Coalgebra Love and Beauty in Science

of SALZBURG

Logic Mentoring Workshop 2019

Do you know any coalgebra?

Do you know any coalgebra?

Yes, you know many coalgebras !

Some coalgebras

Ana Sokolova

Some coalgebras

NFA

 $X \rightarrow 2 \times (\mathcal{P}X)^{A}$

Some coalgebras

 $X \rightarrow 2 \times (\mathcal{P}X)^{A}$

MC

NFA $X \rightarrow 2 \times (\mathcal{P}X)^A$

NFA $X \rightarrow 2 \times (\mathcal{P}X)^{A}$

language equivalence

NFA X $\rightarrow 2 \times (\mathcal{P}X)^{A}$

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

NFA X \rightarrow 2 x ($\mathcal{P}X$)^A

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

bisimilarity

NFA $X \rightarrow 2 \times (\mathcal{P}X)^{A}$

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

An equivalence relation $R \subseteq X \times X$ is a bisimulation of the NFA $(o, n): X \rightarrow 2 \times (\mathcal{P}X)^A$ iff whenever $(x, y) \in R$, we have o(x) = o(y) and for all $a \in A$

$$x \xrightarrow{a} x' \quad \Rightarrow \quad \exists y'. y \xrightarrow{a} y' \land (x', y') \in R.$$

Bisimilarity, denoted by \sim , is the largest bisimulation.

bisimilarity

NFA X \rightarrow 2 x ($\mathcal{P}X$)^A

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

bisimilarity

NFA X \rightarrow 2 x (\mathcal{P} X)^A

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

LMW 2019 22-6-19

R

Ana Sokolova

NFA $X \rightarrow 2 \times (\mathcal{P}X)^A$

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

Ana Sokolova

NFA $X \rightarrow 2 \times (\mathcal{P}X)^A$

Two states are equivalent iff the languages recognised from these two states are the same.

language

NFA $X \rightarrow 2 \times (\mathcal{P}X)^A$

Two states are equivalent iff the languages recognised from these two states are the same.

language

Ana Sokolova

NFA $X \rightarrow 2 \times (\mathcal{P}X)^A$

Two states are equivalent iff the languages recognised from these two states are the same.

language

Ana Sokolova

NFA X $\rightarrow 2 \times (\mathcal{P}X)^{A}$

Two states are equivalent iff the languages recognised from these two states are the same.

language equivalence

MC

 $X \rightarrow \mathcal{D}X + I$

 $X \rightarrow \mathcal{O}X + I$

bisimilarity

Behavioural Equivalences MC $X \rightarrow DX + I$

An equivalence relation $R \subseteq X \times X$ is a bisimulation of the MC $c: X \to \mathcal{D}X + 1$ iff whenever $(x, y) \in R$, then either c(x) = c(y) = * or for all *R*-equivalence classes *C* we have

$$\sum_{z \in C} c(x)(z) = \sum_{z \in C} c(y)(z).$$

Bisimilarity, denoted by \sim , is the largest bisimulation.

bisimilarity

Behavioural Equivalences MC $X \rightarrow DX + I$

An equivalence relation $R \subseteq X \times X$ is a bisimulation of the MC $c: X \to \mathcal{D}X + 1$ iff whenever $(x, y) \in R$, then either c(x) = c(y) = * or for all *R*-equivalence classes *C* we have

$$\sum_{z \in C} c(x)(z) = \sum_{z \in C} c(y)(z).$$

Bisimilarity, denoted by \sim , is the largest bisimulation.

bisimilarity

Why are they both called bisimilarity ?

Behavioural Equivalences MC $X \rightarrow DX + I$

An equivalence relation $R \subseteq X \times X$ is a bisimulation of the MC $c: X \to \mathcal{D}X + 1$ iff whenever $(x, y) \in R$, then either c(x) = c(y) = * or for all *R*-equivalence classes *C* we have

$$\sum_{z \in C} c(x)(z) = \sum_{z \in C} c(y)(z).$$

Bisimilarity, denoted by \sim , is the largest bisimulation.

bisimilarity

What do they have in common ?

 $X \rightarrow \mathcal{O}X + I$

bisimilarity

Ana Sokolova

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

A coalgebra is generic transition system:

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

A coalgebra is generic transition system:

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

A coalgebra is generic transition system:

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

A coalgebra is generic transition system:

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

The category of F-coalgebras

Objects = coalgebras

Arrows = coalgebra homomorphisms

The category of F-coalgebras

 $\mathbf{CoAlg}_{\mathbf{C}}(F)$

Objects = coalgebras

Arrows = coalgebra homomorphisms

 $\mathbf{CoAlg}_{\mathbf{C}}(F)$

Objects = coalgebras

Arrows = coalgebra homomorphisms

behaviour-

preserving maps

 $\mathbf{CoAlg}_{\mathbf{C}}(F)$

Objects = coalgebras

behaviourpreserving maps

Arrows = coalgebra homomorphisms

$$h: X \to Y \qquad \begin{array}{c} X \xrightarrow{h} Y \\ c_X \downarrow & \downarrow c_Y \\ FX \xrightarrow{Fh} FY \end{array}$$

The category of F-coalgebras

 $\mathbf{CoAlg}_{\mathbf{C}}(F)$

Objects = coalgebras

behaviourpreserving maps

Arrows = coalgebra homomorphisms

$$h: X \to Y \qquad \begin{array}{c} X \xrightarrow{h} Y \\ c_X \downarrow & \downarrow c_Y \\ FX \xrightarrow{Fh} FY \end{array}$$

Two states $x, y \in X$ are behaviourally equivalent, notation $x \approx y$ iff there exists a coalgebra homomorphism $h: X \to Y$ from $c: X \to FX$ to some coalgebra $d: Y \to FY$ such that h(x) = h(y).

b

V

*

if yes, read Rutten and Jacobs!

if yes, read Rutten and Jacobs!

and come to my talk tomorrow at WiL

if yes, read Rutten and Jacobs!

> and come to my talk tomorrow at Wil

and to the talk of our LICS paper on Wednesday

Beyond coalgebra

Beyond coalgebra

What is the best about doing science ?

it's rewarding

relevance

elegance

communicating

striving for perfection

community

lenging

work alone

creativity

beauty

IOV

ma

meaningful

What I love about

doing science

novelty

work with people

explaining

freedom

discovering

integrity

Let's bring some order here

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

Let's bring some order here

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

Ana Sokolova

LMW 2019 22-6-19

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

commun	icating		challenging		open
	freedom			with people	
јоу		striving for perfection		beauty	relevant
	meaningful		alone		

Ana Sokolova

LMW 2019 22-6-19

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

- Do what you do best and love
- Choose relevant topics
- Mix topics
- Learn from masters
- Dare to be independent
- Leave a trace
- There is plenty to learn: Exchange roles
- Do not worry much
- Have fun

Ana Sokolova

LMW 2019 22-6-19