
Traces, Executions and Schedulers,
Coalgebraically

Bart Jacobs1 and Ana Sokolova2?

1 Radboud University Nijmegen, The Netherlands
2 University of Salzburg, Austria

Abstract. A theory of traces of computations has emerged within the
field of coalgebra, via finality in Kleisli categories. In concurrency theory,
traces are traditionally obtained from executions, by projecting away
states. These traces and executions are sequences and will be called
“thin”. The coalgebraic approach gives rise to both “thin” and “fat”
traces/executions, where in the “fat” case the structure of computations
is preserved. This distinction between thin and fat will be introduced
first. It is needed for a theory of schedulers in a coalgebraic setting, of
which we only present the very basic definitions and results.

1 Introduction

This paper is about traces and executions, in the general setting of coalgebra. It
introduces what we call “thin” and “fat” style semantics, both for traces and ex-
ecutions. Roughly speaking, “thin” semantics is what is traditionally considered
for traces and executions, especially for labelled transition systems (LTSs) [6]. It
involves sequences/lists of observable actions (for traces) or lists of actions and
intermediate states (for executions). The “fat” approach emerged from more
recent work on traces in a coalgebraic setting [9,10]. It applies to systems as
coalgebras c: X → TF (X) of type TF where T is a monad for computational
effect or branching type, and F is a functor that determines the transition type,
subject to a set of conditions. The semantics is described as a map X → I in the
Kleisli category of the monad T , where I is the initial algebra of F . Elements of
this initial algebra incorporate the “fat”, tree-like structure of computations of
type F .

Here we describe how to understand the thin and fat approaches in a common
framework. Figure 1 gives an overview. It will be explained in the course of this
article. At this stage we can already see that thin semantics (of both traces
and executions) involves lists, via the Kleene star (−)?—which can of course
be described via the µ fixed point (initial algebra) operator. The fat semantics
involves initial algebras of the functors F and F (X×−), where the latter involves
the state space X, in order to accommodate states in executions. These initial
algebras may have much more (tree) structure than lists. It should be noted
however that they need not always exist.
? Research funded by the Austrian Science Fund (FWF) Project Nr. V00125



Initial algebras

wrt. X → TF (X)

with F = F (0) + F•

Thin

(non-determinism only, with T = P)

Fat

(for general monads T )

Traces
F•(1)? × F (0)

= µY. F (0) + F•(1)× Y
µY. F (Y )

Executions
(F•(X)×X)? × F (0)

= µY. F (0) + (F•(X)×X)× Y
µY. F (X × Y )

Fig. 1. Traces and executions

The first part of this paper concentrates on this table. It is needed in or-
der to properly capture schedulers. Schedulers are often used to resolve non-
determinism, by making particular choices. They are used for instance in the
semantics of programming languages [16], (probabilistic) verification [5,14,15] or
security [2,4]. They are not always described in the mathematically most rigor-
ous manner. Hence a precise understanding is valuable. It was the original focus
of the paper. But the “preliminary” work on thin and fat traces and executions
turned out to be more involved than expected, so that in the end only the last
part of the paper (Section 8) is left for schedulers. It does not do much more
than setting the scene, by introducing some basic definitions and a “soundness”
theorem. It ends with a definition of “completeness” of scheduler semantics, as
a cliffhanger. It will be further developed and illustrated in subsequent work.

2 Preliminaries

We assume the reader is reasonably familiar with categorical notation and termi-
nology and with the theory of coalgebras. We shall briefly review our notation.
Cartesian projections will be written as πi: X1×X2 → Xi with 〈f, g〉 for tupling.
By δ we denote the diagonal, δ = 〈id, id〉:X → X × X. Dually, coprojections
are written as κi:Xi → X1 + X2 with cotupling [f, g]. In Sets coprojections
are disjoint, meaning that the pullback of κ1 and κ2 is empty. Coproducts are
also universal: given f : Y → X1 + X2 we can split up Y1 + Y2

∼=→ Y via the two
pullbacks Yi → Y of the coprojections along f , see e.g. [3].

We recall that every functor F :Sets → Sets is strong, via a “strength” map
st: X × F (Y ) → F (X × Y ) given by st(x, v) = F (λy. 〈x, y〉)(v). If F happens
to be a monad, then it is strong, meaning that its unit η and multiplication
µ commute appropriately with this strength. A map of monads σ: S ⇒ T is
called strong if it commutes with strength. Examples of monads that occur in
this setting are powerset P for non-determinism, lift 1 + (−) for partiality, or
(sub)distribution D for probabilism. The Kleisli category of a monad T will be
written as K`(T ).

3 A motivating example: binary trees with output

We start with a simple example of a transition type functor generating binary
trees with output, namely F (X) = A + (B × X2) for constant sets A and B.



In a state x ∈ X a transition in F (X) of such a binary tree functor either
produces an output in A and terminates, or makes a step in B ×X2, consisting
of an observable output element in B together with a pair of children states
which will (both!) be active in the next step. In this section we shall concretely
describe both “thin” and “fat” executions and traces for this transition type
functor F . The general construction of these executions and traces via finality
is described later, namely in Sections 5 and 7.

Thin traces and executions. As illustration we consider a coalgebra c:X →
P(FX), where FX = A + B ×X2 as above. Starting from a state x0 ∈ X we
can consider the “thin” executions starting in x0. They are (finite) sequences of
the form:

b0, x1, b1, x2, . . . , bn, xn, a (1)

where:

c(x0) 3
{

(b0, x1, x
′
1) for some x′1 ∈ X, or

(b0, x
′
1, x1) for some x′1 ∈ X

c(x1) 3
{

(b1, x2, x
′
2) for some x′2 ∈ X, or

(b1, x
′
2, x2) for some x′2 ∈ X...

c(xn) 3 a.

These executions thus capture possible computation paths, involving a specific
choice of left or right successor state.

We shall write texc(x0) for the set of all such “thin” executions; hence
texc(x0) ∈ P((B × X)? × A). It will be described later as a map texc: X →
(B×X)?×A, in the Kleisli category K`(P), obtained by finality using the result
of Section 4 below.

Roughly, a trace is an execution with the states removed. So if we remove
states xi from (1) we are left with a “thin” trace, as element of B?×A. The trace
is a Kleisli map ttr: X → P(B? ×A). As we shall see, it can also be obtained by
finality.

Fat traces and executions. Thin executions and traces describe computation
paths. What we call fat executions or traces does not involve paths but trees that
retain the structure of the transition type. Hence, examples of fat executions from
a state x0 ∈ X are:

(i) x0_
²²

(ii) x0_
²²

(iii) x0_
²²

a b1,2

xx FF
b1,2

vv FF
x1

²²
x2

²²
x1

²²
x2

²²
a1 a2 b3,4

xx HH
a2

x3
²²

x4
²²

a3 a4

(2)



A fat trace can be understood as what remains when states are removed from
such trees. But there is a more direct way of understanding such traces, namely
as elements of the initial algebra of the functor F . As usual, this initial algebra
I is obtained as a colimit I = colimi∈NF i(∅) of the initial sequence, where:

F (∅) = A

F 2(∅) = A + (B ×A2)

F 3(∅) = A + B × (
A + (B ×A2)

)2

= A + (B ×A2) + (B ×A×B ×A2)

+ (B ×B ×A2 ×A) + (B ×B ×A2 ×B ×A2)

F 4(∅) = · · ·
Given a coalgebra c: X → P(FX), coalgebraic trace theory provides us with

a trace map ftrc : X → I in the Kleisli category K`(P), obtained by finality. For
a state x ∈ X the set ftrc(x) ∈ P(I) contains:

a ∈ ftrc(x) ⇐⇒ a ∈ c(x)

〈b, α1, α2〉 ∈ ftrc(x) ⇐⇒ ∃x1, x2 ∈ X. 〈b, x1, x2〉 ∈ c(x) and

α1 ∈ ftrc(x1) and α2 ∈ ftrc(x2).

How to understand “fat” executions? It is not hard to see that the trees in (2)
are elements of the initial algebra of the functor F (X × −). Indeed, this initial
algebra is obtained as colimit of the chain (F (X ×−))i(∅), which starts with:

(F (X ×−))1(∅) = F (X × ∅)
= A

(F (X ×−))2(∅) = F (X × F (X × ∅))
= F (X ×A)

= A + (B × (X ×A)2)

(F (X ×−))3(∅) = · · ·

Let us write IX for this initial algebra. The fat execution map then appears
as a map fexcc: X → IX in the Kleisli category K`(P), that is, as function
fexcc: X → P(IX) in Sets. It can be obtained by finality. Its key properties are:

a ∈ fexcc(x) ⇐⇒ a ∈ c(x)

〈b, x1, α1, x2, α2〉 ∈ fexcc(x) ⇐⇒ 〈b, x1, x2〉 ∈ c(x) and

α1 ∈ fexcc(x1) and α2 ∈ fexcc(x2).

An analogous definition of fat traces and executions, as well as a connection
between them, can be made for an arbitrary monad T and an arbitrary functor
F satisfying the requirements of the coalgebraic trace theorem. These fat traces
and executions will be presented below, in Section 5.



4 Final coalgebras in Kleisli categories

Coalgebraic trace semantics has been developed for coalgebras of the form X →
TF (X) where T is a suitable monad, see [9,10]. It can be formulated for arbitrary
categories, but here we shall restrict ourselves to Sets. There are some technical
requirements.

– There must be a distributive law λ: FT ⇒ TF ; it induces a lifting of F to
F :K`(T ) → K`(T ), which commutes with the canonical functor J :Sets →
K`(T );

– The Kleisli category K`(T ) must be suitably order-enriched, with order v
on Kleisli homsets, bottom element ⊥ and suprema

∨
of directed subsets;

– The lifting F :K`(T ) → K`(T ) must be locally monotone.

The requirements are discussed in detail in [10]. Examples of monads T and
functors F that satisfy these requirements are: the powerset monad P, the sub-
distribution monad D (with probability distributions with sum less than or equal
to 1), the lift monad 1+(−), and the list monad (−)∗, together with all “shapely”
functors. We shall not concentrate on these requirements, and assume that they
simply hold for the monads/functors that we use in this paper. Of crucial im-
portance is the following result, describing how final coalgebras arise in Kleisli
categories from initial algebras in the underlying category. As will be amply il-
lustrated, it will be used throughout to obtain traces and executions, of various
forms.

Theorem 1. Let F and T be a functor and a monad on Sets satisfying the
above requirements. If there is an initial algebra α:F (I)

∼=−→I in Sets, then the
associated coalgebra J(α−1): I

∼=−→F (I) is final in the category of coalgebras of
the lifting F to K`(T ). ut

Coalgebraic trace semantics shows that linear-time semantics fits into the
paradigm of final coalgebra semantics, and can thus benefit from the associated
machinery, for instance in showing compositionality / congruence of bisimilarity
and trace equivalence for various coalgebras [11]. In the second part of this
paper we shall restrict ourselves to the special case T = P of the powerset
monad. Recall that the associated Kleisli category K`(P) is the category of sets
and relations between them. The distributive law then follows from preservation
of weak pullbacks of F . It means that there is a “relation lifting” operation
Rel(F ):P(X × Y ) −→ P(FX × FY ), which induces the “power” distributive
law λ: FP ⇒ PF , namely as λX(u) = {v ∈ FX | Rel(F )(∈)(u, v)}, see [10,
Lemma 2.3] (going back to [12]) for details. This λ commutes with the monad
operations η = {−} and µ =

⋃
of the powerset monad. The order on the Kleisli

homsets is the pointwise inclusion order, and will be denoted by ⊆.
For reasoning about schedulers (in Section 8) we borrow some results from

Hasuo [7,8] on oplax morphisms in Kleisli categories—for the special case T =
P. To start, an oplax morphism in K`(P) from a coalgebra c: X → FX to a



coalgebra d:Y → FY is a Kleisli map f : X → Y such that:

FX
F (f)

// FY
⊆

X

c
OO

f
// Y

d
OO

Proposition 1 ([7,8]). For an arbitrary coalgebra c:X → TF (X) we write
trc: X → T (I) for the F -coalgebra morphism in K`(T ) obtained by finality. This
map trc is the smallest one among the oplax morphisms from c: X → FX to the
final coalgebra I

∼=→ FI in K`(P). ¤

Corollary 1. If f : X → Y is an oplax morphism from c:X → FX to d: Y →
FY , then trd ◦ f is also an oplax morphism, so that trc ⊆ trd ◦ f in K`(P). ¤

5 Fat traces and executions

Fat traces. We assume that the functor F has an initial algebra I, in addition
to the assumptions from Section 4, with map α:F (I)

∼=−→I. It yields by the trace
Theorem 1 a final coalgebra J(α−1): I → F (I) in the Kleisli category K`(T ).
Each coalgebra c:X → TF (X) gives rise to a “fat” trace map ftrc: X → I in
K`(T ) by finality, as in:

F (X)
F (ftrc) //________ F (I)

X

c
OO

ftrc //__________ I

∼= J(α−1)
OO

Fat executions. We fix a particular coalgebra c: X → TF (X), and assume that
the functor F (X×−) has an initial algebra IX , with map αX : F (X×IX)

∼=−→IX .
We obtain a “fat” execution map, again by finality in K`(T ):

F (X ×X)
F (id × fexcc) //________ F (X × IX)

X

FJ(δ) ◦ c
OO

fexcc //____________ IX

∼= J(α−1
X )

OO

The notation is a bit sloppy. The map on top involves the lifting F (id ×−),
which exists via strength.
Relating fat executions and traces. We first construct a map πX : IX → I
that projects away states by initiality in Sets, as in:

F (X × IX)
αX ∼=²²

F (id × πX)
//______ F (X × I)

α ◦ F (π2)²²
IX

πX //__________ I

(3)



Then we obtain the basic execution-trace equation in K`(T ):

ftrc = J(πX) ◦ fexcc. (4)

It is proven by a uniqueness argument in K`(T ):

F (X)
F (fexcc) // F (IX)

FJ(πX)
// F (I)

F (X ×X)

FJ(π2)
OO

F (id × fexcc) // F (X × IX)

FJ(π2)
OO

X

FJ(δ) ◦ c

OO
c

;;

ftrc

44
fexcc // IX

∼= αX

OO

J(πX)
// I

∼= α

OO

The square on the right is essentially J :Sets → K`(T ) applied to (3). The lower-
left rectangle commutes by definition of fexcc and the upper-left one commutes
because FJ(π2) is a natural transformation F (id ×−) ⇒ F between liftings.

6 Splitting up functors

The problem that we address in this section can best be illustrated with an
example. Consider the functor F (X) = A + (B × X). It consists of two (sum)
components, one containing a successor state, namely B ×X, and one without,
namely A. If we wish to consider non-terminating executions of an F -coalgebra
only the part of the functor containing states is relevant. For traces, on the other
hand, one looks at sequences/trees of observables. Then the “state-less” part is
also relevant, at the end of a such a sequence. In this section we shall see how
to get a handle on these different parts of a functor (with and without states),
via a form of linearisation of a functor3.

In the remainder of this paper we shall work with what we shall call subpower
functors F , as “transition type” functors, in coalgebras X → P(FX).

Definition 1. A functor F :Sets → Sets will be called a “subpower” functor if
it preserves weak pullbacks and comes with a natural transformation ρ:F ⇒ P
with the special property that u ∈ F (ρX(u)) for each u ∈ F (X).

We recall that weak pullback preserving functors preserve monos/injections.
Hence the inclusion ρX(u) ↪→ X, for u ∈ F (X), yields an injection F (ρX(u)) ½
3 This linearisation does not keep track of “positions” or “holes” like in derivatives of

functors [13,1].



F (X) so that the requirement u ∈ F (ρX(u)) should formally be understood as
a (necessarily unique) factorisation:

F (ρ(u))
²²
²²

1
u //

55jjjjjj F (X)

Like in this diagram, we often omit the subscript X in ρX .
It is not hard to see that the identity functor is subpower, with ρ as singleton

map and that constant functors are subpower via the empty map. Further, sub-
power functors are closed under coproducts and products. Additionally, certain
special functors are subpower, like the probability distribution functor D, via
the support map. Notice that taking the greatest subset ρX(u) = X does not
yield a natural transformation.

We now use that a powerset P(X) can be written as coproduct P(X) =
1+P•(X), where P•(X) contains the non-empty subsets of X and 1 corresponds
to the empty subset. For a subpower functor with ρ: F ⇒ P we can thus form
the following two pullbacks.

F∅(X)
_Â

²²

// // F (X)
ρX²²

F•(X)Â_
²²

oooo

1 // ∅ // P(X) P•(X)oooo
(5)

Since coproducts are universal [3] in Sets, the induced cotuple F∅(X)+F•(X) →
F (X) is an isomorphism. In this way we can split up F in two parts, one with
output states, and one without them.

Lemma 1. Consider a subpower functor F .

1. Both F∅ and F• are functors with (coprojection) natural transformations
F∅ ⇒ F and F• ⇒ F .

2. F∅(X) = F (0), for each X, so that F (X) = F (0) + F•(X)—where 0 is the
initial object (empty set) in Sets.

3. The functor F• is again subpower, via ρ• =
(
F• ⇒ F

ρ⇒ P)
; as a conse-

quence, there is a distributive law λ•:F•P ⇒ PF•, commuting with λ via
F• ⇒ F in the obvious way.

Proof. For the first point we shall do the proof for F•. Consider for a map
f :X → Y the following diagram:

F (Y )

ρY

²²

F•(Y )Â_
oo

²²

F (X)

ρX

²²

F (f) 99ssssss
F•(X)Â_

oo F•(f)

88r
r

r

²²

P(Y ) P•(Y )oo

P(X)
P(f)

99ssssss
P•(X)oo P•(f)

88rrrrrr



The maps F•(X) → F (X) are natural by construction of F•. Similarly, there is
a natural transformation F∅ ⇒ F .

For point (2), note first that the empty set is an isomorphism ∅: 1 ∼=−→P(0).
Hence for X = 0 the map F∅(0) → F (0) in (5) is also an isomorphism. Thus
F (0) ∼= F∅(0) ↪→ F∅(X). Conversely, if u ∈ F∅(X), then u ∈ F (ρ(u)) = F (0).

For the third point we use that the natural transformation F• ⇒ F = F (0)+
F• is essentially the second coprojection κ2. Hence if u ∈ F•(X), then κ2(u) ∈
F (ρ(κ2(u))) = F (0) + F•(ρ(κ2(u))), so that u ∈ F•(ρ•(u)).

The distributive law λ•: F•P ⇒ PF• exists because F• preserves weak pull-
backs: assume pi:P → Xi is the weak pullback of fi: Xi → Y , for i ∈ {1, 2}.
Let gi:Z → F•(Xi) satisfy F•(f1) ◦ g1 = F•(f2) ◦ g2. Then by post-composition
with F•(Xi) ↪→ F (0) + F•(Xi) = F (Xi) we obtain, because F preserves weak
pullbacks, a mediating map h: Z → F (P ) = F (0) + F•(P ). This h must then
factor through F•(P ).

Hence ρ• makes F• a subpower functor. The proof of the connection between
λ• and λ uses relation lifting. The details are skipped. ut

The next map split: FX → P(F (0) + F•(X)×X) will be important:

FX = F (0)+F•(X)
id+δ// F (0)+F•(X)× F•(X)

id+id×ρ• ²²
F (0)+F•(X)× P(X)

id+st// F (0)+P(F•(X)×X)
[η◦κ1,P(κ2)]²²

P(F (0)+F•(X)×X)

(6)

It is natural F ⇒ P(F (0) + F• × id), in Sets.

7 Thin traces and executions for non-determinism

We now restrict ourselves to the powerset monad P for non-determinism and
will assume that the transition type functor is a subpower functor, via ρ:F ⇒ P.
Hence we can write F (X) = F (0) + F•(X).
Thin traces. We shall write L for the set of lists L = F•(1)? × F (0), ending
with an element in F (0). This L is of course the initial algebra of the func-
tor Y 7→ F (0) + F•(1) × Y . The initial algebra structure will be written as
[end, cons]:F (0)+F•(1)×L

∼=−→L. Therefore, using trace semantics in the Kleisli
category K`(P) of the powerset monad, we obtain a “thin” trace map by finality:

F (0) + F•(1)×X
id + id × ttrc //________ F (0) + F•(1)× L

X

clt
OO

ttrc //_______________ L

∼=
OO

where the coalgebra clt:X → P(F (0) + F•(1)×X) is defined as composite

clt = P(id + (F•(!)× id)) ◦ µ ◦ P(split) ◦ c, (7)



with split defined in (6). We note that for “linear” functors such as F (X) =
A + B ×X for which F (X) = F (0) + F•(1)×X there is no difference between
“thin” and “fat” traces (or executions).

Thin executions. We now fix a non-deterministic coalgebra c: X → P(FX) in
advance and write LX = (F•(X)×X)? × F (0) for the set of lists of executions.
This LX is the initial algebra of the functor F (0) + (F•(X) × X) × (−). The
associated thin execution map is obtained in:

F (0) + (F•(X)×X)×X
id + id × texcc //________ F (0) + (F•(X)×X)× LX

X

cle
OO

texcc //__________________ LX

∼=
OO

where the coalgebra cle: X → P(F (0) + (F•(X)×X)×X) is defined as:

cle = P(id + 〈id, π2〉) ◦ µ ◦ P(split) ◦ c, (8)

where split:F (X) → P(F (0) + F•(X)×X) is from (6).

Relating thin executions and traces. The first step in relating thin execu-
tions and traces is to get a map LX → L between the corresponding sequences.
It is of course obtained by initiality (of LX) in Sets, as in:

F (0) + (F•(X)×X)× LX

[end, cons] ∼=
²²

id + id × pX //______ F (0) + (F•(X)×X)× L

[end, cons] ◦ (id + (F•(!) ◦ π1)× id)
²²

LX

pX //________________ L

As before we obtain the basic execution-trace equation in K`(P), but this time
for the thin case:

ttrc = J(pX) ◦ texcc. (9)

It is proven by uniqueness in:

F (0) + F•(1)×X
id+id×texcc // F (0) + F•(1)× LX

id+id×J(pX)// F (0) + F•(1)× L

F (0) + (F•(X)×X)×X

J(id+(F•(!)◦π1)×id)

OO

id+id×texcc// F (0) + (F•(X)×X)× LX

J(id+(F•(!)◦π1)×id)

OO

X

cle

OO

ttrc

33
texcc // LX

∼=
OO

J(pX) // L

∼=

OO



It requires that we prove that the vertical composite on the left equals clt. This
follows from an easy calculation in Sets:

P(id + (F•(!) ◦ π1)× id) ◦ cle

= P(id + (F•(!) ◦ π1)× id) ◦ P(id + 〈id, π2〉) ◦ µ ◦ P(split) ◦ c

= P(id + (F•(!)× id)) ◦ µ ◦ P(split) ◦ c

= clt.

From fat to thin traces. As we have seen in the previous sections one can
define thin and fat traces separately. Here we show that one can also obtain thin
traces from fat ones via a special “paths” map between the corresponding initial
algebras, as in the following diagram (in K`(P)).

F (0) + F•(1)×X
id+id×ftr// F (0) + F•(1)× I

id+id×paths//___ F (0) + F•(1)× L

F (X)

split1,X

OO

F (ftr) // F (I)

split1,I

OO

X

c

OO
clt

::

ttrc

44ftr // I

∼=
OO

paths //__________ L = F•(1)? × F (0)

∼=

OO

(10)

where split1,X = P(id + (F•(!) × id)) ◦ splitX . The Kleisli map paths: I →
P(L) that is (implicitly) defined by finality yields the set of paths/sequences
in a tree. The upper left square commutes by naturality of split1,X , from F to
F (0) + F•(1)× id in K`(P). This naturality requires the additional assumption
that λ: FP ⇒ PF and ρ: F ⇒ P are compatible in the sense that µ ◦ P(ρ) ◦
λ = µ ◦ ρ. Details are skipped.

Thin and fat executions are similarly related via a paths map between initial
algebras IX to LX .

8 Scheduling

Scheduling is about resolving non-determinism, by choosing some structure like
singletons, lists, multisets or distributions instead of plain, unstructured, sub-
sets. How this non-determinism is resolved will be described generically, at first,
in terms of another monad S with a (strong) monad map σ: S ⇒ P. Possible
examples of S are identity Id, lift 1 + (−), list (−)?, multiset M, or distribu-
tion D, each with “obvious” mappings σ to the powerset monad. Very roughly,
scheduling “of type S” involves a suitable inverse to this mapping σ: S ⇒ P.

For a set X we shall abbreviate

Ξ = X × (F•(X)×X)∗.



It contains all the finite (non-terminating) thin “executions”, appended to a
starting state, as first component. Of course the elements of Ξ are not really
executions since there is no coalgebra involved and no one-step connections be-
tween the constituents. There are three obvious maps:

X
in // Ξ = X × (F•(X)×X)?

first //

last
// X

where in(x) = 〈x, 〈〉〉. The map first yields the first state of the execution, simply
via the first projection, and last yields the last state of the execution defined as:

last(x, α) =

{
x if α is the empty sequence 〈〉
y if α = β · 〈u, y〉.

Clearly, first ◦ in = id, but also last ◦ in = id.
We now come to the crucial notion of scheduler. Informally it chooses a

computation of type S for a non-deterministic computation, given a scheduling
type σ:S ⇒ P.

Definition 2. A scheduler of type σ:S ⇒ P for a coalgebra c: X → PF (X) is
a mapping ξ in:

Ξ
ξ //

last
²²

SF (X)

σ
²²⊇

X c
// PF (X)

Intuitively, a scheduler chooses a next step starting from the last state of
an execution in Ξ. The inclusion presented by the diagram, together with the
definition of last, ensures that the chosen next step is contained in the next-step
options that the coalgebra c provides for the last state of the execution.

Because such a scheduler ξ takes elements from Ξ as input it may be called
history dependent : the scheduler may take previous execution steps into account
when making the current scheduling decision. Here one may object that the set
Ξ has too many elements—not just the proper executions. One way to handle
this is to let ξ choose in these non-proper execution cases a “bottom” element.

Example 1. We illustrate several variants of schedulers, for the simplest and
most well known example of LTS with termination, namely FX = {X}+A×X,
in which case Ξ = X × (A×X)∗.

1. Deterministic schedulers have type η: Id ⇒ P. They are maps ξ:Ξ → ({X}+
A×X) that choose a single possibility out of the last state of an execution.

2. Non-deterministic schedulers are schedulers of type id:P ⇒ P. They merely
reduce non-determinism by pruning out some of the possible options in the
last state of an execution. These are maps ξ: Ξ → P({X}+ A×X).



3. Randomized schedulers replace non-deterministic choice by a probability dis-
tribution via the scheduling type supp:D ⇒ P. They are maps ξ:Ξ →
D({X}+ A×X) such that ξ(x, α)(z) 6= 0 implies z ∈ c(last(x, α)). It means
that the support of the distribution ϕ = ξ(x, α) that is produced by the
scheduler ξ on a non-terminating execution 〈x, α〉 is a subset of the set of
transitions resulting from the last state last(x, α) of the execution.

Definition 3. Let ξ be a scheduler for c:X → PF (X). The coalgebra of execu-
tions of c under the scheduler ξ,

Ξ
cξ // PF (Ξ)

is the composite of the following pile of maps.

Ξ
〈id, ξ〉

// Ξ × SF (X)
id × σ // Ξ × PF (X)

st // P(Ξ × (F (0) + F•(X)))
P(dist)

// P(Ξ × F (0) + Ξ × F•(X))
P(π2 + 〈id, π2〉) // P(F (0) + Ξ × F•(X)× F•(X))
P(id + st)

// P(F (0) + F•(Ξ × F•(X)×X))
P(id + F•(cons))

// PF (Ξ) .

where cons extends executions; it satisfies last ◦ cons = π3.

The coalgebra cξ yields a fat trace map ftrcξ
:Ξ → I in the Kleisli category

K`(P), for I being the initial F -algebra. One can also look at the thin trace
map of cξ but it can be obtained simply via the paths map from (10). The next
lemma relates the scheduler-induced coalgebra cξ on executions to the original
coalgebra c on states.

Lemma 2. The map J(last) is an oplax morphism from cξ:Ξ → F (Ξ) to
c:X → F (X) in K`(P), i.e.

F (Ξ)
FJ(last)

// F (X)
⊆

Ξ

cξ

OO

J(last)
// X

c
OO

Proof. We first note that FJ = JF , and that JF (f) ◦ c ⊆ d ◦ J(f) in K`(P) if
and only if PF (f) ◦ c ⊆ d ◦ f in Sets. Therefore, it is enough to show that the



following oplax diagram commutes in Sets.

PF (Ξ)
PF (last)

// PF (X)
⊆

Ξ

cξ

OO

last
// X

c
OO

which we get from the following calculation

PF (last) ◦ cξ = PF (last) ◦ P(id + F•cons) ◦ P(id + st) ◦ P(π2 + 〈id, π2〉) ◦
P(dist) ◦ st ◦ 〈id, σ ◦ ξ〉

= P(id + F•last) ◦ P(id + F•cons) ◦ P(id + st) ◦ P(π2 + 〈id, π2〉) ◦
P(dist) ◦ st ◦ 〈id, σ ◦ ξ〉

= P(id + F•π3) ◦ P(id + st) ◦ P(π2 + 〈id, π2〉) ◦
P(dist) ◦ st ◦ 〈id, σ ◦ ξ〉

= P(id + π3) ◦ P(π2 + 〈id, π2〉) ◦ P(dist) ◦ st ◦ 〈id, σ ◦ ξ〉
= P(π2 + π2) ◦ P(dist) ◦ st ◦ 〈id, σ ◦ ξ〉
= P(π2) ◦ st ◦ 〈id, σ ◦ ξ〉
= π2 ◦ 〈id, σ ◦ ξ〉
= σ ◦ ξ

⊆ c ◦ last

where the inclusion holds by the definition of a scheduler. ¤
Definition 4. For a coalgebra c: X → PF (X) we define the fat “scheduler”
trace map fstrc: X → P(I) as:

fstrc(x) =
⋃{ftrcξ

(in(x)) | ξ is scheduler for c}.
Theorem 2 (Soundness). The fat scheduler traces are contained in the fat
traces, that is, for any coalgebra c:X → PF (X) it holds that

fstrc ⊆ ftrc.

Proof. By Lemma 2 we have that J(last) is an oplax morphism from cξ:Ξ →
F (Ξ) to c:X → F (X) in K`(P). Therefore, Corollary 1 yields ftrcξ

⊆ ftrc ◦
J(last) in K`(P), or equivalently ftrcξ

⊆ ftrc ◦ last, with composition in Sets,
which further implies that

ftrcξ
◦ in ⊆ ftrc ◦ last ◦ in = ftrc. ¤

We end with a definition, which introduces many new questions, such as:
which types of scheduling are complete for which functors. These questions will
be postponed to future work.

Definition 5. A scheduler type σ: S ⇒ P is fat complete if fstrc = ftrc for any
coalgebra c:X → PF (X).



9 Conclusions and future work

This paper deepens the study of “traces” in a coalgebraic setting and brings
schedulers within scope. Many research issues remain, like completeness of schedul-
ing, for instance for deterministic or probabilistic systems, or scheduling for other
monads than powerset. Also, the relevance of derivatives of functors—capturing
the idea of a hole where a scheduler should continue—needs further investigation.

References

1. M. Abott, Th. Altenkirch, N. Ghani, and C. McBride. Derivatives of contain-
ers. In M. Hofmann, editor, Typed Lambda Calculi and Applications, pages 16–30.
LNCS 2701, 2003.

2. Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. In Mart́ın
Abadi and Luca de Alfaro, editors, CONCUR’05, pages 171–185. LNCS 3653,
2005.

3. A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive
categories. JPAA, 84(2):145–158, 1993.

4. Konstantinos Chatzikokolakis and Catuscia Palamidessi. Making random choices
invisible to the scheduler. In CONCUR’07, pages 42–58. LNCS 4703, 2007.

5. L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University Nijmegen, 2006.

6. R.J. van Glabbeek. The linear time – branching time spectrum (extended abstract).
In J.C.M. Baeten and J.W. Klop, editors, CONCUR’90, pages 278–297. LNCS 458,
1990.

7. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns,
editors, CONCUR’06, pages 406–420. LNCS 4137, 2006.

8. I. Hasuo. Tracing Anonymity with Coalgebras. PhD thesis, Radboud University
Nijmegen, 2008.

9. I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics.
In J.L. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, CALCO’05,
pages 213–231. LNCS 3629, 2005.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.
LMCS, 3(4:11), 2007.

11. I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in
coalgebra. In R. Amadio, editor, FOSSACS’08, pages 246–260. LNCS 4962, 2008.

12. B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,
CMCS’04. ENTCS 106, 2004.

13. A. Joyal. Foncteurs analytiques et espces de structures. In G. Labelle and P. Ler-
oux, editors, Combinatoire Enumerative, pages 126–159. LNM 1234, Springer,
Berlin, 1986.

14. R. Segala. A compositional trace-based semantics for probabilistic automata. In
I. Lee and S.A. Smolka, editors, CONCUR’95, pages 234–248. LNCS 962, 1995.

15. R. Segala. Modeling and verification of randomized distributed real-time systems.
PhD thesis, MIT, 1995.

16. D. Varacca and G. Winskel. Distributing probability over non-determinism. MSCS,
16:87–113, 2006.


