast transitions in Fig. 4a) is given
by the discontinuous Markov reward chain D1 = (σ1, Π1, Q1, ρ1) with:

σ1 =
(
1 0 0

)
Π1 =




0 1 0

0 1 0

0 0 1




Q1 =




0 −µ µ

0 −µ µ

0 ν −ν




ρ1 =




r2

r2

r3




.

State 1 is transient, whereas states 2 and 3 are regular.

The limit of the Markov reward chain with fast transitions in Fig. 4b) is given
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by D2 = (σ2, Π2, Q2, ρ2) with:

σ2 =
(
π 1− π 0

)
Π2 =




p q 0

p q 0

0 0 1




Q2 =




−pqξ −q2ξ qξ

−pqξ −q2ξ qξ

0 0 0




ρ2 =




pr4 + qr5

pr4 + qr5

0




,

where p = c
b+c

and q = b
b+c

. States 1 and 2 in Fig. 4b) form an ergodic class
and state 3 is regular.

Finally, the limit of the process depicted in Fig. 4c) is given by the discontin-
uous Markov reward chain D3 = (σ3, Π3, Q3, ρ3) with:

σ3 =
(
1 0 0 0

)
Π3 =




0 a
a+b

b
a+b

0

0 1 0 0

0 0 1 0

0 0 0 1




Q3 =




0 0 0 0

0 −λ 0 λ

0 0 −µ µ

0 0 0 0




ρ3 =




0

r2

r3

0




.

State 1 in Fig. 4c) is transient, whereas states 2, 3, and 4 are regular.

2.3 Markov Reward Chains with Silent Transitions

We define a Markov reward chain with silent transitions as a Markov reward
chain with fast transitions in which the speeds of the fast transitions are
left unspecified. To abstract away from the speeds of the fast transitions we
introduce a suitable equivalence relation on Markov reward chains with fast
transitions that is induced by the following equivalence relation of matrices.

Definition 6 Two matrices A,B ∈ Rn×n have the same shape (also called
grammar), notation A ∼ B, if and only if they have zeros on the same posi-
tions. That is,

A ∼ B ⇐⇒ (∀i, j) (A[i, j] = 0 ⇐⇒ B[i, j] = 0) .

It is obvious that ∼ is an equivalence on matrices of the same order. The
abstraction from speeds is achieved by identifying generator matrices of fast
transitions with the same shape. Thus, silent transitions are modeled by equiv-
alence classes of ∼.

Definition 7 A Markov reward chain with silent transitions S is a quadruple
S = (σ, S,F , ρ) where F is an equivalence class of ∼ and, for every F ∈ F ,
F = (σ, S, F, ρ) is a Markov reward chain with fast transitions.
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We write F ∈ S if S = (σ, S,F , ρ), and F = (σ, S, F, ρ) with F ∈ F . Fur-
thermore, we lift the relation ∼ to Markov reward chains with fast transitions
and write F ∼ F′ if F, F′ ∈ S. The notion of an ergodic partition is speed
independent, i.e., if F ∼ F′, then they have the same ergodic partition, since
the ergodic partition depends only on the existence of fast transitions, but not
on the actual speeds. Hence we can define the ergodic partition of a Markov
reward chain with silent transitions S as the ergodic partition of any Markov
reward chain with fast transitions F such that F ∈ S.

a) 765401231
1 r1

τ

®®

λ

¶¶765401232
r2

µ
44765401233

r3νtt

b) 765401231

τ

¸¸

π r4

765401232
1−π r5

τ

UU

ξ

²²765401233
0

c) 765401231
1 r1

τ

®®

τ

¶¶765401232
r2

λ

""

765401233
r3

µ

||765401234 0

Fig. 5. Markov reward chains with silent transitions

Example 8 We depict Markov reward chains with silent transitions as in
Fig. 5, i.e., by omitting the speeds of the fast transitions. The depicted Markov
reward chains with silent transitions are induced by the Markov reward chains
with fast transitions in Fig. 4.

In Fig. 5, τ can be understood as a label of internal action transitions, as it
is common in transition system modeling and process algebra [30,31]. In this
way we formalize the notion of performance analysis for Markov reward chains
with non-deterministic internal steps.

3 Aggregation by Lumping

In this section we present lumping methods for the Markovian models of
the previous section originally studied in [9–11]. First, we generalize ordi-
nary lumping of [18] to discontinuous Markov reward chains. Then, we define
τ -lumping for Markov reward chains with fast transitions based on ordinary
lumping of discontinuous Markov reward chains. Finally, we lift the τ -lumping
to τ∼-lumping of Markov reward chains with silent transitions.

We define aggregation by lumping in terms of matrices. Every partition
P = {C1, . . . , CN} of S = {1, . . . , n} can be associated with a so-called collec-
tor matrix V ∈ Rn×N defined by V [i, k] = 0 if i /∈ Ck, V [i, k] = 1 if i ∈ Ck,
and vice versa. The k-th column of V has 1’s for elements corresponding to
states in Ck and has 0’s otherwise. Note that V · 1 = 1. A distributor matrix
U ∈ RN×n for P is defined as a matrix U > 0, such that UV = IN . To satisfy

13



these conditions, the elements of the k-th row of U , which correspond to states
in the class Ck, sum up to one, whereas the other elements of the row are 0.

3.1 Ordinary Lumping

An ordinary lumping is a partition of the state space of a discontinuous Markov
reward chain into classes such that the states that are lumped together have
equivalent behavior for transiting to other classes and, additionally, have the
same reward.

Definition 9 A partition L of {1, . . . , n} is an ordinary lumping, or lumping
for short, of a discontinuous Markov reward chain D = (σ, Π, Q, ρ) if and only
if the following hold: (1) V UΠV = ΠV , (2) V UQV = QV , and (3) V Uρ = ρ,
where V is the collector matrix and U is any distributor matrix for L.

The lumping conditions only require that the rows of ΠV (respectively QV
and ρ) that correspond to the states of the same partition class are equal. We
have the following property.

Proposition 10 ([9–11]) Let D = (σ, Π, Q, ρ) be a discontinuous Markov
reward chain and let L be its ordinary lumping. Define (1) σ = σV , (2) Π =
UΠV , (3) Q = UQV and (4) ρ = Uρ, for the collector matrix V of L and any
distributor U. Then D = (σ, Π, Q, ρ) is a discontinuous Markov reward chain.
Moreover, P (t) = UP (t)V where P (t) and P (t) are the transition matrices of
D and D, respectively. 2

Definition 11 If the conditions of Proposition 10 are satisfied, then D =
(σ, Π, Q, ρ) lumps to D = (σ, Π, Q, ρ), called the lumped discontinuous Markov

reward chain with respect to L. We write D
L→ D.

It can readily be seen that neither the definition of a lumping, nor the definition
of the lumped process depends on the choice of a distributor matrix U . For
example, if V UQV = QV , then V U ′QV = V U ′V UQV = V UQV = QV , for
any other distributor U ′. In the continuous case, when Π = I we have Π = I,
so Q is a generator matrix and our notion of ordinary lumping coincides with
the standard definition [18,32]. The expected reward is preserved by ordinary
lumping, since:

R(t) = σV UP (t)V Uρ = σP (t)V Uρ = σP (t)ρ = R(t).

Similarly, as in [18], one can show that other performance measures are also
preserved by lumping. To illustrate the method we lump the discontinuous
Markov reward chains of Example 5.
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Example 12 It is directly checked that the lumping condition holds for the
discontinuous Markov reward chains D1 and D2 of Example 5 for the same par-
tition {{1, 2}, {3}}. The discontinuous Markov reward chain D3 can be lumped
only if λ = µ and r2 = r3 using the partition {{1, 2, 3}, {4}}. For the lumped
version D1 = (σ1, Π1, Q1, ρ1) of D1 we obtain:

V1 =




1 0

1 0

0 1




σ1 =
(
1 0

)
Π1 =




1 0

0 1


 Q1 =



−µ µ

ν −ν


 ρ1 =




r2

r3


 .

The lumped process D1 is a standard Markov reward chain as Π1 is the identity
matrix.

For the lumped version D2 = (σ2, Π2, Q2, ρ2) of D2 we obtain:

V2 =




1 0

1 0

0 1




σ2 =
(
1 0

)
Π2 =




1 0

0 1


 Q2 =



−qξ qξ

0 0


 ρ2 =




pr4 + qr5

0


 ,

where p = c
b+c

and q = 1 − p. Again, the result is a standard Markov reward
chain.

If we assume that λ = µ and r2 = r3, then the lumped version of D3 is
D3 = (σ3, Π3, Q3, ρ3) with:

V3 =




1 0

1 0

1 0

0 1




σ3 =
(
1 0

)
Π3 =




1 0

0 1


 Q3 =



−λ λ

0 0


 ρ3 =




r2

0


 ,

which is again a standard Markov reward chain.

The lumped processes are depicted in Fig. 6.
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λ

²²765401232
0

Fig. 6. Aggregated Markov reward chains with fast transitions of Fig. 4
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3.2 τ -Lumping

The notion of τ -lumping is based on ordinary lumping for discontinuous
Markov reward chains. The aim is that the limit of a τ -lumped Markov reward
chain with fast transitions is an ordinary lumped version of the limit of the
original Markov reward chain with fast transitions.

Definition 13 A partition L of the state space of a Markov reward chain
with fast transitions F is called a τ -lumping, if it is an ordinary lumping of its
limiting discontinuous Markov reward chain D with F →∞ D.

Note that since we defined the reward of the limit by Πρ, a τ -lumping may
identify states with different rewards.

Like for ordinary lumping, we define the τ -lumped process by multiplying σ, S,
F and ρ with a collector matrix and a distributor matrix. However, unlike for
ordinary lumping, not all distributors are allowed. In [9–11] a class of special
distributors, called τ -distributors, is provided that yield a τ -lumped process.

Definition 14 Let D = (σ, Π, Q, ρ) be a discontinuous Markov reward chain.
Let V be a collector corresponding to a partition of the state space of this
chain. A matrix W is a τ -distributor for V if and only if (1) it is a distributor
for V , (2) ΠV WΠ = ΠV W , and (3) the entries of W corresponding to states
in classes of transient states are positive.
A τ -distributor for a partition of a Markov reward chain with fast transitions
is any τ -distributor for the same partition of its limiting discontinuous Markov
reward chain.

Remark 15 An alternative, explicit definition of the τ -distributors can be
found in [9–11]. We note here that the class of τ -distributors given by Defini-
tion 14 depends on two sets of parameters. Namely, after suitable renumbering,
any τ -distributor W can be written as W =

(
W (α) 0

0 W (β)

)
, where W (α) is a

distributor for the classes containing ergodic states and W (β) is a distributor
for the classes of transient states. As the notation suggests, the distributor
W (α) depends on a set of parameters α and the distributor W (β) is deter-
mined by a set of parameters β. To explicitly state this dependence we may
write Wα,β for a τ -distributor depending on the parameter sets α and β. By
the alternative definition of τ -distributors we can also establish the existence
of a τ -distributor for any τ -lumping.

Having defined τ -distributors, we can now explicitly define a τ -lumped process.

Definition 16 Let F = (σ, S, F, ρ) and let L be a lumping with a collector
matrix V , and a corresponding τ -distributor W . The τ -lumped Markov re-
ward chain with fast transitions F = (σ, S, F , ρ) is defined as σ = σV, S =
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WSV, F = WFV, ρ = Wρ. We say that F τ -lumps to F with respect to W

and write F
L
;W F. We write F

L
; F if F

L
;W F for some τ -distributor W .

In general, when lumping F using a collector V and a distributor U , USV and
UF V are not uniquely determined, i.e., they depend on the choice of the dis-
tributor. The restriction to τ -distributors does not change this. Subsequently,
the τ -lumped process depends on the choice of the τ -distributor. In order to

make the τ -distributor used explicit, we sometimes write F
L
;α,β F in order to

emphasize the parameter sets such that W = Wα,β.

The motivation for restricting to τ -distributors, despite that they do not en-
sure a unique τ -lumped process, is that all τ -lumped processes are equivalent
in the limit. This is stated in the following proposition, which gives the precise
connection of ordinary lumping and τ -lumping.

Proposition 17 ([9–11]) The following diagram commutes

F
L ///o/o/o/o/o/o/o

∞
²²

F
∞²²

D
L // D

that is, if F
L
; F →∞ D and if F →∞ D

L→ D
′
, then D = D

′
, for F and F

Markov reward chains with fast transitions, and D, D, and D
′
discontinuous

Markov reward chains. 2

Moreover, the τ -lumped processes that originate from the same Markov reward
chain with fast transitions become exactly the same, once all fast transitions
are eliminated [10,11].

Example 18 The τ -distributors (cf. [10,11] for the explicit form of the τ -
distributors) for the Markov reward chains with fast transitions depicted in
Fig. 4a), Fig. 4b), and Fig. 4c) are

W1 =




0 1 0

0 0 1


 W2 =




c
b+c

b
b+c

0

0 0 1


 W3 =




0 α 1− α 0

0 0 0 1


 ,

for some 0 ≤ α ≤ 1, respectively. Again we assume that λ = µ and r2 = r3

for the Markov reward chain with fast transitions in Fig. 4c) to be τ -lumpable.
It is directly checked that the τ -lumped processes correspond to the lumped
Markov reward chains from Example 12 depicted in Fig. 6 as expected by
Proposition 17.
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3.3 τ∼-Lumping

We lift τ -lumping to equivalence classes of ∼ to obtain τ∼-lumping for Markov
reward chains with silent transitions. Intuitively, a partition is a τ∼-lumping
of S, if it is a τ -lumping for every F ∈ S and, moreover, the limit of the
τ -lumped process of F does not depend on the parameters chosen for the τ -
distributor. Recall that the parameter set α affects ergodic states, whereas the
parameter set β affects only transient states.

Definition 19 Let S be a Markov reward chain with silent transitions and let
L be its partition. Then L is a τ∼-lumping if and only if it is a τ -lumping
for every Markov reward chain with fast transitions F ∈ S and, moreover, for

every F, F′ ∈ S if F
L
;α,β F and F′ L;α′,β F

′
, then F ∼ F

′
.

The motivation behind the use of the same parameter set β in Definition 19 is
that there may be slow transitions originating from transient states which will
depend on β in the lumped process. If we do not restrict to the same parameter
set β, then τ∼-lumpings will only exist in rare cases in which transient states
have no slow transitions. We refer to [10,11] for details.

Now we can define a τ∼-lumped process which is unique for a given τ∼-lumping
L and a parameter set β.

Definition 20 Let S be a Markov reward chain with silent transitions and L
its τ∼-lumping. Let F ∈ S be such that F

L
;α,β F and let S be the Markov reward

chain with silent transitions with F ∈ S. Then S τ∼-lumps to S, with respect

to L and β, notation S
L
;β S. We write S

L
; S if S

L
;β S for some parameter

set β.

Example 21 From the lumped and τ -lumped versions of Example 12 and Ex-
ample 18, respectively, we conclude that the Markov reward chain with silent
transitions depicted in Fig. 5a) can be τ∼-lumped to the Markov reward chain
D1 of Example 12 depicted in Fig. 6a) as every representative Markov re-
ward chain with fast transitions lumps to this process. The Markov reward
chain with silent transitions depicted in Fig. 5b) cannot be τ∼-lumped as the
τ -lumped versions of the representative Markov reward chains with fast tran-
sitions always depend on the parameters b and c and no further lumping is
possible. Finally, if we assume that λ = µ and r2 = r3 for the Markov reward
chain with silent transitions depicted in Fig. 5c), then it can be τ∼-lumped to
the Markov reward chain D3 of Example 12 depicted in Fig. 6c).
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4 Aggregation by Reduction

Reduction is a specific aggregation method for transforming a discontinuous
Markov chain into a standard Markov chain, originally studied in [21,22,13].
Extended to reward processes, the method reduces a discontinuous Markov
reward chain to a Markov reward chain by eliminating instantaneous states,
while retaining the behavior of the regular states. In the same spirit, we define
reduction methods that reduce Markov reward chains with fast and silent
transitions to Markov reward chains following [10,11], called τ -reduction and
τ∼-reduction, respectively.

4.1 Reduction

The reduction-based aggregation method masks the stochastic discontinuity of
a discontinuous Markov reward chain and transforms it into a Markov reward
chain [21,13,10,11]. The underlying idea is to abstract away from the behavior
of individual states in an ergodic class. The method is based on the notion of
a canonical product decomposition.

Definition 22 Let D = (σ, Π, Q, ρ) and assume that rank(Π) = M , i.e., that
there are M ergodic classes. A canonical product decomposition of Π is a pair
of matrices (L,R) with L ∈ RM×n and R ∈ Rn×M such that L > 0, R > 0,
rank(L) = rank(R) = M , L · 1 = 1, and Π = RL.

A canonical product decomposition always exists and it can be constructed
from the ergodic form of Π (see Fig. 3). Moreover, it can be shown that any
other canonical product decomposition is permutation equivalent to this one.
Since a canonical product decomposition (L,R) of Π is a full-rank decom-
position, and since Π is idempotent, we also have that LR = IM . Thus, we
have LΠ = LRL = L and ΠR = RLR = R. Next, we present the reduction
method.

Definition 23 For a discontinuous Markov reward chain D = (σ, Π, Q, ρ), the
reduced Markov reward chain M = (σ, Q, ρ) is given by σ = σR, Q = LQR
and ρ = Lρ, where (L, R) is a canonical product decomposition of Π. We write
D→r M.

If P (t) and P (t) are the transition matrices of the reduced and the original
chain, respectively, then one can show that P (t) = LP (t)R, see [13,22].

The reduced process is unique up to a permutation of the states, since the
canonical product decomposition is. The states of the reduced process are
given by the ergodic classes of the original process, while the transient states
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are ‘ignored’. Intuitively, the transient states are split probabilistically be-
tween the ergodic classes according to their trapping probabilities. In case a
transient state is also an initial state, its initial probability is split according
to its trapping probabilities. The reward rate is calculated as the sum of the
individual reward rates of the states of the ergodic class weighted by their
ergodic probabilities. Like lumping, the reduction also preserves the expected
reward rate at time t:

R(t) = σRLP (t)RLρ = σΠP (t)Πρ = σP (t)ρ = R(t).

In case the original process has no stochastic discontinuity, i.e., Π = I, the
reduced process is equal to the original.

4.2 τ -Reduction

We now define a reduction-based aggregation method called τ -reduction. It
aggregates a Markov reward chain with fast transitions to an asymptotically
equivalent Markov reward chain.

Definition 24 A Markov reward chain with fast transitions F = (σ, S, F, ρ)
τ -reduces to the Markov reward chain M = (σ, Q, ρ), given by (1) σ = σR,
(2) Q = LSR, and (3) ρ = Lρ, where F →∞ (σ, Π, Q, Πρ) and (L,R) is
a canonical product decomposition of Π. When F τ -reduces to M, we write
F ;r M.

The following simple property relates τ -reduction to reduction. It holds since
LQR = LΠSΠR = LSR and LΠρ = Lρ.

Proposition 25 ([10,11]) The following diagram commutes

F

r )))i)i)i)i)i)i)i

∞ ²²
D r

// M

that is, if F ;r M and F →∞ D →r M′, then M = M′, for F a Markov reward
chain with fast transitions, D a discontinuous Markov reward chain and M
and M′ (continuous) Markov reward chains. 2

Example 26 The aggregation by τ -reduction reduces the Markov reward
chains with fast transitions of Fig. 4a) and Fig. 4b) to the Markov reward
chains D1 and D2 of Example 12, respectively, as in the case of τ -lumping.
However, by using τ -reduction the Markov reward chain with fast transitions
depicted in Fig. 4c) can be directly aggregated to a Markov reward chain with-
out any assumptions. The canonical decompositions for the Markov reward
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chains with fast transitions depicted in Figs. 4a), b), and c) are:

L1 =




0 1 0

0 0 1


 R1 =




1 0

1 0

0 1




L2 =




c
b+c

b
b+c

0

0 0 1


 R2 =




1 0

1 0

0 1




L3 =




0 1 0 0

0 0 1 0

0 0 0 1




R3 =




a
a+b

b
a+b

0

1 0 0

0 1 0

0 0 1




.

The Markov reward chain with fast transitions of Fig. 4c) reduces to the
Markov reward chain depicted in Fig. 7. Note that the initial probability vector
is split according to the transient probabilities.

765401231
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a+b
r2

λ

$$

765401232
b

a+b
r3

µ

zz765401232
0

Fig. 7. τ -reduced Markov reward chain with fast transitions of Fig. 4c)

4.3 τ∼-Reduction

By combining τ -reduction with ordinary lumping of Markov reward chains, we
can eliminate the effect of the speeds and obtain a reduction-like aggregation
method for Markov reward chains with silent transitions. Here, we refer to
this method as τ∼-reduction.

One could define a reduction-based method for Markov reward chains with
silent transitions by saying that a Markov reward chain with silent transi-
tions S reduces to a Markov reward chain M if all Markov reward chains with
fast transitions F ∈ S will τ -reduce to M. However, such is not an efficient re-
duction method as it is applicable only in the few special cases when all Markov
reward chains with fast transitions in a ∼ - equivalence class τ -reduce to the
same Markov reward chain [10,11]. For this reason we combine τ -reduction
and lumping.

Similarly as for τ∼-lumping, the result of the τ∼-reduction should not depend
on the representative Markov reward chain with fast transitions. Therefore, a
Markov reward chain with silent transitions can be τ∼-reduced if all Markov
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reward chains with fast transitions in its equivalence class τ -reduce to Markov
reward chains that can be ordinary lumped to the same Markov reward chain,
as depicted below:

F r
///o/o/o/o/o/o M L

++VVVVVVVVVV

∼ M

F′ r
///o/o/o/o/o M′

L 44hhhhhhhhh

Definition 27 Let S be a Markov reward chain with silent transitions.
Let E = {E1, . . . , EM , T} be its ergodic partition, and L a partition of
{E1, . . . , EM}. Then S can be τ∼-reduced according to L if and only if there
exists a Markov reward chain M, such that for every F ∈ S, we have that

F ;r M
L→M for some Markov reward chain M.

In the above situation, we write S
L
;r M and S;r M if a partition L exists such

that S
L
;r M. We note that both τ∼-lumping and τ∼-reduction produce the

same process when all silent transitions are eliminated, cf. [10,11] for details.

Example 28 The Markov reward chain with fast transitions depicted in
Fig. 4a) is τ∼-reduced to the τ∼-lumped version of the process from Fig. 6a). As
in the case of τ∼-lumping above, there is no τ∼-reduced process of the Markov
reward chain with fast transitions in Fig. 4b), as the τ -reduced process de-
pends on the parameters and no further aggregation is possible. To obtain the
τ∼-reduced version of the Markov reward chain with fast transitions depicted
in Fig. 4c) we have to assume that λ = µ and r2 = r3 in order to lump the
Markov reward chain from Fig. 7.

5 Relational Properties

We investigate the relational properties of the lumping-based aggregation
methods. For ordinary lumping, the combination of transitivity and strict con-
fluence ensures that iterative application yields a uniquely determined process.
In the case of τ -lumping, in view of Proposition 17, only the limit of the fi-
nal reduced process is uniquely determined, unless the final process contains
no fast transitions. Similarly, for τ∼-lumping the reduced process is uniquely
determined only if it does not contain any silent transitions.

There is no need to investigate the relational properties of the reduction-based
methods, since they act in one step (no iteration is possible), in a unique way,
between different types of models.

First, we investigate the properties of the relation > on discontinuous Markov
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reward chains defined by

D1 > D2 ⇐⇒ (∃L) D1
L→ D2 .

The above relation is clearly reflexive, since the trivial partition ∆ is always an

ordinary lumping, i.e., D
∆→ D for any discontinuous Markov reward chain D.

Transitivity enables replacement of repeated application of ordinary lumping
by a single application using an ordinary lumping that is a composition of the
individual lumpings.

Theorem 29 Let D be a discontinuous Markov reward chain such that D
L→D

and D
L→ D. Then D

L◦L→ D.

PROOF. Let D = (σ, Π, Q, ρ), D = (σ, Π, Q, ρ), and D = (σ, Π, Q, ρ). Let V
and V denote the collector matrices for L and L, respectively. The collector
matrix for L◦L is V V . The following lumping conditions hold: V UΠV = ΠV ,
V UQV = QV and V Uρ = ρ. Also Π = UΠV , Q = UQV and ρ = Uρ for any
distributor U for V . Similarly, it holds that: V U Π V = Π V , V U Q V = Q V

and V U ρ = ρ. Moreover Π = U Π V , Q = U Q V and ρ = U ρ for any
distributor U for V .

The iterative application of the ordinary lumping method can be replaced
by the ordinary lumping given by the partition L ◦ L, that corresponds to

the collector matrix V = V V . A corresponding distributor is U = U U ,

because U V = UUV V = I. That the partition is indeed an ordinary

lumping follows from: V U Π V = V V U UΠV V = V V U Π V = V Π V =

V UΠV V = ΠV V = ΠV . Similarly, one gets the condition for Q, and

V U ρ = V V U Uρ = V V U ρ = V ρ = V Uρ = ρ. 2

The relation > on Markov reward chains with fast transitions, defined by

F1 > F2 ⇐⇒ (∃L) F1
L
; F2

is a preorder as well. It is reflexive via the trivial lumping ∆. The following
theorem shows the transitivity of the τ -lumping relation.

Theorem 30 Let F be a Markov reward chain with fast transitions, such that

F
L
; F and F

L
; F. Then F

L◦L
; F.

PROOF. Let F = (σ, F, S, ρ) and F = (σ, F , S, ρ). Denote by V and V the
collector matrices for L and L, respectively. The collector matrix for L ◦ L
is then V = V V . Let W and W be the corresponding τ -distributors used
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for F
L
; F and F

L
; F, respectively. Since τ -lumping is defined in terms of

ordinary lumping, it is sufficient to show that W = WW is a τ -distributor.
From Theorem 29 it is a distributor. The condition requiring positive entries
corresponding to transient states that lump only with other transient states,
can be checked using the explicit description of τ -distributors [11]. It remains
to verify the third condition.

Let Π and Π be the ergodic projections of F and F . Then, ΠV WΠ = ΠV W
and Π V W Π = Π V W . We have that:

Π V W Π = ΠV V W WΠ = V WΠV V WWΠ = V Π V W WΠ
= V Π V W Π WΠ = V Π V W WΠV WΠ = V Π V W WΠV W
= (the same derivation steps backwards)

= ΠV V W W = Π V W. 2

Similarly, τ∼-lumping induces a preorder on Markov reward chains with silent
transitions defined by

S1 > S2 ⇐⇒ (∃L) S1
L
; S2.

Reflexivity again holds due to the trivial partition ∆, while transitivity is a
direct consequence of Theorem 30 and the definition of τ∼-lumping, Defini-
tion 19. Thus, we have the following theorem.

Theorem 31 Let S be a Markov reward chain with silent transitions. Suppose

S
L
; S and S

L
; S. Then S

L◦L
; S. 2

The lumping preorders also have the strict confluence property. In case of

lumping this means that if P
L1→P1 and P

L2→P2, then there exist two partitions

L1 and L2 such that P1
L1◦L1→ P and P2

L2◦L2→ P. One can prove the strict confluence
property by adapting the proof for Markov reward chains, e.g., from [20].

6 Parallel Composition and Compositionality

In this section we define parallel composition for each of the models, and prove
the compositionality results. The definitions are based on Kronecker products
and sums, as for standard Markov reward chains [15,33]. The intuition behind
this is that the Kronecker sum represents interleaving, whereas the Kronecker
product represents synchronization. Let us first recall the definition of Kro-
necker product and sum.
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Definition 32 Let A ∈ Rn1×n2 and B ∈ Rm1×m2. The Kronecker product of
A and B is a matrix (A⊗B) ∈ Rn1m1×n2m2 defined by

(A⊗B)[(i− 1)m1 + k, (j − 1)m2 + `] = A[i, j]B[k, `]

for 1 6 i 6 n1, 1 6 j 6 n2, 1 6 k 6 m1 and 1 6 ` 6 m2.

The Kronecker sum of two square matrices A ∈ Rn×n and B ∈ Rm×m is a
matrix (A⊕B) ∈ Rnm×nm defined by A⊕B = A⊗ Im + In ⊗B.

Next, we list some basic properties of the Kronecker product and sum.

Proposition 33 ([34]) The following equations hold:

(1) (A⊗B)(C ⊗D) = AC ⊗BD,
(2) (A + B)⊗ (C + D) = A⊗ C + A⊗D + B ⊗ C + B ⊗D,
(3) c(A⊗B) = (cA⊗B) = (A⊗ cB),
(4) c(A⊕B) = (cA⊕ cB),
(5) eA⊕B = eA ⊗ eB,
(6) rank(A⊗B) = rank(A) rank(B). 2

We also need the notion of a Kronecker product of two partitions. Let L1

and L2 be two partitions with corresponding collector matrices V1 and V2,
respectively. Then L1⊗L2 denotes the partition corresponding to the collector
matrix V1 ⊗ V2.

6.1 Composing Discontinuous Markov Reward Chains

First, we present the definition of parallel composition of discontinuous Markov
reward chains. The intuition is that ‘rates’ interleave, and the probabilities of
the instantaneous transitions synchronize, i.e., they are independent.

Definition 34 Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2, Π2, Q2, ρ2) be discon-
tinuous Markov reward chains. Their parallel composition is defined as:

D1 ‖ D2 = (σ1 ⊗ σ2, Π1 ⊗ Π2, Q1 ⊗ Π2 + Π1 ⊗Q2, ρ1 ⊗ 1|ρ2| + 1|ρ1| ⊗ ρ2).

The following theorem shows that the parallel composition of two discontinu-
ous Markov reward chains is well defined.

Theorem 35 Let D1 and D2 be two discontinuous Markov reward chains.
Then D1 ‖ D2 is a discontinuous Markov reward chain.
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PROOF. Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2, Π2, Q2, ρ2). The initial
probability vector σ1 ⊗ σ2 is a stochastic vector and the reward vector is well
defined. Using Proposition 33(1)-(3), it is easy to check that the matrices
Π1 ⊗ Π2 and Q1 ⊗ Π2 + Π1 ⊗ Q2 satisfy the conditions of Definition 2, i.e.,
(1) (Π1⊗Π2) ≥ 0, (2) (Π1⊗Π2) · 1 = 1, (3) (Π1⊗Π2)

2 = Π1⊗Π2, (4) (Π1⊗
Π2)·(Q1⊗Π2+Π1⊗Q2) = (Q1⊗Π2+Π1⊗Q2)·(Π1⊗Π2) = Q1⊗Π2+Π1⊗Q2,
(5) (Q1⊗Π2+Π1⊗Q2)·1 = 0, and (6) Q1⊗Π2+Π1⊗Q2+(c1+c2)·(Π1⊗Π2) =
(Q1 +c1Π1)⊗Π2 +Π1⊗ (Q2 +c2Π2) ≥ 0 for c1, c2 ≥ 0 such that Q1 +c1Π1 ≥ 0
and Q2 + c2Π2 ≥ 0. 2

In the special case, when both discontinuous Markov reward chains are con-
tinuous, their parallel composition is again a Markov reward chain as defined
in [15]. Moreover, the following property shows that the parallel composition
of two discontinuous Markov reward chains has a transition matrix that is the
Kronecker product of the individual transition matrices, corresponding to the
intuition that the Kronecker product represents synchronization. This justifies
the definition of the parallel composition.

Theorem 36 Let D1 and D2 be two discontinuous Markov reward chains with
transition matrices P1(t) and P2(t), respectively. Then the transition matrix
of D1 ‖ D2 is given by P1(t)⊗ P2(t).

PROOF. Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2, Π2, Q2, ρ2). As the matrices
Q1 ⊗ Π2 and Π1 ⊗Q2 commute, and Pi(t)Πi = ΠiPi(t) = Pi(t), we derive:

(Π1 ⊗ Π2) e(Q1⊗Π2+Π1⊗Q2)t

= (Π1 ⊗ Π2)(e
(Q1⊗Π2)te(Π1⊗Q2)t)

= (Π1 ⊗ Π2)(
∑∞

n=0(Q1 ⊗ Π2)
ntn/n!)(

∑∞
n=0(Π1 ⊗Q2)

ntn/n!)
= (Π1 ⊗ Π2)(I ⊗ I +

∑∞
n=1(Q1 ⊗ Π2)

ntn/n!)(I ⊗ I +
∑∞

n=1(Π1 ⊗Q2)
ntn/n!)

= (Π1 ⊗ Π2)(I ⊗ I +
∑∞

n=1(Q
n
1 ⊗ Πn

2 )tn/n!)(I ⊗ I +
∑∞

n=1(Π
n
1 ⊗Qn

2 )tn/n!)
= (Π1 ⊗ Π2)(I ⊗ I +

∑∞
n=1(Q

n
1 ⊗ Π2)t

n/n!)(I ⊗ I +
∑∞

n=1(Π1 ⊗Qn
2 )tn/n!)

= (Π1 ⊗ Π2)(I ⊗ I + (
∑∞

n=1 Qn
1 t

n/n!)⊗ Π2)(I ⊗ I + Π1 ⊗∑∞
n=1 Qn

2 t
n/n!)

= (Π1 ⊗ Π2)(I ⊗ I + (eQ1t − I)⊗ Π2)(I ⊗ I + Π1 ⊗ (eQ2t − I))
= (Π1 ⊗ Π2)(I ⊗ I + eQ1t ⊗ Π2 − I ⊗ Π2)(I ⊗ I + Π1 ⊗ eQ2t − Π1 ⊗ I)
= (Π1 ⊗ Π2 + P1(t)⊗ Π2 − Π1 ⊗ Π2)(I ⊗ I + Π1 ⊗ eQ2t − Π1 ⊗ I)
= (P1(t)⊗ Π2)(I ⊗ I + Π1 ⊗ eQ2t − Π1 ⊗ I)
= (P1(t)⊗ Π2 + P1(t)⊗ P2(t)− P1(t)⊗ Π2)
= P1(t)⊗ P2(t). 2

Remark 37 We can motivate Definition 34 also from another perspective.
By the standard probabilistic (i.e., non-matrix) representation of discontinu-
ous Markov reward chain the same notion can be obtained by the following
analysis. Let {X(t) | t > 0 } and {Y (t) | t > 0 } be two discontinuous Markov
reward chains defined on state spaces SX and SY , respectively. Their parallel
composition can be defined as the stochastic process { (X ‖ Y )(t) | t > 0 }
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with the state space SX × SY , such that (X ‖ Y )(t) = (x, y) if and only if
X(t) = x and Y (t) = y. One can show that this process is again a discon-
tinuous Markov reward chain with transition matrix equal to the Kronecker
product of the transition matrices of {X(t) | t > 0 } and {Y (t) | t > 0 }. It is
known that the matrices Π and Q characterizing a transition matrix P (t) are
obtained as Π = limt→0 P (t) and Q = limh→0 (P (h)− Π)/h [13]. Applying
this result on the transition matrix of { (X ‖ Y )(t) | t > 0 } and using the
definition of (X ‖Y )(0) we obtain the first three components of the quadruple
from Definition 34. The reward vector for the parallel composition encodes
the assumption that the reward rate in (x, y) is the sum of the reward rates
in x and y.

It is easy to see that the expected reward of the parallel composition is the sum
of the expected rewards of the components. Using Proposition 33(1) and (2)
we have (σ1 ⊗ σ2)(P1(t) ⊗ P2(t))(ρ1 ⊗ 1 + 1 ⊗ ρ2) = σ1P1(t)ρ1 ⊗ σ1P1(t)1 +
σ2P2(t)1 ⊗ σ2P2(t)ρ2 = R1(t)⊗ 1 + 1⊗R2(t) = R1(t) + R2(t).

The following theorem shows that both lumping and reduction are composi-
tional with respect to the parallel composition of discontinuous Markov reward
chains.

Theorem 38 If D1
L1→ D1 and D2

L2→ D2, then D1 ‖ D2
L1⊗L2→ D1 ‖ D2. Also,

if D1 →r M1 and D2 →r M2, then D1 ‖ D2 →r M1 ‖M2.

PROOF. Let D1 = (σ1, Π1, Q1, ρ1), D1 = (σ1, Π1, Q1, ρ1), D2 =
(σ2, Π2, Q2, ρ2), and D2 = (σ2, Π2, Q2, ρ2). We first prove the compositionality
of lumping. We show that L1 ⊗ L2 is an ordinary lumping of

D1 ‖ D2 = (σ1 ⊗ σ2, Π1 ⊗ Π2, Q1 ⊗ Π2 + Π1 ⊗Q2, ρ1 ⊗ 1 + 1 ⊗ ρ2).

Let U1, U2, and U1⊗U2 be distributors and V1, V2, and V1⊗V2 be the collectors
for L1, L2, and L1 ⊗ L2, respectively. By using the lumping conditions and
Proposition 33(1) and (2) we have that

(V1 ⊗ V2)(U1 ⊗ U2)(Π1 ⊗ Π2)(V1 ⊗ V2)

= (V1U1Π1V1 ⊗ V2U2Π2V2)

= (Π1V1 ⊗ Π2V2) = (Π1 ⊗ Π2)(V1 ⊗ V2)

(V1 ⊗ V2)(U1 ⊗ U2)(Q1 ⊗ Π2 + Π1 ⊗Q2)(V1 ⊗ V2)

= V1U1Q1V1 ⊗ V2U2Π2V2 + V1U1Π1V1 ⊗ V2U2Q2V2

= Q1V1 ⊗ Π2V2 + Π1V1 ⊗Q2V2

= (Q1 ⊗ Π2 + Π1 ⊗Q2)(V1 ⊗ V2)
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(V1 ⊗ V2)(U1 ⊗ U2)(ρ1 ⊗ 1 + 1 ⊗ ρ2)

= (V1U1ρ1 ⊗ V2U21 + V1U11 ⊗ V2U2ρ2)

= ρ1 ⊗ 1 + 1 ⊗ ρ2.

Next, we prove that the lumped parallel composition is the parallel composi-
tion of the lumped components. We have, by Proposition 33(1) and (2),

(U1 ⊗ U2)(Π1 ⊗ Π2)(V1 ⊗ V2) = Π1 ⊗ Π2 and

(U1 ⊗ U2)(Q1 ⊗ Π2 + Π1 ⊗Q2)(V1 ⊗ V2) = Q1 ⊗ Π2 + Π1 ⊗Q2.

Next, we consider reduction. Let Π1 = R1L1 and Π2 = R2L2 be some canonical
product decompositions. Put L = L1⊗L2 and R = R1⊗R2. Note that L ≥ 0
and R ≥ 0 because L1, L2, R1, R2 ≥ 0. We also have L·1 = (L1⊗L2)·(1⊗1) =
L1 · 1 ⊗ L2 · 1 = 1 ⊗ 1 = 1. Since rank(A ⊗ B) = rank(A) · rank(B) by
Proposition 33(6), we get that (L, R) is a canonical product decomposition of
Π = Π1 ⊗ Π2. Reducing D1 ‖ D2 using the canonical product decomposition
(L,R) gives us M1 ‖M2. 2

6.2 Composing Markov Reward Chains with Fast Transitions

We now present the definition of the parallel composition of Markov reward
chains with fast transitions. It comprises Kronecker sums of the generator
matrices, i.e., interleaving of the rates for both slow and fast transitions.

Definition 39 Let F1 = (σ1, S1, F1, ρ1) and F2 = (σ2, S2, F2, ρ2) be two
Markov reward chains with fast transitions. Then their parallel composition
is defined as

F1 ‖ F2 = (σ1 ⊗ σ2, S1 ⊕ S2, F1 ⊕ F2, ρ1 ⊗ 1 + 1 ⊗ ρ2).

It is not difficult to see that the parallel composition of Markov reward chains
with fast transitions is well-defined.

Example 40 In Fig. 8 we present an example of parallel composition of two
Markov reward chains with fast transitions: 8c) is the parallel composition of
8a) and 8b), the same Markov reward chains with fast transitions from the
example in Fig. 4. For readability the rewards of 8c) are omitted. They are
given by the vector

(r1 + r4, r1 + r5, r1, r2 + r4, r2 + r5, r2, r3 + r4, r3 + r5, r3) .
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Fig. 8. Parallel composition of Markov reward chains with fast transitions

Having defined parallel composition for both models, we show how they are
related: the limit of the parallel composition of two Markov reward chains with
fast transitions is the parallel composition of the limits of the components (that
are discontinuous Markov reward chains). Hence, a continuity property of the
parallel composition holds as stated in the next result.

Theorem 41 Let F1 →∞ D1 and F2 →∞ D2. Then F1 ‖ F2 →∞ D1 ‖ D2.

PROOF. Let F1 = (σ1, S1, F1, ρ1) and F2 = (σ2, S2, F2, ρ2), and let their
corresponding limits be D1 = (σ1, Π1, Q1, Π1ρ1) and D2 = (σ2, Π2, Q2, Π2ρ2).
Using Proposition 33(4) and (5) we get that Π1⊗Π2 is the ergodic projection
of F1 ⊕ F2, i.e. limt→∞ e(F1⊕F2)t = Π1 ⊗Π2. As before, using the distributivity
of the Kronecker product and the fact that Π1 is a stochastic matrix, we derive
Q1⊗Π2+Π2⊗Q1 = (Π1⊗Π2)(S1⊕S2)(Π1⊗Π2) and (Π1⊗Π2)(ρ1⊗1+1⊗ρ2) =
Π1ρ1 ⊗ 1 + 1 ⊗ Π2ρ2. 2

Next we show compositionality of τ -lumping and τ -reduction with respect to
the parallel composition of Markov reward chains with fast transitions.

Theorem 42 If F1
L1
; F1 and F2

L2
; F2, then F1 ‖ F2

L1⊗L2
; F1 ‖ F2. Also, if

F1 ;r M1 and F2 ;r M2, then F1 ‖ F2 ;r M1 ‖M2.

PROOF. Let F1 = (σ1, S1, F1, ρ1), F2 = (σ2, S2, F2, ρ2), F1 = (σ1, S1, F 1, ρ1),
and F2 = (σ2, S2, F 2, ρ2). By Theorem 38 and the continuity result Theo-
rem 41, we get that L1⊗L2 is a τ -lumping for F1 ‖ F2. Let W1 and W2 be the
τ -distributors used for the τ -lumped processes in the assumption, respectively.
By Definition 14, Theorem 41, and Definition 34 for the parallel composition of
discontinuous Markov reward chains, we have that W1⊗W2 is a τ -distributor
for F1 ‖F2. The τ -lumped process corresponding to W1⊗W2 is exactly F1 ‖F2.
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We next show the compositionality of τ -reduction. Let Π1 = R1L1 and
Π2 = R2L2 be the canonical product decompositions of Π1 = limt→∞ eF1t and
Π2 = limt→∞ eF2t, respectively. Put L = L1 ⊗ L2 and R = R1 ⊗ R2. Then
(L,R) is a canonical product decomposition of Π = Π1⊗Π2, as in the proof of
Theorem 38. This canonical product decomposition applied to F1‖F2 produces
M1 ‖M2 as the τ -reduced process. 2
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Fig. 9. Aggregated Markov reward chains with fast transitions

Example 43 In Fig. 9 we present the aggregated versions of the Markov re-
ward chains with fast transitions from Fig. 8. As expected by Theorem 42, the
Markov reward chain with fast transitions in 9c) is the parallel composition of
the Markov reward chains with fast transitions in 9a) and 9b) with p = c

b+c

and q = b
b+c

. The aggregated versions can be obtained by either applying τ -
reduction or τ -lumping as already discussed in Examples 18 and 26. See [10,11]
for more details on the relationship between lumping-based and reduction-based
aggregation methods. The τ -lumpings used are {{1, 2}, {3}} for 8a) and 8b),
and {{1, 2, 4, 5}, {3, 6}, {7, 8}, {9}} for 8c).

6.3 Composing Markov Reward Chains with Silent Transitions

We define the parallel composition of two Markov reward chains with silent
transitions via the equivalence class of the parallel composition of the repre-
sentative Markov reward chains with fast transitions.

Definition 44 Let S1 = (σ1, S1,F1, ρ1) and S2 = (σ2, S2,F2, ρ2) be two
Markov reward chains with silent transitions. Then their parallel composition
is defined as

S1 ‖ S2 = (σ1 ⊗ σ2, S1 ⊕ S2,F1 ⊕F2, ρ1 ⊗ 1 + 1 ⊗ ρ2),

where F1 ⊕F2 denotes the equivalence class of F1 ⊕ F2 with respect to ∼, for
some F1 ∈ F1 and F2 ∈ F2.

The parallel composition of Markov reward chains with silent transitions is
well defined as the Kronecker sum respects the equivalence ∼. Next we state
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the compositionality result for τ∼-lumping and τ∼-reduction. It is a direct
consequence of Theorem 42 for compositionality of τ -lumping and τ -reduction,
and compositionality of ordinary lumping for standard Markov reward chain
as a special case of Theorem 38.

Theorem 45 Let S1 and S2 be two Markov reward chains with silent transi-

tions. If S1
L1
; S1 and S2

L2
; S2, then S1 ‖ S2

L1⊗L2
; S1 ‖ S2. Also, if S1

L1
;r M1

and S2
L2
;r M2, then S1 ‖ S2

L1⊗L2
; r M1 ‖M2. 2

7 Conclusion

We considered three types of performance models. Markov reward chains with
fast transitions are our central model used for analyzing systems with stochas-
tic and instantaneous probabilistic transitions. Their limits are the discontinu-
ous Markov reward chains. Their quotients are the Markov reward chains with
silent transitions which can be used for the analysis of systems with stochastic
transitions and non-deterministic (internal) τ steps.

For each type of models, we presented two aggregation methods: lumping
and reduction for discontinuous Markov reward chains, τ -lumping and τ -
reduction for Markov reward chains with fast transitions, and τ∼-lumping
and τ∼-reduction for Markov reward chains with silent transitions. In short,
the contributions of the paper are the following.

• A definition of parallel composition of discontinuous Markov reward chains,
Markov reward chains with fast transitions, and Markov reward chains with
silent transitions allowing for compositional modeling.

• Identification of preorder properties of the aggregation methods for all types
of models.

• Compositionality theorems for each type of models and each corresponding
aggregation preorder, and a continuity property of the parallel compositions.

The results on compositionality are summarized in Fig. 10 which is justified
by the Theorems 29–45, as well as by Proposition 17 and Proposition 25.

Further work focuses on the analysis of models that combine stochastic tran-
sitions and (non-internal) action labeled transitions, so that in addition to
interleaving, synchronization can be expressed too.
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