The Microcosm Principle and Concurrency in Coalgebra

Ana Sokolova

University of Salzburg, Austria

Ichiro Hasuo

Kyoto University, Japan PRESTO Promotion Program, Japan

Bart Jacobs

Radboud University Nijmegen, NL Technical University Eindhoven, NL

A short review of coalgebra/coinduction

Theory of coalgebra

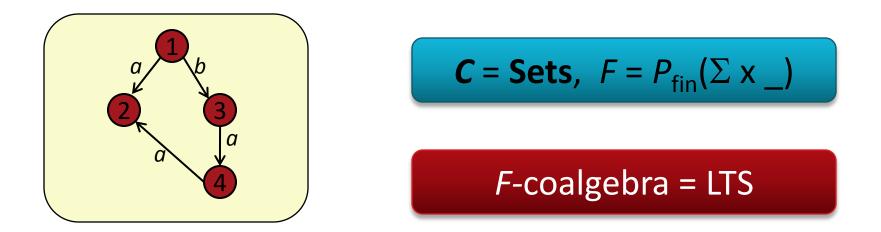
isal theory of state-based systems

in **Sets** : bisimilarity in Kleisli: trace semantics [Hasuo,Jacobs,Sokolova LMCS'07]

ategorically

FXcoalgebra X $egin{array}{ccc} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{ccc} egin{arr$ /iormorphism of rving coalgebras $X - _{f}$ hap FX arrow FZcoinduction c \cong finalbehavior beh(c)(via final coalgebra)

Coalgebra example – LTS



coalgebra $c: X \rightarrow FX$ states $X = \{ 1, 2, 3, 4 \}$ labels $\Sigma = \{a, b\}$ transitions $c(1) = \{(a, 2), (b, 3)\}, c(2) = \emptyset, ...$

Concurrency

C D running C and D in parallel

is everywhere

- computer networks
- multi-core processors
- modular, component-based design of complex systems

is hard to get right

- exponentially growing complexity
- need for a compositional verification

Compositionality

 \mathcal{C}_1

aids compositional verification

Behavior of C || D is determined by behavior of C and behavior of D

Conventional presentation

$$\sim \mathcal{C}_2 \quad \text{and} \quad \mathcal{D}_1 \sim \mathcal{D}_2 \implies \mathcal{C}_1 \parallel \mathcal{D}_1 \sim \mathcal{C}_2 \parallel \mathcal{D}_2$$

behavioral equivalence

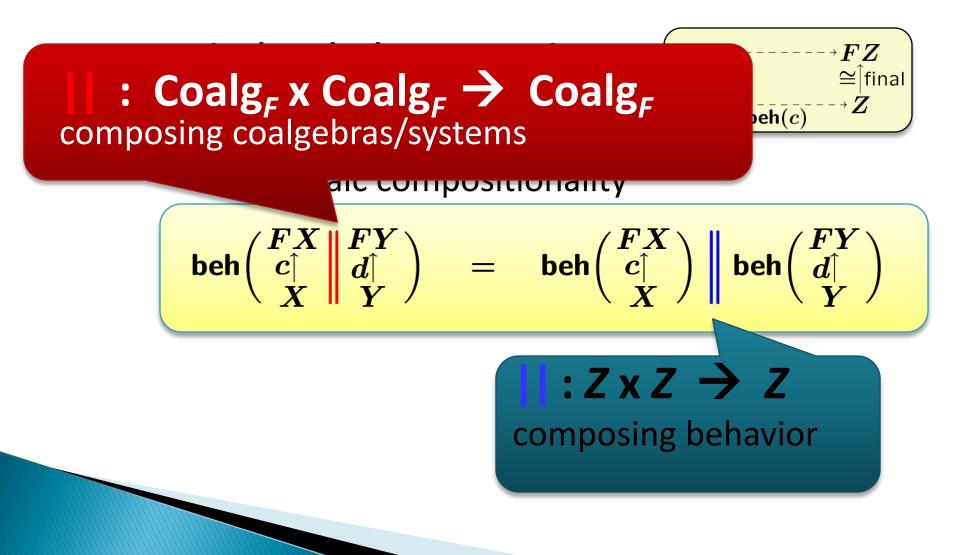
o bisimilarity

0

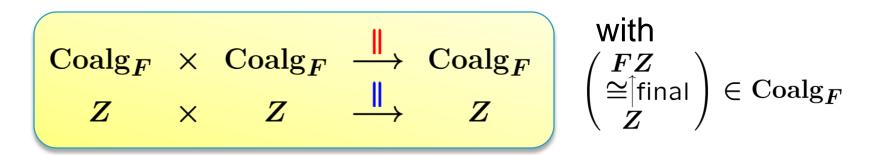
• trace equivalence

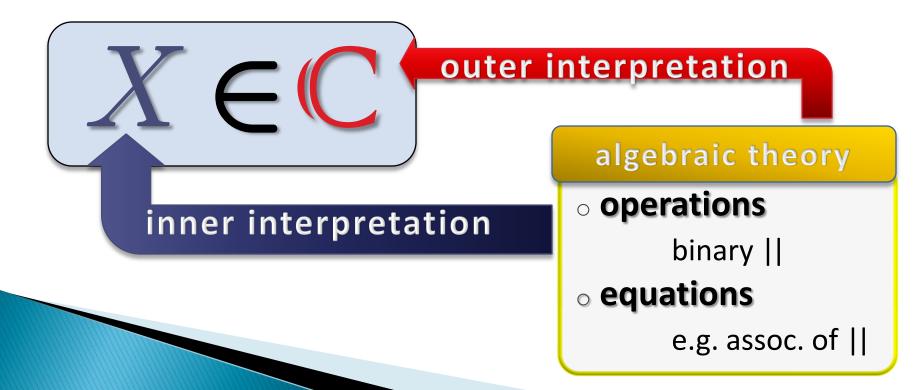
"bisimilarity is a congruence"

Compositionality in coalgebra



Nested algebraic structures: the microcosm principle

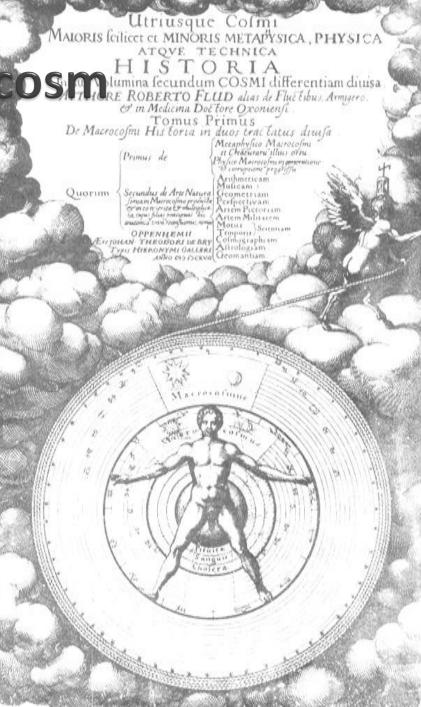




Microcosm in macro osmilumina fecundum COSMI differentiam diuisa er in Medicina Doc fore Oxonienți er in Medicina Doc fore Oxonienți

We name this principle the microcosm principle, after the theory, common in pre-modern correlative cosmologies, that every feature of the microcosm (e.g. the human soul) corresponds to some feature of the macrocosm.

> John Baez & James Dolan Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes Adv. Math. 1998



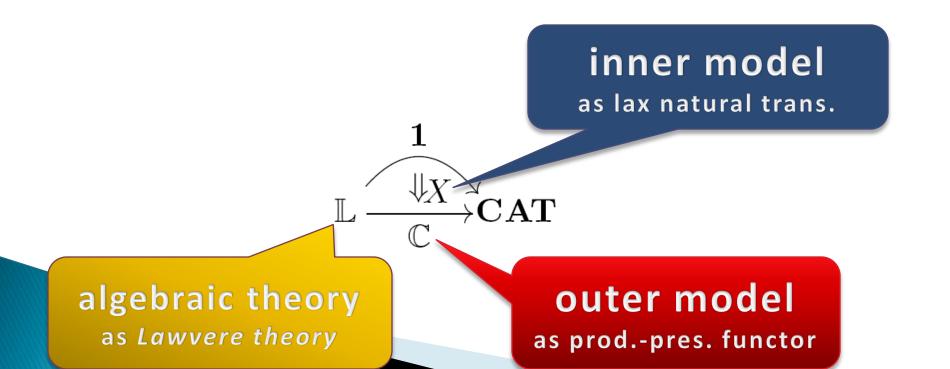
The microcosm principle: you may have seen it

monoid in a monoidal category

monoidal cat. $\mathbb C$		monoid $M \in \mathbb{C}$			
$\otimes:\mathbb{C}\times\mathbb{C}\to\mathbb{C}$	mult.	$M \otimes M \xrightarrow{m} M$			
$I \in \mathbb{C}$	unit	$I \xrightarrow{e} M$			
$I\otimes X\cong X\cong X\otimes I$	unit law	$M \xrightarrow{\longrightarrow} M \otimes M M$			
$(X\otimes Y)\otimes Z\cong X\otimes (Y\otimes Z)$	assoc. law	$egin{array}{cccc} M\otimes M\otimes M{\longrightarrow} M\otimes M \ & igstarrow M \ & igstarrow M \ & M \otimes M {\longrightarrow} M \ & M \otimes M {\longrightarrow} M \end{array}$			
inner depends on outer					

Formalizing the microcosm principle

What do we mean by "microcosm principle"? mathematical definition of such nested models?

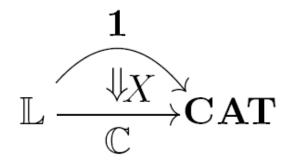


Outline

for arbitrary algebraic theory

generic compositionality theorem

2-categorical formulation

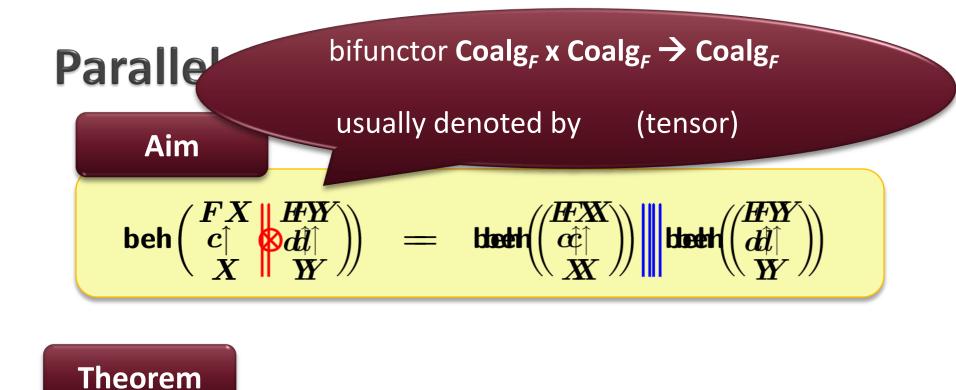


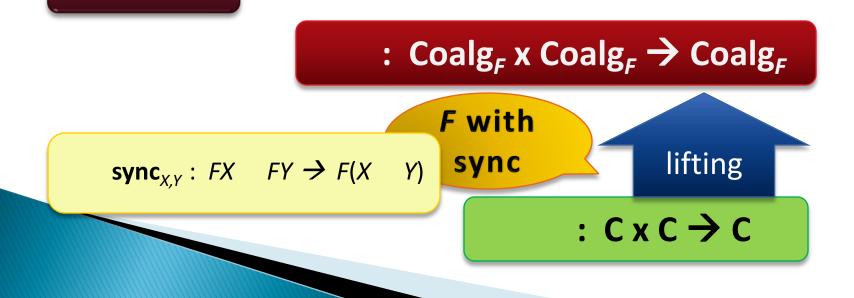
microcosm for concurrency (and)

parallel composition via **sync** nat. trans.

Parallel composition of coalgebras via sync

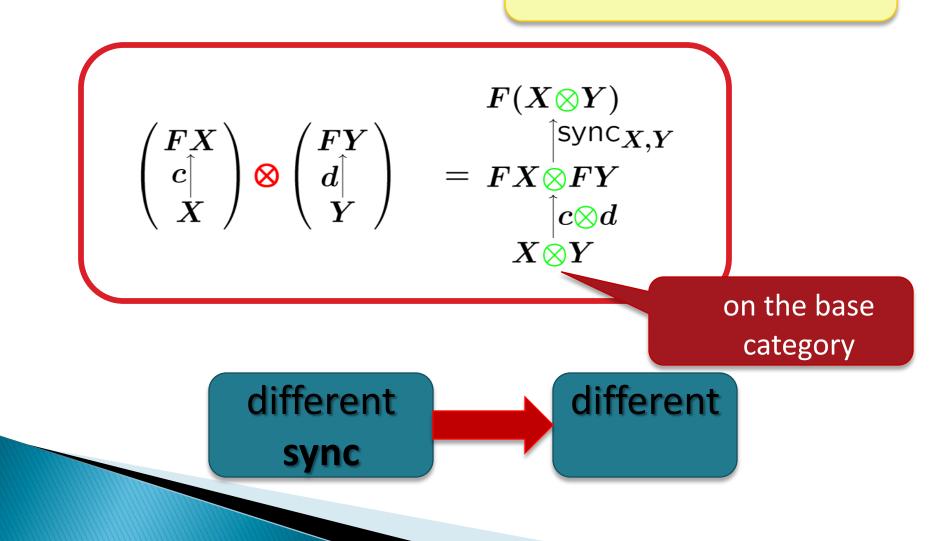
Part

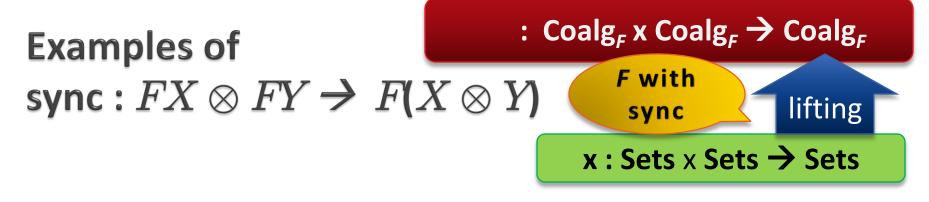




Parallel composition via sync

 $\operatorname{sync}_{X,Y}$: $FX \quad FY \rightarrow F(X \quad Y)$





• <u>CSP-style</u> (Hoare) $a.P \parallel a.Q \xrightarrow{a} P \parallel Q$

$\mathcal{P}_{\mathrm{fin.}}(\Sigma \times X) \times \mathcal{P}_{\mathrm{fin.}}(\Sigma \times Y)$	$\overset{\mathrm{sync}_{X,Y}}{\longrightarrow}$	$\mathcal{P}_{ ext{fin.}}ig(\Sigma imes (X imes Y)ig)$
(S,T)	\mapsto	$ig\{ (a,(x,y)) \mid (a,x) \in S \land (a,y) \in T ig\}$

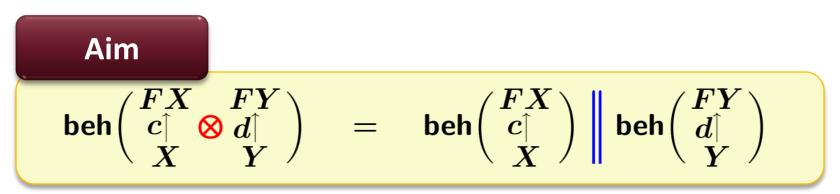
• <u>CCS-style</u> (Milner) $a.P \parallel \overline{a}.Q \xrightarrow{\tau} P \parallel Q$ Assuming $\Sigma = \{a, a', \dots\} + \{\overline{a}, \overline{a'}, \dots\} + \{\tau\}$

$$\begin{array}{ccc} \mathcal{P}_{\mathrm{fin.}}(\Sigma \times X) \times \mathcal{P}_{\mathrm{fin.}}(\Sigma \times Y) & \stackrel{\mathrm{sync}_{X,Y}}{\longrightarrow} & \mathcal{P}_{\mathrm{fin.}}(\Sigma \times (X \times Y)) \\ (S,T) & \longmapsto & \left\{ \left. (\tau, (x,y)) \right. \left. \right| \left. (a,x) \in S \right. \land \left. (\overline{a},y\right) \in T \right. \right\} \end{array}$$

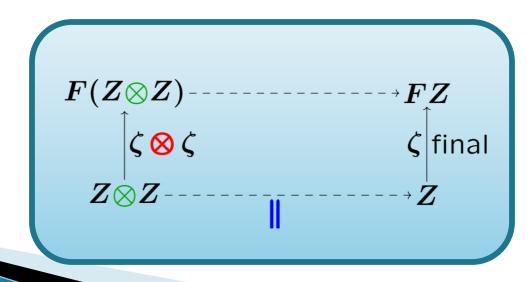
 $C = Sets, F = P_{fin}(\Sigma \times)$

F-coalgebra = LTS

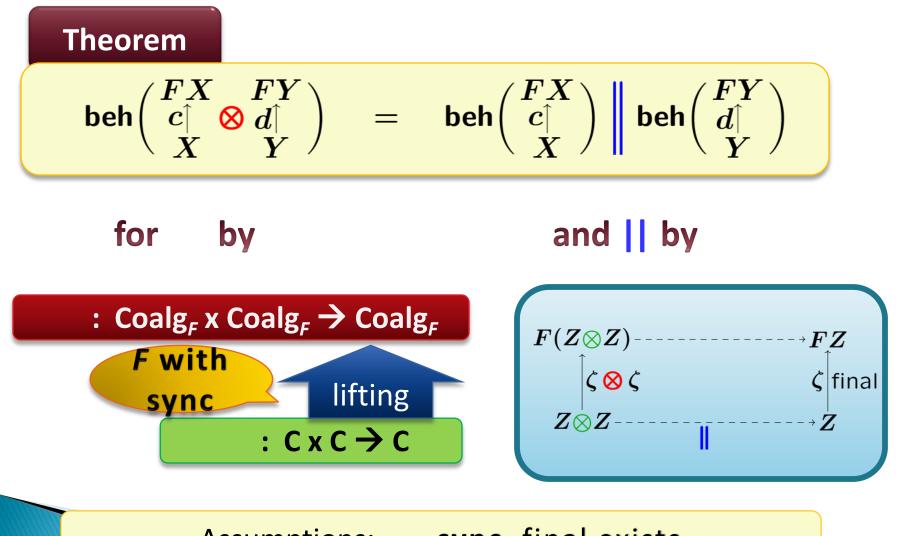
Inner composition



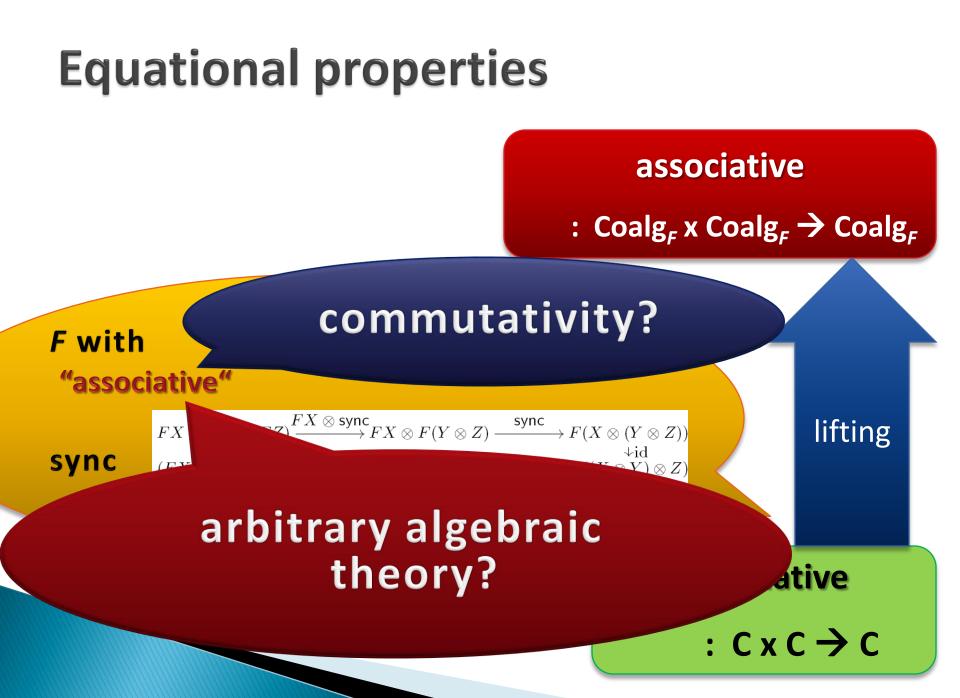
"composition of states/behavior" arises by coinduction



Compositionality theorem



Assumptions: , sync, final exists



for arbitrary algebraic theory

Part

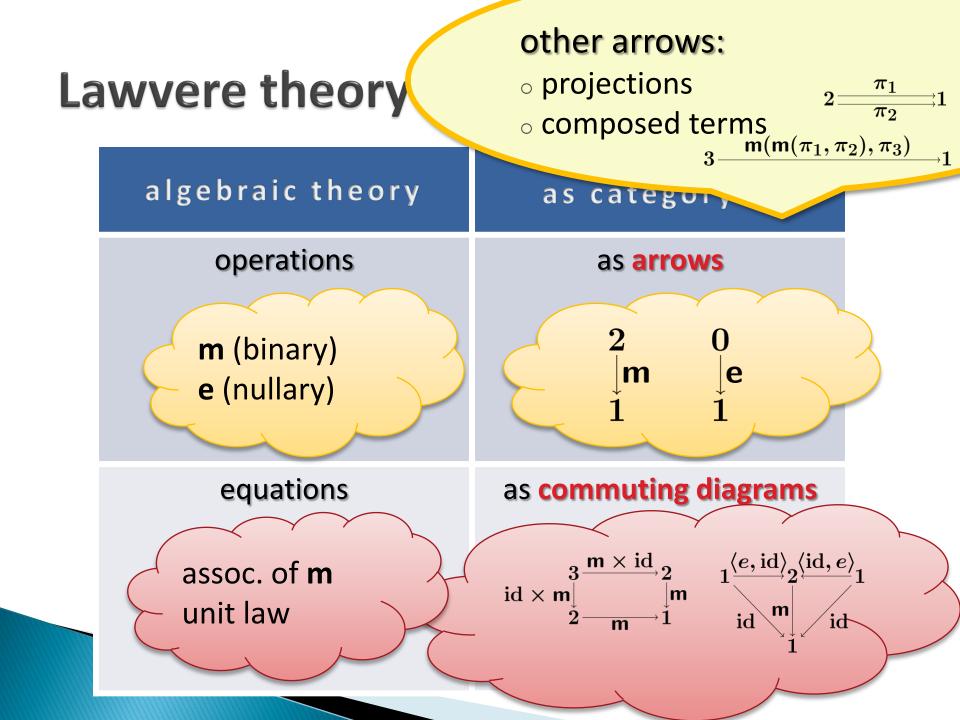
2-categorical formulation of the microcosm principle

Lawvere theory \boldsymbol{L}

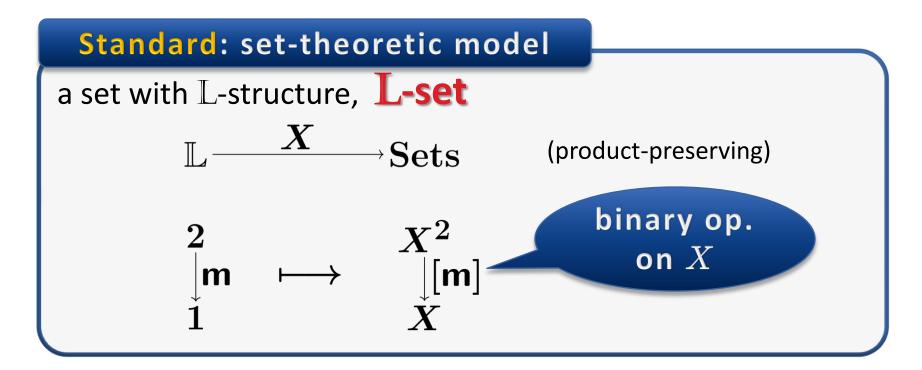
a category representing an algebraic theory

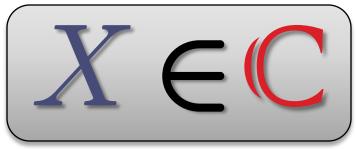
Definition

- A Lawvere theory ${f L}$ is a small category
- with objects natural numbers
- that has finite products

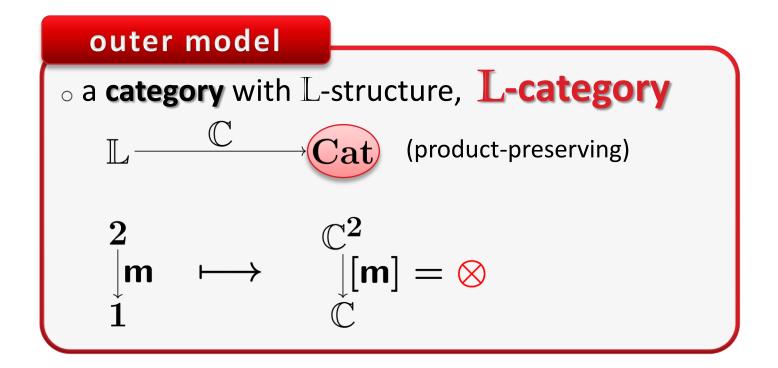


Models for a Lawvere theory \boldsymbol{L}





Outer model: L-category

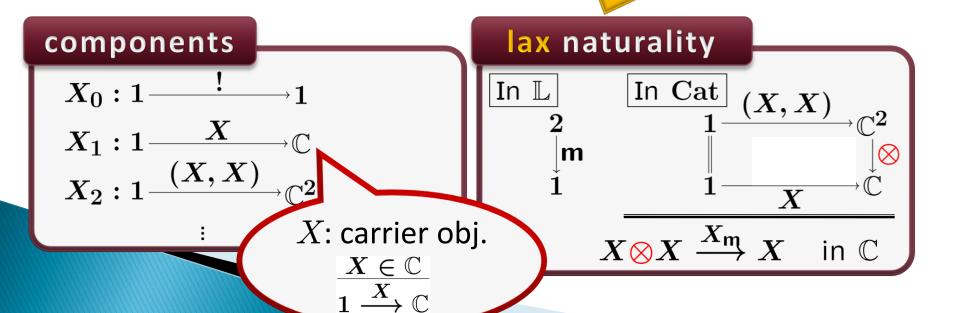


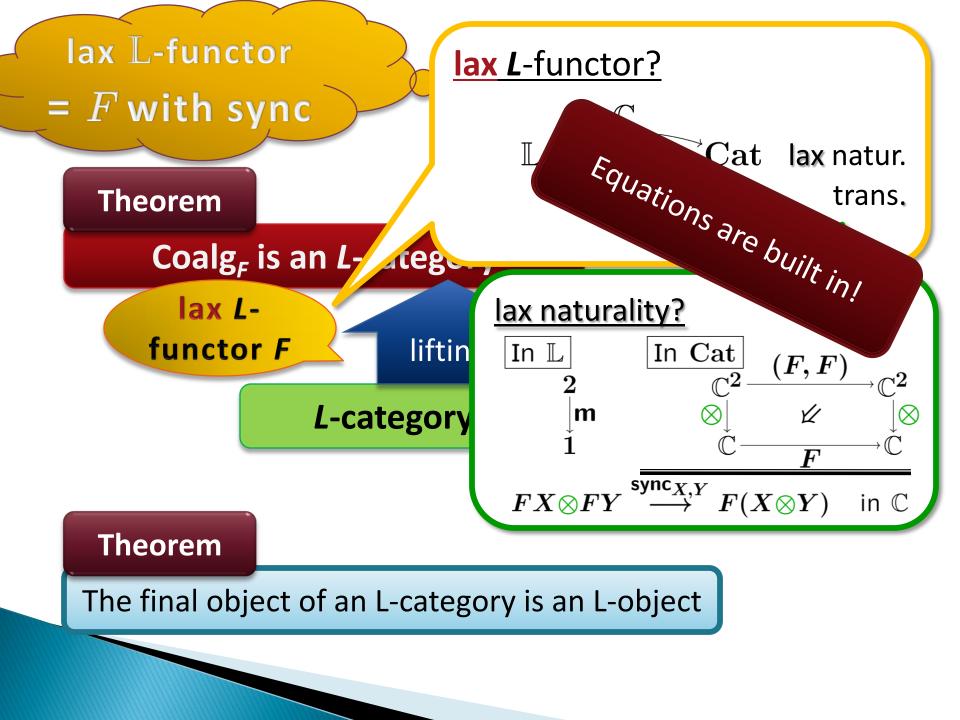
Inner model: L-object

Definition

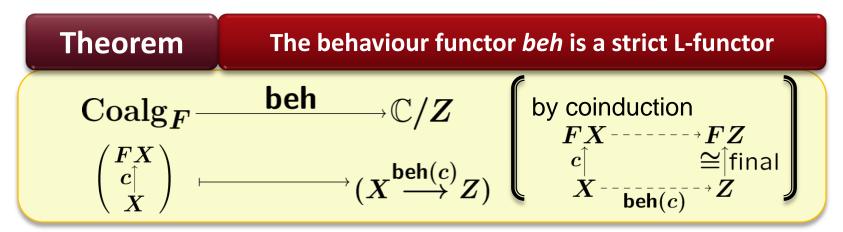
Given an L-category \mathbb{C} , an L-object X in it is a lax natural transformation compatible with products.

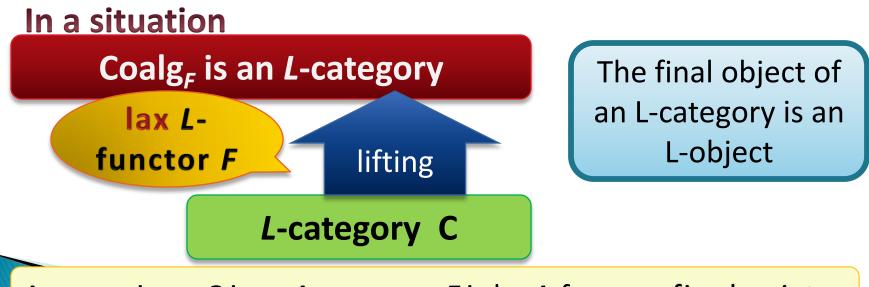
inner alg. str. by mediating 2-cells





Compositionality theorem





Assumptions: C is an L-category, F is lax L-functor, final exists

Related and future work: bialgebras

Bialgebraic structures

[Turi-Plotkin, Bartels, Klin, ...]

algebraic structures on coalgebras

In the current work

Equations, not only operations, are an integral part

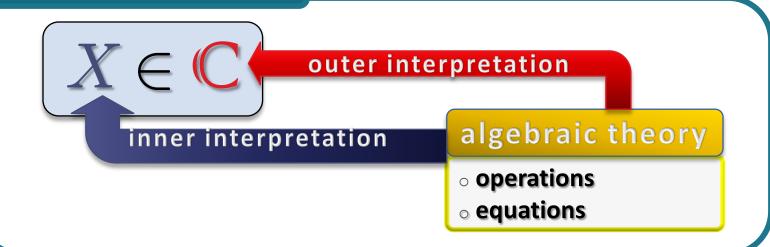
The algebraic structures are nested, higher dimensional

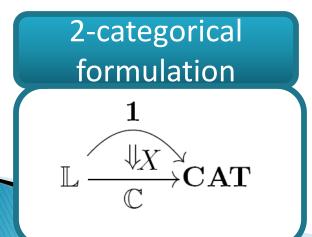
Missing

Full GSOS expressivity

Conclusion

Microcosm principle





Concurrency in coalgebra as motivation and CS example