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Semantics of concurrent
data structures

e.g. gqueues

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

« (Consistency condition = e.qg. linearizability / sequential
consistency

e.g. the concurrent history above is a

linearizable queue concurrent history
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Consistency conditions

A history is ... wrt a sequential

specification iff

there exists a legal

sequence that preserves . . -
orecedence order Linearizability [Herlihy,Wing '90]

consistency is
about extending
partial orders to v
total orders

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)
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Performance and scalabillity

-)))

throughput :_)

# of threads / cores
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Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations
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Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?
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HOW can relaxing
help”?

k-Relaxed stack

tflp Rj\ thread 1 +OP \l\
thread 1

— thread 2
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| , | , thread n
D D

a a
—___/ —____/

Ana Sokolova PRsiEEuke MOVEP 18.7.18



What we have

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances
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The big picture

sequential specification

> - methods with arguments
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The big picture

seguential specification

relaxed sequential specification

> - methods with arguments
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Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Sequential specification = set of legal sequences

e (Consistency condition = e.qg. linearizability / sequential
consistency

Local linearizability

Haas, Henzinger, Holzer,..., S, Veith CONCUR16
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Syntactic distances do

not nelp
/\/\

push(a)[push(@)pop(i)]*push(b)[push()pop()]=pop(a)

Is a 1-out-of-order stack sequence
top top
top ' '

l (v ) (»)

its permutation distance is min(2n,2m)
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Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

e TwO sequences in S are equivalent iff they have an indistinguishable future

b et S AR S T O SV =SSR R S )
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Semantics goes
operational

S € 2* is the sequential specification

m labels Initial state

LTS(S) = (S/=, 2, =, [e]-) with

transition relation

[s]- > [sm]- & smeS

Ana Sokolova PRsiEEuke MOVEP 18.7.18



1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

= minimal cost on all paths labelled by the sequence
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Generic out-of-order

Where v is a sequence of minimal length s.t.

removing v enables a transition

inserting v enables a transition

goes with different path costs

Ana Sokolova PRsiEEuke MOVEP 18.7.18




Out-of-order stack

Sequence of push’s with no matching pop

e Canonical representative of a state

e Add incorrect transitions with segment-costs

top
\

— top
pop(a) |

— >

Q

o
N
(o)

0
(=3

— —

e Possible path cost functions max, sum,... also more advanced
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Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)
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Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable
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Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods
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Local Linearizability
for Container-Type DS

Signature > = Ins u Rem u SOb u DOb

IN-methods of thread T
are
Inserts performed by

thread T

out-methods of thread T
are removes and data-observations
(performed by any thread)
1-methods
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Generalizations of
Local Linearizability

Sighature >

iIN-methods of thread |,
methods that go in h;

by increasing the

IN-methods, .
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)
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Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency
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Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'\*\ Sequential Consistency
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification
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Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(ly)eh = deg(x)eh A deq(y)deq(x)

precedence order
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Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. enq(x) nena(y) A deq(y)eh = deq(x)eh A deq(y) «n deq(x)

thread-local

precedence order
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Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes
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Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

ai b1 X1 Y1 k-out-of-order
— > ... o ... T ... queue

ak Dk Xk Yk

CAS-based algorithm...

CAS - based

: loop:
read consistent state
try to add/remove an item (*)
if successful:
return
else:
try to repair the stack
goto loop (retry)

O ~JoyUrlidWDN K

add/remove
segment
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Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes
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Linearizability via Order
Extension Theorems

joint work with

I . - m

. 'l;
! | 1Ml
] l l :

foundational results
for

veritying linearizability

|
Harald Woracek [



As well as

Inspiration {

[Bouajjani, Emmi, Enea, Hamza]
[EAERPSF.

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, anad
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(X)eh A deq(y)deq(x)

precedence order
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Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and

2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POP(X)

Stack linearizability (axiomatic)

h is stack linearizable : >‘ >‘ >
|ff : s =
1. his pool linearizable, and

2. push(x) <n push(y) <n pop(x) = pop(y) e h A pop(x) «n pop(y)

IIIIIIIIII
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Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and

2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POP(X)

Stack linearizability (axiomatic)

h s stack |i

1. his pool i ble, and

2. push(

h POP(X) = pop(y) e h A pop(x) <n pop(y)

IIIIIIIIII
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Problems (stack)

not stack
linearizable

Stack linearizability (axiomatic)

h s stack ||

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(
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|_inearizability verification
oni

* signature 2 - set of method calls including data values sequences with
* seqguential specification S € 2%, prefix closed s

Seqguential specification via violations

iolatior clation Ich that s € S iff 8 has no violations
It is easy to find a large CV,

but difficult to find a small representative

Extract a set g ot

2s)nV=0

Linearizability ver rication

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

we build concurrent history

CV iteratively legal sequence
from V
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Pool without empty removals

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence
iff V violations

1. rem(x)es = ins(x)es A ins(x)<s rem(x) rem(x) <s INs(x)

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable CV violations

|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

=V violations
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Queue without empty
removals

V violations
deq(x) <s enqg(x)
and
enqg(x) <s enqg(y) A
deq(y) <s deq(x)

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence
|ff
1. deg(x)es = eng(x)es A enqg(x) <s deq(x)

2. enqg(x) <senqg(y) A deqg(y)es = deqgx)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable
|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

CV violations

=V violations

2. eng(x) <neng(y) A dealy)eh = deqg(x)eh A deq(y) «n deq(x)
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P O O ‘ ini gzrc]:lttl?/e

violations

V violations
rem(x) <s iINs(x)

s a legal | (with t als) sequence and
s is a legal poo i(f¥v1 empty removals) sequ iNs(x) <s rem(L) <s rem(x)

Pool sequential specification (axiomatic)

1. rem(x)es = Iins(X)es A Ins(X) <s rem(x)

2. rem(L) <s rem(x) = rem(L) <s iNS(X) A ins(X) <s rem(L) = rem(x) <s rem(L)

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable
Iff
1. rem(x)eh = ins(x)eh A rem(x) «n iNns(X)

infinitely many CV violations

iNS(x1) <nh rem(L) A ins(X2) <h rem(x1) A ... A iNS(Xn+1) <h rem(xn) A rem(L) <n rem(Xn+1)
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V violations
rem(x) <s iNs(x)

inductive and
violations Q u e u e INS(X) <s rem(L) <s rem(x)

and
eng(x) <s enqg(y) A

infinite

Queue seqguential specification (axiomatic)
s is a legal queue (with empty removals) sequence deq(y) <s deq(x)
If

1. deg(x)es = enqg(x)es A eng(x) <s deq(x)

2. deqg(Ll) <s deqg(x) = deq(L) <s enqg(x) A eng(x) <s deg(L) = deq(x) <s deq(L)
3. eng(x) <senqg(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)
h is queue (with empty removals) linearizable
Iff
1. deg(x)eh = eng(x) eh A deqg(x) «n enq(x)

infinitely many CV violations

eng(x1) <n deq(L) A eng(x2) <n deq(x1) A ... A eng(Xn+1) <h deq(xn) A deq(L) <n deq(Xn+1)

3. eng(x) <neng(y) A deqg(ly)eh = deqg(x)eh A deq(y) «n deq(x)
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't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue without empty removals nfinite CV violations

without clear

Inductive structure

e Pool

infinite

Inductive

Queue violations

Exploring the space of

o data structures
* Priority queue
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How does it work”?

of SALZBURG
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Ihe basics

_v_

PO[V] = {Re PO | P(R) AV = &)

partial orders total orders
Interval orders

V(a,b),(c,d) € R.(a,d) e Rv (¢,b) e R
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The problem

Given a set of violations 'V |, find a “small” set of violations V' such that

VReIO[V].3IRe TO[V]. R2 R

this solves the case of

Theorem (singleton violations)

Let V consist only of singletons, and let V' = U V.

f Vis transitive and not a cycle, then the problem is solved with V/ =V .
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1he closures

O-closure of a set
of violations

monotone, extensive, idempotent

VReIO[V].3IRe TO[V]. R2 R
Iff
Closto (V) = Closio(V)
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1he axioms

Proposition PO

YV is PO-closed iff
(Cl) DcV

(C2) VNeV.VM. (Nctr(M)= MeWV)

Proposition 1O

V is |0-closed iff (C1) and (C2) and
(C3) VM e X\C.Va,bc,de X.a#dAnc#b=
[(a,b) e M A (c,d)e M A M u{(a,d)} eV AMU{(c,b}eV=MEeV]|

Proposition TO V is TO-closed iff (C1) and (C2) and

(C4) VNeV NnA# P VM eX. Yae N\M. Jaj,as € X.
a=(ar,a2) A M U{(az,a1)}eV=MEeV
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How does It work ?

Let 'V consist only of finite sets and assume

1) Y

(2) VYN,MeV.Y(ai,as) e N. [{(bi,bs) € M | as = by} < 1

then the problem is solved

If we manage
to construct such a set

of violations, we are
done

we provide an
algorithm that produces a

If we are
lucky,
(2) holds too

set of violations such that
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The algorithm

Take two violations N1, N2 € V and an element x € X and produce a new violation
{(a,b) | (a,x) € N1, (z,b) € No}
v {(a,b) € Ny | b+# x}
U {(a,b) € Na | a # x}

Take two violations Ny, N2 € V and a pair (z,y) € X x X and produce a new violation

{(a,y) | (a,7) € Naj
U {(xz,b) | (y,b) € No} gntil No new
U j\(fa\,f() ];75 b£xAa#y) Vlglflot(ljouncsezre
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't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue without empty removals nfinite CV violations

without clear

Inductive structure

e Pool

infinite

Inductive

Queue violations

Exploring the space of

o data structures
* Priority queue
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't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue withe infinite CV violations
without clear

e Pool Inductive structure

° Queue Thank YOU l
Exploring the space of

o data structures
* Priority queB

UNIVERSITY
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