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Abstract. Concurrent data structures such as concurrent queues, stacks,
and pools are widely used for concurrent programming of shared-memory
multiprocessor and multicore machines. The key challenge is to develop
data structures that are not only fast on a given machine but whose per-
formance scales, ideally linearly, with the number of threads, cores, and
processors on even bigger machines. Part of that challenge is to provide a
common ground for systematically evaluating the performance and scal-
ability of new concurrent data structures and comparing the results with
the performance and scalability of existing solutions. For this purpose, we
have developed Scal which is an open-source benchmarking framework
that provides (1) software infrastructure for executing concurrent data
structure algorithms, (2) workloads for benchmarking their performance
and scalability, and (3) implementations of a large set of concurrent data
structures. We discuss the Scal infrastructure, workloads, and implemen-
tations, and encourage further use and development of Scal in the design
and implementation of ever faster concurrent data structures.

1 Introduction

We describe Scal1, an open-source benchmarking framework for evaluating per-
formance and multicore scalability of concurrent data structures such as con-
current queues, stacks, and pools. With (multicore) scalability we mean that
performance grows (ideally linearly) with the number of threads increasing.

Scal provides:

1. Infrastructural software for scalable memory allocation and computational
load generation, as well as tagging for atomicity and operation logging. Here,
by scalable memory allocation and computational load generation we mean
constant overhead independent of the number of threads.

2. Workloads for benchmarking concurrent data structures such as, for exam-
ple, producer-consumer scenarios.

3. Concurrent data structure implementations, like (relaxed) queues, stacks,
and pools, listed in Table 1.

1 The Scal homepage is at http://scal.cs.uni-salzburg.at, the Scal code is pub-
licly available at http://github.com/cksystemsgroup/scal.

http://scal.cs.uni-salzburg.at
http://github.com/cksystemsgroup/scal
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Fig. 1: Architecture of Scal

Each pair of a workload and a concurrent data structure defines a configuration.
Hence, Scal provides infrastructure and configurations, as shown in Figure 1.

Scal requires an x86 machine and Posix threads. It has been successfully run
on Intel and AMD machines with Linux Ubuntu 12.04 and 14.04. Porting Scal
to other architectures and operating systems should be easily possible.

Scal reports temporal performance by measuring total execution time and
calculating throughput. Time is measured (using standard OS primitives) from
the moment that all threads are created and configured, until the moment that
the last thread terminates. Creation and configuration is done sequentially by a
single initialization thread. All other threads wait on a barrier after they have
been created. As soon as the configuration is complete, the initialization thread
records the (start) time and releases the barrier. The last thread that termi-
nates records the (end) time again right before terminating. Total execution
time is then reported as the difference between the end time and the start
time. Throughput is the total execution time divided by the total number of
data-structure operations performed by all threads. All Scal workloads deter-
mine (configure) the total number of operations to be performed, which enables
throughput calculation. Obtaining meaningful temporal performance results re-
quires disabling CPU frequency scaling (in addition to using scalable memory
allocation and load generation).

The Scal benchmarking framework was originally designed for the evalua-
tion of concurrent (relaxed) data structures [9,16,12,15,8,3,7]. Note that Scal
not only contains our newly developed data structure algorithms, but also many
other state-of-the-art concurrent data structure implementations (cf. Table 1).
We are aware of two other recently developed benchmarking frameworks for a
similar purpose. The sim-universal-construction framework has been designed to
develop and evaluate wait-free algorithms [4]. It has also been used to evaluate
lock-free data structures [23]. The framework provides a subset of Scal’s capabil-
ities such as portable abstractions for atomic operations like fetch-and-inc or
compare-and-swap (covered by tagging for atomicity in Scal) and implements
lock-free queues such as the Michael-Scott queue [21]. However, there is no scal-
able memory allocation, computational load generation, and predefined work-
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Fig. 2: Memory Allocation in Scal

loads. The SynchroBench [5] framework has been designed with the same goals
as Scal. It provides a broad spectrum of concurrent data structure implemen-
tations such as linked lists, skiplists, trees, and hash tables. SynchroBench uses
transactional memory libraries and does not provide scalable memory allocation,
which makes the framework less suitable for high-performance benchmarking.
SynchroBench also does not provide predefined workloads.

2 Scal Infrastructure

Next we describe the Scal infrastructure, in particular memory allocation, com-
putational load generation, tagging for atomicity, and operation logging.

All experiments reported here ran on a unified memory architecture (UMA)
machine with four 10-core 2GHz Intel Xeon E7-4850 processors supporting two
hardware threads (hyperthreads) per core, 128GB of main memory, and Linux
kernel version 3.8.0. All measurements are averaged over ten runs and reported
as arithmetic mean including the 95% confidence interval (based on corrected
sample standard deviation).

To this end, let us note that Scal is open-source and publicly available, and
hence also open to improvement and extensions. New utilities may be developed
as the demand grows.

2.1 Memory Allocator

The memory allocator of Scal is a special purpose concurrent allocator that
performs cyclic allocation [24].

Ideally, in a benchmarking framework, memory management operations take
zero time and do not depend on the number of threads. In Scal, memory alloca-
tion is done thread-locally with negligible overhead (that does not depend on the



number of threads). Figure 2 shows the memory layout in Scal. Each thread in
Scal gets its own heap for thread-local allocation. The heaps are initialized upon
thread startup with preallocated fixed-size memory chunks that are optionally
accessed (by reading single words) to warm up operating system pages. Each
heap consists of a bump pointer, as well as a start and an end indicating the
beginning and the end of the memory chunk.

Upon memory allocation, the bump pointer is incremented by the required
size and the bump pointer value at the start of the allocation operation is re-
turned as memory address2. Upon reaching the limit the bump pointer is reset
to the beginning of the memory chunk.

Cyclic allocation is sound as long as no allocated and still live memory gets
reallocated, i.e., the bump pointer returns addresses to dead memory. For any
benchmark that terminates in finite time, there is a heap size such that cyclic
allocation with that heap size is sound. In order to determine the heap size
sufficient for sound cyclic allocation, Scal provides a configuration mode in which,
instead of resetting the bump pointer (cyclic allocation), the heap expands by
obtaining another memory chunk from the OS. This configuration mode is not
scalable because of the overhead involved in obtaining memory chunks.

Cyclic allocation does not require explicit deallocation. Nevertheless, for sav-
ing memory, Scal provides a limited form of explicit deallocation: A free call
(without arguments) rolls back the bump pointer to the value before the last
allocation. Consecutive free calls without allocation in between have no effect.
This form of explicit deallocation provides the benefit of keeping the size of
the needed heap for sound cyclic allocation small, in particular with algorithms
where many threads allocate memory within concurrent operations of which
only one succeeds. The failing threads can then roll back, i.e., deallocate the
most recently allocated memory.

In order to demonstrate the scalability of the allocator in Scal we designed a
benchmark where each thread executes ten million allocation operations of the
size required to accommodate a node of a Michael-Scott queue [21]. After each
allocation operation, a computation is performed that simulates application ac-
tivity and reduces the load on the allocator. Note that for many allocators, there
is a computational load that renders them scalable. However, the smaller that
load is, the more load can be put on the benchmarked concurrent data structure
without introducing performance artifacts of the allocator. The computational
load for which Scal’s memory allocator is scalable is small. Figure 3a illustrates
the scalability (constant overhead) of the allocator. We discuss computational
load generation and the computational load used in Figure 3a in the next section.

2.2 Computational Load

Scal provides a primitive that simulates computational load resulting in a time
delay. This enables exercising the concurrent data structures in different con-
tention scenarios: In between any two data structure operations, the computa-

2 This is standard bump pointer allocation.
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Fig. 3: Evaluation of Scal’s infrastructure

tional load imitates application behavior, i.e., a real computation. The higher
the load, the lower the contention on the data structure.

The computational load primitive has a unit-less input that translates to a
time delay that is close to linear in the input, as shown in Figure 3b. Moreover,
the linear relationship remains the same independent of the number of threads
concurrently using the primitive as shown in Figure 3c, even on hyper-threaded
machines. In the figure we present many (pretty straight) curves, one for each
data point of Figure 3b. Each curve shows the time delay for a given unit-less
input value of the computational load for an increasing number of threads. The
linearity is demonstrated as the curves are close to equally distant for equally
distant inputs. The scalability is demonstrated by the fact that each curve is
close to a constant line.

Our computational load primitive uses the x86 CPU instruction (RDTSC)
that reads the time stamp counter (TSC) from the corresponding register of the
processor. The counter represents the number of cycles since the last processor
reset. Note that TSC only relates linearly to actual time for a constant clock
speed. This is one of the reasons for disabling CPU frequency scaling in Scal.

The computational load primitive implements a busy wait on the value of
TSC obtained from RDTSC. Additionally, the processor is informed that it cur-
rently executes a busy wait, potentially reducing CPU resources needed to ex-
ecute the code fragment, making the computational load primitive scalable for
hyper-threaded machines.

2.3 Pointer Tagging

Concurrent programs may be subject to the ABA problem: Finitely many names
(memory addresses) for an infinite state space which requires eventual reuse of
names for different states. Ideally, this is prevented (by hazard pointers [20]) or,
less ideally but more practically, it is made less likely through versioning.

Hazard pointers solve the problem by only allowing name reuse when there
is proof that the name is not in use any more. Versioning makes the occurrence
of ABA less likely by increasing the set of names via adding version numbers. As



implementing hazard pointers is costly, i.e., it requires significant bookkeeping,
versioning is the common approach to fighting ABA.

Most concurrent data-structure algorithms, in particular the lock-free ones,
use versioning to address ABA [19]. To ease the programming of algorithms that
require versioning, Scal provides a versioning utility, that we refer to as pointer
tagging, as part of its infrastructure.

In particular, Scal provides 16-bit version tags for values with up to 48 bits,
assembling value and tag in a single 64-bit word so that all standard atomic
operations still work atomically on the pair of a value and a version tag. Note
that this indeed enlarges the set of names, as current 64-bit operating systems
limit address spaces to 48 bits.

Note that taking care of versioning by hand in concurrent algorithms is a
common source of bugs. The pointer tagging of Scal relieves the programmer
from such a burden, and the careful handling of version tags is implicitly done
by Scal itself.

2.4 Operation Logging

In order to investigate the detailed behavior of a single run, and even individual
operations, Scal provides the utility of operation logging.

For each concurrent data-structure operation, Scal provides functions for
thread-locally logging the type of an operation, e.g., insert or remove, the in-
vocation time, the response time, a linearization point. Some of these functions
are added automatically as soon as operation logging is enabled, e.g., logging of
invocation and response time. For others, the programmer can use the Scal func-
tions to annotate the code of a concurrent algorithm, e.g., if linearization points
are known within the code. Operation logging only incurs negligible overhead,
since all data is stored in pre-allocated memory at runtime and only output into
a file upon termination.

Operation logging allows to experimentally validate different metrics on con-
current executions. See [9] for definitions and experimental evaluation of such
metrics. Last but not least, operation logging may be useful to the programmer
(and has been useful to some of us) when debugging concurrent algorithms.

3 Scal Workloads

There are two generic configurable workloads in Scal, a classical producer-consumer
workload, and a sequential alternating workload. We describe both below.

3.1 Producer-Consumer

In the producer-consumer workload, as usual, some threads are producers and
some consumers. Scal allows configuring the number of producers, consumers, the
computational load, and the number of elements to be produced per producer
thread. Each producer then inserts its produced elements into the concurrent
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Fig. 4: Performance and scalability in a producer-consumer benchmark for a
number of queue and queue-like data structures, for an increasing number of
threads

data structure. Each consumer retrieves its fair share of elements (equal to the
total number of elements produced divided by the number of consumers). Resid-
ual elements are discarded, i.e., they are left in the data structure. The configured
computational load is executed in between any two operations performed. Ad-
ditionally, the producer-consumer benchmark allows to insert a barrier between
producing and consuming threads, for measuring either producing or consuming
(or both) of elements separately.

Figure 4 shows the results of an exemplary scalability measurement of the
producer-consumer benchmark for an increasing number of threads of which
half are producers and half consumers, for a computational load of 1000, and 1
million elements inserted per producer thread.

In this benchmark, Scal reports the total number of performed operations
divided by the total execution time. To this end, we note that changing Scal to
report other data, e.g. (average) number of operations per thread per unit of
time, is a matter of changing one line of code.
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Fig. 5: Performance and scalability in a sequential alternating benchmark for a
number of queue and queue-like data structures, for an increasing number of
threads

3.2 Sequential Alternating

The sequential alternating workload is designed so that each thread alternates
between an insert operation and a remove operation.

For sequential alternating, similar to the producer-consumer workload, Scal
allows configuring the number of threads, the computational load, and the num-
ber of operations (pairs of consecutive insert and remove operation) per thread.
Additionally, the sequential alternating workload allows the data structure to
be prefilled with a specified amount of elements. Such an option could easily be
added to the producer-consumer benchmark as well, it was just never needed
for our experimental purposes. The computational load is again computed in
between any two operations.

Figure 5 shows the results of an exemplary scalability measurement of the
sequential alternating benchmark for an increasing number of threads, com-
putational load of 1000, and 1 million pairs of consecutive insert and remove
operations per thread.



Name Semantics Year Ref.

Lock-based Singly-linked List Queue strict queue 1968 [17]
Michael Scott (MS) Queue strict queue 1996 [21]
Flat Combining Queue strict queue 2010 [10]
Wait-free Queue strict queue 2012 [18]
Linked Cyclic Ring Queue (LCRQ) strict queue 2013 [23]
Timestamped (TS) Queue strict queue 2015 [3]
Cooperative TS Queue strict queue 2015 [6]

Segment Queue k-relaxed queue [12,1] 2010 [1]
Random Dequeue (RD) Queue k-relaxed queue [12,1] 2010 [1]
Bounded Size k-FIFO Queue k-relaxed queue [12,1], pool 2013 [15]
Unbounded Size k-FIFO Queue k-relaxed queue [12,1], pool 2013 [15]
b-RR Distributed Queue (DQ) k-relaxed queue [12], pool 2013 [8]
Least-Recently-Used (LRU) DQ k-relaxed queue [12], pool 2013 [8]
Locally Linearizable DQ (static, dynamic) locally linearizable queue [7], pool 2015 [7]
Locally Linearizable k-FIFO Queue locally linearizable queue [7], 2015 [7]

k-relaxed queue [12], pool
Relaxed TS Queue quiescently consistent 2015 [6]

queue (conjectured)

Lock-based Singly-linked List Stack strict stack 1968 [17]
Treiber Stack strict stack 1986 [26]
Elimination-backoff Stack strict stack 2004 [11]
Timestamped (TS) Stack strict stack 2015 [3]

k-Stack k-relaxed stack [12] 2013 [12]
b-RR Distributed Stack (DS) k-relaxed stack [12], pool 2013 [8]
Least-Recently-Used (LRU) DS k-relaxed stack [12], pool 2013 [8]
Locally Linearizable DS (static, dynamic) locally linearizable stack [7], pool 2015 [7]
Locally Linearizable k-Stack locally linearizable stack [7], 2015 [7]

k-relaxed queue [12], pool

Timestamped (TS) Deque strict deque (conjectured) 2015 [6]

d-RA DQ and DS strict pool 2013 [8]

Table 1: Concurrent Data Structures in Scal

4 Concurrent Data Structure Implementations in Scal

All Scal implementations of concurrent data structures are listed in Table 1. We
distinguish between strict queues, relaxed queues, strict stacks, relaxed stacks,
a strict deque (conjectured), and strict pools. By strict we mean data structures
that are linearizable [14] with respect to a sequential specification of a queue,
stack, deque, or pool, respectively. Strict concurrent data structures often lack
performance and scalability [25] as they require significant synchronization [2].
A common trend in the design of concurrent data structures chooses to relax the
semantics for gain in performance and scalability. The relaxations could affect



the sequential specification [12,1,22] or the consistency condition [7,13]. Note
that most data structures in Scal are lock free [13]. In the sequel, we discuss all
implemented data structures in some detail. The table shows references for each
data structure, which we omit in the text below.

4.1 Strict Queues

As baseline for queues, there is a standard lock-based implementation of a queue
based on a singly-linked list. As lock-free baseline for queues, we have imple-
mented the Michael-Scott queue. The flat combining queue is another well-known
strict queue. The wait-free queue is a strict queue based on the Michael-Scott
queue whose wait freedom is achieved by faster threads helping slower ones to
complete their operations. The linked list cyclic ring queue is a fast lock-free
queue that operates on very large cyclic buffers and uses fetch-and-add as ba-
sic synchronization primitive. The (cooperative) timestamped queue is a fast
lock-free queue that uses timestamps to achieve queue order.

4.2 Relaxed Queues

There are several variants of relaxed queues in Scal:

– A number of k-relaxed queues that are linearizable with respect to the k-
out-of-order relaxation of the sequential specification of a queue [12]. In a
k-relaxed queue, one of the k+1-oldest elements is returned upon a dequeue
operation.

– Several queues that are locally linearizable with respect to the sequential
specification of a queue, and a relaxed queue that is conjectured to be qui-
escently consistent.

The segment queue and the random dequeue queue are k-relaxed but do not
provide a linearizable emptiness check and hence are not linearizable pools. All
other relaxed queues in Scal are linearizable pools.

The bounded and unbounded size k-FIFO queues are lock-free k-relaxed
queues related to the segment queue. They implement a Michael-Scott queue of
segments of size k.

The b-RR distributed queue and the least-recently-used distributed queue
are members of the distributed queues (DQ) family. All data structures in the
DQ family implement an array of Michael-Scott queues which are accessed us-
ing various load balancers. For these particular DQs, the load balancers enable
proving a bound k for a k-relaxation.

The locally linearizable queues are variants of DQ and the k-FIFO queue.
The locally linearizable DQ comes in two variants: with a static or dynamic array
size (number of Michael-Scott queues). It is the load balancer(s) that make them
locally linearizable. Finally, the relaxed TS queue is a relaxed timestamped queue
that is conjectured to provide quiescent consistency.



4.3 Strict Stacks

As baseline for stacks, we have implemented a lock-based stack based on a
singly linked list. As lock-free baseline for stacks, there is the Treiber stack. The
elimination-backoff stack is a fast stack that utilizes the possibility of elimination,
i.e., popping any element that is being concurrently pushed. The timestamped
stack is a fast lock-free stack that uses timestamps to achieve stack order and
also benefits from elimination.

4.4 Relaxed Stacks

Just like relaxed queues, also relaxed stacks come in two flavors:

– k-Relaxed stacks that relax the sequential specification to a k-out-of-order
stack that allows for removing one of the k + 1-youngest elements in the
stack.

– Locally linearizable stacks.

All relaxed stacks in Scal are linearizable pools, in particular they provide lin-
earizable emptiness checks.

The k-Stack is a typical k-relaxed stack implemented as a Treiber stack of
segments of size k. The k-Stack has a linearizable emptiness check and is hence
a linearizable pool. Just like for queues, there is a family of distributed stacks
(DS) implemented as an array of Treiber stacks with different load balancers
of which b-RR DS and least-recently-used DS are proven to be k-relaxed for a
particular bound k depending on the parameters of the data structure.

Also here we have the same locally linearizable variants of stacks, namely
the locally linearizable DQ with static and dynamic array size, and the locally
linearizable k-Stack.

4.5 Strict Deque

The implementation of a strict deque in Scal is a timestamped implementation,
combining the timestamped stack and timestamped queue. Proving the correct-
ness (linearizability with respect to the data structure) was a highly nontrivial
task for the timestamped stack, leading to a new theorem that provides suffi-
cient conditions for stack linearizability. We conjecture that this combined deque
implementation is linearizable with respect to a deque. The proof still remains
to be done.

4.6 Strict Pools

All other variants of DQ and DS are very much relaxed queue-like or stack-like
data structures, i.e., they can only be proven to be linearizable with respect to
a pool. Currently d-RA DQ and DS are implemented in Scal. We have experi-
mented with other implementations of pools as well. Their code is currently not
part of Scal but will be added in the future.



5 Conclusions

We have presented Scal, an open-source benchmarking framework for evaluat-
ing the performance and scalability of concurrent data structures. Scal provides
implementations of many concurrent data structures as well as the necessary in-
frastructure and relevant workloads for executing and benchmarking them. The
framework has already enabled research that has lead to some of the concurrent
data structures mentioned here. Scal is nevertheless only the starting point of a
comprehensive benchmarking suite for concurrent data structures. The code is
open source and may easily be extended with implementations of other concur-
rent data structures and enhanced with more infrastructure and workloads.
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