Semantics for Concurrency

Ana Sokolova

• Part II: Order extension results for verifying linearizability

Concurrent Data Structures Correctness and Relaxations

Hannes Payer Google

Tom Henzinger

Christoph Kirsch

Ali Sezgin 🖁 usiversity of

Andreas Haas Google

Michael Lippautz

Andreas Holzer

Data structures

• Pool unordered

Concurrent data structures

• Stack LIFO

• Pool unordered

Ana Sokolova

Semantics of concurrent data structures

• Sequential specification = set of legal sequences

e.g. queue legal sequence enq(1)enq(2)deq(1)deq(2)

Consistency condition = e.g. linearizability / sequential consistency

e.g. the concurrent history above is a linearizable queue concurrent history

Consistency conditions

there exists a legal sequence that preserves precedence order A history is ... wrt a sequential specification iff

Linearizability [Herlihy, Wing '90]

consistency is about extending partial orders to total orders

Sequential Consistency [Lamport'79]

there exists a legal sequence that preserves per-thread precedence (program order)

t1:		¹ enq(1)	deq(2) ⁴	
t2:	deq(1) ²			enq(2) 3

Performance and scalability

of threads / cores

Relaxations allow trading

correctness for performance

> provide the potential for better-performing implementations

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

- trade correctness for performance
- in a controlled way with quantitative bounds

correct in a relaxed stack ... 2-relaxed? 3-relaxed?

measure the error from correct behaviour

How can relaxing help?

Ana Sokolova

The big picture

sequential specification legal sequences

 Σ - methods with arguments

Ana Sokolova

The big picture

 $S_k \subseteq \Sigma^*$

 $S \subseteq \Sigma^*$

k

sequential specification legal sequences

 Σ - methods with arguments

relaxed sequential specification sequences at distance up to k from S

Ana Sokolova

Relaxing the Semantics

Quantitative relaxations Henzinger, Kirsch, Payer, Sezgin, S. POPL13

- Sequential specification = set of legal sequences
- Consistency condition = e.g. linearizability / sequential consistency

Local linearizability Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Syntactic distances do not help

push(a)[push(i)pop(i)]ⁿpush(b)[push(j)pop(j)]^mpop(a)

is a 1-out-of-order stack sequence

its permutation distance is min(2n,2m)

Semantic distances need a notion of state

States are equivalence classes of sequences in S

example: for stack $push(a)push(b)pop(b)push(c) \equiv push(a)push(c)$

• Two sequences in S are equivalent iff they have an indistinguishable future

top

a

state

Semantics goes operational

 $S \subseteq \Sigma^*$ is the sequential specification

Ana Sokolova

The relaxation framework

- Start from LTS(S)
- Add transitions with transition costs

С

• Fix a path cost function

distance = minimal cost on all paths labelled by the sequence

Generic out-of-order

segment_cost($q \xrightarrow{m} q'$) = $|\mathbf{v}|$

transition cost

Where \mathbf{v} is a sequence of minimal length s.t.

goes with different path costs

Out-of-order stack

Sequence of push's with no matching pop

- Canonical representative of a state
- Add incorrect transitions with segment-costs

• Possible path cost functions max, sum,...

also more advanced

Relaxing the Consistency Condition

Local Linearizability main idea

Already present in some shared-memory consistency conditions (not in our form of choice)

- Partition a history into a set of local histories
- Require linearizability per local history

Local sequential consistency... is also possible

Local Linearizability (queue) example

(sequential) history not linearizable

Ana Sokolova

Local Linearizability (queue) definition

Queue signature $\Sigma = \{enq(x) \mid x \in V\} \cup \{deq(x) \mid x \in V\} \cup \{deq(empty)\}$

For a history h with a thread T, we put $I_T = \{enq(x)^T \in \mathbf{h} \mid x \in V\}$	in-methods of thread T are enqueues performed by thread T				
$O_T = \{deq(x)^{T'} \in \mathbf{h} \mid enq(x)^{T} \in I_T\} \cup \{deq(empty)\}$					
out-methods of thread T are dequeues (performed by any thread) corresponding to enqueues that are in-methods					
h is locally linearizable iff every thread-induced history					
$\mathbf{h}_{T} = \mathbf{h} \mid (I_{T} \cup O_{T})$					
is linearizable.					

Local Linearizability for Container-Type DS

Signature Σ = Ins \cup Rem \cup SOb \cup DOb

out-methods of thread T are removes and data-observations (performed by any thread)

h is locally linearizable iff every thread-induced history $\mathbf{h}_T = \mathbf{h} | (I_T \cup O_T)$

is linearizable.

MOVEP 18.7.18

n-methods

Generalizations of Local Linearizability

Signature Σ

Where do we stand?

Where do we stand?

For queues (and most container-type data structures)

Properties

Local linearizability is compositional

like linearizability unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

Local linearizability is modular / "decompositional" uses decomposition into smaller histories, by definition

may allow for modular verification

Verification (queue)

 \Rightarrow

Queue sequential specification (axiomatic)

s is a legal queue sequence iff

- 1. s is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S$

$$deq(x) \in \mathbf{S} \land deq(x) <_{\mathbf{s}} deq(y)$$

Queue linearizability (axiomatic)

Henzinger, Sezgin, Vafeiadis CONCUR13

Verification (queue)

Queue sequential specification (axiomatic)

s is a legal queue sequence iff

- 1. **s** is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S$

Relaxations lead to scalable implementations

e.g. k-FIFO, k-Stack

locally linearizable distributed implementation

Ana Sokolova

local inserts / global removes

Relaxations lead to scalable implementations

e.g. k-FIFO, k-Stack

CAS-based algorithm...

Relaxations lead to scalable implementations

e.g. k-FIFO, k-Stack

locally linearizable distributed implementation

Ana Sokolova

local inserts / global removes

(a) Queues, LL queues, and "queue-like" pools

Ana Sokolova

(a) Queues, LL queues, and "queue-like" pools

Ana Sokolova

(a) Queues, LL queues, and "queue-like" pools

Ana Sokolova

Linearizability via Order Extension Theorems

joint work with

foundational results for verifying linearizability

Inspiration

As well as Reducing Linearizability to State Reachability [Bouajjani, Emmi, Enea, Hamza] ICALP15 + ...

Queue sequential specification (axiomatic)

s is a legal queue sequence iff

- 1. s is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S$

$$deq(x) \in \mathbf{S} \land deq(x) <_{\mathbf{s}} deq(y)$$

Queue linearizability (axiomatic)

Henzinger, Sezgin, Vafeiadis CONCUR13

 \Rightarrow

Problems (stack)

Stack sequential specification (axiomatic)

- **s** is a legal stack sequence iff
- 1. s is a legal pool sequence, and
- 2. $push(x) <_{s} push(y) <_{s} pop(x) \Rightarrow pop(y) \in S \land pop(y) <_{s} pop(x)$

Problems (stack)

Stack sequential specification (axiomatic)

- **s** is a legal stack sequence iff
- 1. s is a legal pool sequence, and
- 2. $push(x) <_{\mathbf{s}} push(y) <_{\mathbf{s}} pop(x) \implies pop(y) \in \mathbf{S} \land pop(y) <_{\mathbf{s}} pop(x)$

h is stack linearizable

- 1. h is pool linearizable, and
- 2. $push(x) <_{\mathbf{h}} push(y) <_{\mathbf{h}} pop(x) \Rightarrow pop(y) \in \mathbf{h} \land pop(x) \not<_{\mathbf{h}} pop(y)$

Problems (stack)

Ana Sokolova

Linearizability verification

Data structure

- signature Σ set of method calls including data values
- sequential specification $S \subseteq \Sigma^*$, prefix closed

identify sequences with total orders

Pool without empty removals

Queue without empty removals

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence iff

- 1. $deq(x) \in \mathbf{S} \implies enq(x) \in \mathbf{S} \land enq(x) <_{\mathbf{S}} deq(x)$
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S \Rightarrow deq(x) \in S \land deq(x) <_{s} deq(y)$

Queue linearizability (axiomatic)

deq(x) < s enq(x)

and

 $enq(x) <_{s} enq(y) \land$

 $deq(y) <_{s} deq(x)$

Ana Sokolova

h is queue (with empty removals) linearizable iff

1. deq(x) ∈ **h** \Rightarrow enq(x) ∈ **h** \land deq(x) $\lt_{\mathbf{h}}$ enq(x)

infinitely many CV violations

 $enq(x_1) <_{\mathbf{h}} deq(\bot) \land enq(x_2) <_{\mathbf{h}} deq(x_1) \land \ldots \land enq(x_{n+1}) <_{\mathbf{h}} deq(x_n) \land deq(\bot) <_{\mathbf{h}} deq(x_{n+1})$

3. $enq(x) <_{\mathbf{h}} enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y) <_{\mathbf{h}} deq(x)$

Ana Sokolova

Concurrent Queues

Data independence => verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking = exclusion of "bad patterns"

Value v dequeued without being enqueued deq ...+ v Dequeue wrongfully returns empty

eng(va)

Value v dequeued before being enqueued deg ~v enq(v)

Value v dequeued twice

 $deq \Rightarrow v \quad deq \Rightarrow v$

0 0

Value v_1 and v_2 dequeued in the wrong order enq(v_1) enq(v_2) deq $\Rightarrow v_2$ deq $\Rightarrow v_1$

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue
- Priority queue

infinite inductive violations But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases

How does it work?

The basics

partial orders

interval orders

total orders

 $\forall (a,b), (c,d) \in R. (a,d) \in R \lor (c,b) \in R$

The problem

Given a set of violations $\mathcal V\,$, find a "small" set of violations $\mathcal V'\,$ such that

 $\forall R \in \mathrm{IO}[\mathcal{V}']. \ \exists \overline{R} \in \mathrm{TO}[\mathcal{V}]. \ \overline{R} \supseteq R$

this solves the case of pool without empty removals

Theorem (singleton violations)

Let \mathcal{V} consist only of singletons, and let $V = \bigcup \mathcal{V}$.

If V is transitive and not a cycle, then the problem is solved with $\mathcal{V}'=\mathcal{V}$.

Ana Sokolova

The axioms

Proposition PO

 ${\mathcal V}\,$ is PO-closed iff

(C1) $\mathcal{D} \subseteq \mathcal{V}$

(C2) $\forall N \in \mathcal{V}. \ \forall M. \ (N \subseteq \operatorname{tr}(M) \Rightarrow M \in \mathcal{V})$

Proposition IO

 $\begin{aligned} \mathcal{V} \text{ is IO-closed iff (C1) and (C2) and} \\ (C3) \quad \forall M \in \mathbb{X} \backslash \mathbb{C}. \ \forall a, b, c, d \in X. \ a \neq d \land c \neq b \Rightarrow \\ [(a, b) \in M \land (c, d) \in M \land M \cup \{(a, d)\} \in \mathcal{V} \land M \cup \{(c, b)\} \in \mathcal{V} \Rightarrow M \in \mathcal{V}] \end{aligned}$

Proposition TO \mathcal{V} is TO-closed iff (C1) and (C2) and(C4) $\forall N \in \mathcal{V}, N \cap \Delta \neq \emptyset$. $\forall M \in \mathbb{X}$. $\forall a \in N \setminus M$. $a = (a_1, a_2) \land M \cup \{(a_2, a_1)\} \in \mathcal{V} \Rightarrow M \in \mathcal{V}$

Ana Sokolova

How does it work?

Ana Sokolova

The algorithm

Take two violations $N_1, N_2 \in \mathcal{V}$ and an element $x \in X$ and produce a new violation $\{(a, b) \mid (a, x) \in N_1, (x, b) \in N_2\}$ $\cup \{(a, b) \in N_1 \mid b \neq x\}$ $\cup \{(a, b) \in N_2 \mid a \neq x\}$

Take two violations $N_1, N_2 \in \mathcal{V}$ and a pair $(x, y) \in X \times X$ and produce a new violation

 $\{(a, y) \mid (a, x) \in N_2\}$ $\cup \{(x, b) \mid (y, b) \in N_2\}$ $\cup \{(a, b) \in N_2 \mid b \neq x \land a \neq y\}$ $\cup N_1 \setminus \{(x, y)\}$

until no new violations are produced

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue
- Priority queue

infinite inductive violations But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases

It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without ompty removals
- Pool
- Queue

Thank You !

Priority que

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases

Ana Sokolova