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• Queue FIFO 

• Stack LIFO  

• Pool unordered
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Semantics of concurrent 
data structures

• Sequential specification = set of legal sequences 

• Consistency condition   = e.g. linearizability /   sequential 
consistency

Ana Sokolova 

e.g. queues

e.g. queue legal sequence 
enq(1)enq(2)deq(1)deq(2)

e.g. the concurrent history above is a 
linearizable queue concurrent  history

t1: enq(2) deq(1)

enq(1) deq(2)t2:
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t1: enq(1) deq(2)

deq(1)t2: enq(2)

Consistency conditions
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Linearizability

Sequential Consistency

there exists a legal 
sequence that preserves 

precedence order

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal 
sequence that preserves 
per-thread precedence 

(program order)

1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]

consistency is 
about extending 
partial orders to  

total orders 
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A history is … wrt a sequential 
specification iff



Performance and scalability
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throughput

# of threads / cores
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Relaxations allow trading 

correctness 
for 

performance

Ana Sokolova 

provide the potential 
for better-performing 

implementations
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Relaxing the Semantics

• Sequential specification = set of legal sequences 

• Consistency condition   = e.g. linearizability /   sequential 
consistency

Ana Sokolova 

Quantitative relaxations 
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability  
Haas, Henzinger, Holzer,…, S, Veith CONCUR16 
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Relaxing 
the  

sequential  
specification 
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Quantitative 
relaxations  
(POPL13)

IFIP WG 1.3 - RHUL 5.7.18



•  trade correctness for performance  

•  in a controlled way with quantitative bounds

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

measure the 
error from correct 

behaviourcorrect in a relaxed stack 
... 2-relaxed? 3-relaxed?

Ana Sokolova 

Goal
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How can relaxing 
help?

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack

top

a

b

c

thread 1
thread 2

thread n

...{ }k
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What we have

• Framework 

• Generic examples 
  

• Concrete relaxation examples  

• Efficient concurrent implementations

stacks, queues,  
priority queues,.. / 

CAS, shared counter

for semantic 
relaxations

of relaxation 
instances

out-of-order / 
stuttering
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The big picture

S ⊆ Σ*

Σ - methods with arguments

sequential specification
legal sequences
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The big picture

S ⊆ Σ*

Σ - methods with arguments

sequential specification 
legal sequences

Ana Sokolova 

Sk ⊆ Σ*

relaxed sequential specification 
sequences at distance up to k from S

.
. k
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Relaxing 
the 

Consistency 
Condition 
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Local Linearizability  
(CONCUR16)
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Local Linearizability 
main idea

• Partition a history into a set of local histories 

• Require linearizability per local history

Ana Sokolova 

Already present in some shared-memory 
consistency conditions  

(not in our form of choice)

Local sequential consistency… is also 
possible 

no global witness
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Local Linearizability 
(queue) example

Ana Sokolova 

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history  
not linearizable

t1-induced history, 
linearizable

t2-induced history, 
linearizable

locally 
linearizable
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Local Linearizability 
(queue) definition

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

in-methods of thread T 
are 

enqueues performed 
by thread T 

out-methods of thread T 
are dequeues   

(performed by any thread) 
corresponding to enqueues that 

are in-methods 
h is locally linearizable iff every thread-induced history  
                                                                hT= h | (IT ∪ OT)   
                                                   is linearizable.

Ana Sokolova IFIP WG 1.3 - RHUL 5.7.18



Where do we stand?

Ana Sokolova 

In general

Linearizability

Sequential Consistency

Local Linearizability
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Where do we stand?

Ana Sokolova 

For queues (and most container-type data structures)

Linearizability

Sequential Consistency

Local Linearizability
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Lead to scalable 
implementations

Ana Sokolova 

e.g.  k-FIFO, k-Stack

locally linearizable distributed implementation

local inserts / global removes
t2t1 tn…

Φ Φ Φ
LLD Φ 

LL+D Φ

a1
…

ak

b1
…

bk

x1
…

xk

…
y1
…

yk

k-out-of-order 
queue

IFIP WG 1.3 - RHUL 5.7.18



Performance
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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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LL+D MS queue 
performs 

significantly better  
than 

MS queue
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Performance
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(a) Queues, LL queues, and “queue-like” pools
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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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performs better  
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Linearizability via Order 
Extension Theorems

foundational results 
for  

verifying linearizability

Harald Woracek

joint work with



Inspiration (queue)
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Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue linearizable  
                          iff 
1. h is pool linearizable, and 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

precedence order

As well as 
Reducing Linearizability to  

State Reachability 
[Bouajjani, Emmi, Enea, Hamza] 

ICALP15 + …
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Linearizability verification
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Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

concurrent history

it is easy to find a large CV,  
but difficult to find a small representative

we build 
CV iteratively 

from V
legal sequence
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• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for
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infinite 
inductive 
violations

But not yet for Stack:  
infinite CV violations  

without clear  
inductive structure

Exploring the space of 
data structures  

as well as new ideas  
for problematic cases
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• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for
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infinite 
inductive 
violations

But not yet for Stack:  
infinite CV violations  

without clear  
inductive structure

Exploring the space of 
data structures  

as well as new ideas  
for problematic cases

Thank You !
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