Semantics for Concurrency

Ana Sokolova Prsaczsurs

MOVEP, 18.7.2018

 Part |: Concurrent data structures
correctness and performance

structure and power via semantic
relaxations

e Partll: Order extension results for
veritying linearizability

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Concurrent Data Structures
Correctness and Relaxations

. o EEUNTERITY O
Ali Sezgin & cauming

Hannes Péyer

Google

Tom Henzinger Christoph Kirsch

UNIVERSITY
l|S SN AUSTRIA of SALZBURG

Andreas Haas Gu\,,-glc Michael Lippautz

Andreas Holzer Helmut Veith

Google

R SE

Rigorous Systems Engineering

Data structures

N en de
Queue FIFO ena b o I 4 o1l 61 5 q
push } olele
e Stack LIFO
y
INS rem
z \ /'
e Pool unordered ‘ "
_ 0
J
m

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Concurrent data structures

. Queue FIFO —2 .
ueue —| f e d C b || a —>
_> _>

POP
—»| x |[—

° Stack LIFO 5L -

y
ins s /r?m rem
z N l e
* Pool unordered LA n
|
- O rem
L m N =
INS

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Semantics of concurrent
data structures

e.g. gqueues

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

« (Consistency condition = e.qg. linearizability / sequential
consistency

e.g. the concurrent history above is a

linearizable queue concurrent history

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Consistency conditions

A history is ... wrt a sequential

specification iff

there exists a legal

sequence that preserves . . -
orecedence order Linearizability [Herlihy,Wing '90]

consistency is
about extending
partial orders to v
total orders

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?

Ana Sokolova PRsiEEuke MOVEP 18.7.18

HOW can relaxing
help”?

k-Relaxed stack

tflp Rj\ thread 1 +OP \l\
thread 1

— thread 2

c c thread 2
_____/ _____/

b thread n K { b }
| , | , thread n
D D

a a
—___/ —____/

Ana Sokolova PRsiEEuke MOVEP 18.7.18

What we have

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances

Ana Sokolova PRsiEEuke MOVEP 18.7.18

The big picture

sequential specification

> - methods with arguments

Ana Sokolova PRsiEEuke MOVEP 18.7.18

The big picture

seguential specification

relaxed sequential specification

> - methods with arguments

Ana Sokolova PGSz MOVEP 18.7.18

Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Sequential specification = set of legal sequences

e (Consistency condition = e.qg. linearizability / sequential
consistency

Local linearizability

Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Syntactic distances do

not nelp
/\/\

push(a)[push(@)pop(i)]*push(b)[push()pop()]=pop(a)

Is a 1-out-of-order stack sequence
top top
top ' '

l (v) (»)

its permutation distance is min(2n,2m)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

e TwO sequences in S are equivalent iff they have an indistinguishable future

b et S AR S T O SV =SSR R S)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Semantics goes
operational

S € 2* is the sequential specification

m labels Initial state

LTS(S) = (S/=, 2, =, [e]-) with

transition relation

[s]- > [sm]- & smeS

Ana Sokolova PRsiEEuke MOVEP 18.7.18

1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

= minimal cost on all paths labelled by the sequence

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Generic out-of-order

Where v is a sequence of minimal length s.t.

removing v enables a transition

inserting v enables a transition

goes with different path costs

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Out-of-order stack

Sequence of push’s with no matching pop

e Canonical representative of a state

e Add incorrect transitions with segment-costs

top
\

— top
pop(a) |

— >

Q

o
N
(o)

0
(=3

— —

e Possible path cost functions max, sum,... also more advanced

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Local Linearizability
for Container-Type DS

Signature > = Ins u Rem u SOb u DOb

IN-methods of thread T
are
Inserts performed by

thread T

out-methods of thread T
are removes and data-observations
(performed by any thread)
1-methods

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Generalizations of
Local Linearizability

Sighature >

iIN-methods of thread |,
methods that go in h;

by increasing the

IN-methods, .
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'*\ Sequential Consistency

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(ly)eh = deg(x)eh A deq(y)deq(x)

precedence order

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. enq(x) nena(y) A deq(y)eh = deq(x)eh A deq(y) «n deq(x)

thread-local

precedence order

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

ai b1 X1 Y1 k-out-of-order
— > ... o ... T ... queue

ak Dk Xk Yk

CAS-based algorithm...

CAS - based

: loop:
read consistent state
try to add/remove an item (*)
if successful:
return
else:
try to repair the stack
goto loop (retry)

O ~JoyUrlidWDN K

add/remove
segment

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Relaxations lead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes

Ana Sokolova PRsiEEuke MOVEP 18.7.18

26
5 24 F
2 2t
4 20 L
= s LL+D MS queue
8 L performs
Q B .- ‘:’,,r//'/ - app
2 /} significantly better
2 12| L than
.§ 10 L ';Qé:’;}; ’ MS queue
:é; 8 - f‘;/’:‘:/.. ________ CRR R
- 6 | ’),ﬁ” """"""" S 5
.§ 4 ﬁ/ |
= 2 L) -

e F
5 0 "{: ! B B S +----- +--------- +----m----- +---e-- —+
2 10 20 30 40 50 60 70 30

number of threads

B B o .

LCRQ - LLD LCRQ -
k-FIFO LLD k-FIFO -/

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRsizeis MOVEP 18.7.18

26
24
22
20
18
16
14
12
10

LLD @
performs

% .
.
P
. ’4(/ . e
A significantly better
.
PASle
e et
C e T
@)=~
,"—’. -
'¢",‘//
'v"f///
PRSP
T
AP
-
-

million operations per sec (more is better)

S N B O ©

number of threads

B B o .

LCRQ - LLD LCRQ -
k-FIFO LLD k-FIFO -/

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRsizeis MOVEP 18.7.18

26
24
22
20
18
16
14
12
10

LL+D MS queue
performs better

> than
.‘:"_'//"’
e the best known
»'— -
z
\ 2 oJele][S
.‘,:‘,/
”~

million operations per sec (more is better)

S N B O ©

number of threads

B B o .

LCRQ - LLD LCRQ -
k-FIFO LLD k-FIFO -/

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRsizeis MOVEP 18.7.18

Linearizability via Order
Extension Theorems

joint work with

I . - m

. 'l;
! | 1Ml
] l l :

foundational results
for

veritying linearizability

|
Harald Woracek [

As well as

Inspiration {

[Bouajjani, Emmi, Enea, Hamza]
[EAERPSF.

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, anad
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(X)eh A deq(y)deq(x)

precedence order

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and

2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POP(X)

Stack linearizability (axiomatic)

h is stack linearizable : >‘ >‘ >
|ff : s =
1. his pool linearizable, and

2. push(x) <n push(y) <n pop(x) = pop(y) e h A pop(x) «n pop(y)

IIIIIIIIII

Ana Sokolova PRSAEERs

MOVEP 18.7.18

Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and

2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POP(X)

Stack linearizability (axiomatic)

h s stack |i

1. his pool i ble, and

2. push(

h POP(X) = pop(y) e h A pop(x) <n pop(y)

IIIIIIIIII

Ana Sokolova PRSAEERs

MOVEP 18.7.18

Problems (stack)

not stack
linearizable

Stack linearizability (axiomatic)

h s stack ||

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(

Ana Sokolova PRsiEEuke MOVEP 18.7.18

|_inearizability verification
oni

* signature 2 - set of method calls including data values sequences with
* seqguential specification S € 2%, prefix closed s

Seqguential specification via violations

iolatior clation Ich that s € S iff 8 has no violations
It is easy to find a large CV,

but difficult to find a small representative

Extract a set g ot

2s)nV=0

Linearizability ver rication

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

we build concurrent history

CV iteratively legal sequence
from V

MOVEP 18.7.18

Pool without empty removals

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence
iff V violations

1. rem(x)es = ins(x)es A ins(x)<s rem(x) rem(x) <s INs(x)

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable CV violations

|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

=V violations

Ana Sokolova PRsiEEuke MOVEP 18.7.18

Queue without empty
removals

V violations
deq(x) <s enqg(x)
and
enqg(x) <s enqg(y) A
deq(y) <s deq(x)

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence
|ff
1. deg(x)es = eng(x)es A enqg(x) <s deq(x)

2. enqg(x) <senqg(y) A deqg(y)es = deqgx)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable
|ff
1. rem(x)eh = ins(x)eh A rem(x) «n INS(X)

CV violations

=V violations

2. eng(x) <neng(y) A dealy)eh = deqg(x)eh A deq(y) «n deq(x)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

P O O ‘ ini gzrc]:lttl?/e

violations

V violations
rem(x) <s iINs(x)

s a legal | (with t als) sequence and
s is a legal poo i(f¥v1 empty removals) sequ iNs(x) <s rem(L) <s rem(x)

Pool sequential specification (axiomatic)

1. rem(x)es = Iins(X)es A Ins(X) <s rem(x)

2. rem(L) <s rem(x) = rem(L) <s iNS(X) A ins(X) <s rem(L) = rem(x) <s rem(L)

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable
Iff
1. rem(x)eh = ins(x)eh A rem(x) «n iNns(X)

infinitely many CV violations

iNS(x1) <nh rem(L) A ins(X2) <h rem(x1) A ... A iNS(Xn+1) <h rem(xn) A rem(L) <n rem(Xn+1)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

V violations
rem(x) <s iNs(x)

inductive and
violations Q u e u e INS(X) <s rem(L) <s rem(x)

and
eng(x) <s enqg(y) A

infinite

Queue seqguential specification (axiomatic)
s is a legal queue (with empty removals) sequence deq(y) <s deq(x)
If

1. deg(x)es = enqg(x)es A eng(x) <s deq(x)

2. deqg(Ll) <s deqg(x) = deq(L) <s enqg(x) A eng(x) <s deg(L) = deq(x) <s deq(L)
3. eng(x) <senqg(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)
h is queue (with empty removals) linearizable
Iff
1. deg(x)eh = eng(x) eh A deqg(x) «n enq(x)

infinitely many CV violations

eng(x1) <n deq(L) A eng(x2) <n deq(x1) A ... A eng(Xn+1) <h deq(xn) A deq(L) <n deq(Xn+1)

3. eng(x) <neng(y) A deqg(ly)eh = deqg(x)eh A deq(y) «n deq(x)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue without empty removals nfinite CV violations

without clear

Inductive structure

e Pool

infinite

Inductive

Queue violations

Exploring the space of

o data structures
* Priority queue

Ana Sokolova PRsiEEuke MOVEP 18.7.18

How does it work”?

of SALZBURG

MOVEP 18.7.18

Ihe basics

v

PO[V] = {Re PO | P(R) AV = &)

partial orders total orders
Interval orders

V(a,b),(c,d) € R.(a,d) e Rv (¢,b) e R

Ana Sokolova PRsiEEuke MOVEP 18.7.18

The problem

Given a set of violations 'V |, find a “small” set of violations V' such that

VReIO[V].3IRe TO[V]. R2 R

this solves the case of

Theorem (singleton violations)

Let V consist only of singletons, and let V' = U V.

f Vis transitive and not a cycle, then the problem is solved with V/ =V .

Ana Sokolova PRsiEEuke MOVEP 18.7.18

1he closures

O-closure of a set
of violations

monotone, extensive, idempotent

VReIO[V].3IRe TO[V]. R2 R
Iff
Closto (V) = Closio(V)

Ana Sokolova PRsiEEuke MOVEP 18.7.18

1he axioms

Proposition PO

YV is PO-closed iff
(Cl) DcV

(C2) VNeV.VM. (Nctr(M)= MeWV)

Proposition 1O

V is |0-closed iff (C1) and (C2) and
(C3) VM e X\C.Va,bc,de X.a#dAnc#b=
[(a,b) e M A (c,d)e M A M u{(a,d)} eV AMU{(c,b}eV=MEeV]|

Proposition TO V is TO-closed iff (C1) and (C2) and

(C4) VNeV NnA# P VM eX. Yae N\M. Jaj,as € X.
a=(ar,a2) A M U{(az,a1)}eV=MEeV

Ana Sokolova PRsiEEuke MOVEP 18.7.18

How does It work ?

Let 'V consist only of finite sets and assume

1) Y

(2) VYN,MeV.Y(ai,as) e N. [{(bi,bs) € M | as = by} < 1

then the problem is solved

If we manage
to construct such a set

of violations, we are
done

we provide an
algorithm that produces a

If we are
lucky,
(2) holds too

set of violations such that

Ana Sokolova PRsiEEuke MOVEP 18.7.18

The algorithm

Take two violations N1, N2 € V and an element x € X and produce a new violation
{(a,b) | (a,x) € N1, (z,b) € No}
v {(a,b) € Ny | b+# x}
U {(a,b) € Na | a # x}

Take two violations Ny, N2 € V and a pair (z,y) € X x X and produce a new violation

{(a,y) | (a,7) € Naj
U {(xz,b) | (y,b) € No} gntil No new
U j\(fa\,f()];75 b£xAa#y) Vlglflot(ljouncsezre

Ana Sokolova PRsiEEuke MOVEP 18.7.18

't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue without empty removals nfinite CV violations

without clear

Inductive structure

e Pool

infinite

Inductive

Queue violations

Exploring the space of

o data structures
* Priority queue

Ana Sokolova PRsiEEuke MOVEP 18.7.18

't works for

* Pool without empty removals

* Queue without empty removals

o . But not yet for Stack:
* Priority queue withe infinite CV violations
without clear

e Pool Inductive structure

° Queue Thank YOU l
Exploring the space of

o data structures
* Priority queB

UNIVERSITY

Ana Sokolova PRsiEEuke MOVEP 18.7.18

