
Semantics of Concurrent
Data Structures

Ana Sokolova

IFIP WG 1.3 meeting at Royal Holloway, 5.7.2018

• Part I: Concurrent data structures 
 correctness and performance

• Part II: Order extension results for 
 verifying linearizability

Ana Sokolova

structure and power

IFIP WG 1.3 - RHUL 5.7.18

via semantic
relaxations

Andreas Haas Andreas HolzerMichael Lippautz

Ali Sezgin
Christoph KirschHannes Payer

Helmut Veith

Tom Henzinger

Concurrent Data Structures
Correctness and Relaxations

• Queue FIFO

• Stack LIFO

• Pool unordered

f e d c b a
enq deq

Data structures

Ana Sokolova

z

y

x
poppush

j
m

o

n
k l

ins rem

IFIP WG 1.3 - RHUL 5.7.18

• Queue FIFO

• Stack LIFO

• Pool unordered

Concurrent data structures

Ana Sokolova

f e d c b a
enq deq

… …

j
m

o

n
k l

ins remins

ins

ins

rem

rem

z

y

x
poppush

……

IFIP WG 1.3 - RHUL 5.7.18

Semantics of concurrent
data structures

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability / sequential
consistency

Ana Sokolova

e.g. queues

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

e.g. the concurrent history above is a
linearizable queue concurrent history

t1: enq(2) deq(1)

enq(1) deq(2)t2:

IFIP WG 1.3 - RHUL 5.7.18

t1: enq(1) deq(2)

deq(1)t2: enq(2)

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence order

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal
sequence that preserves
per-thread precedence

(program order)

1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]

consistency is
about extending
partial orders to

total orders

IFIP WG 1.3 - RHUL 5.7.18

A history is … wrt a sequential
specification iff

Performance and scalability

Ana Sokolova

throughput

of threads / cores

:-)))

:-)

:-(
:-\

IFIP WG 1.3 - RHUL 5.7.18

Relaxations allow trading

correctness
for

performance

Ana Sokolova

provide the potential
for better-performing

implementations

IFIP WG 1.3 - RHUL 5.7.18

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability / sequential
consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability
Haas, Henzinger, Holzer,…, S, Veith CONCUR16

IFIP WG 1.3 - RHUL 5.7.18

Relaxing
the

sequential
specification

Ana Sokolova

Quantitative
relaxations
(POPL13)

IFIP WG 1.3 - RHUL 5.7.18

• trade correctness for performance

• in a controlled way with quantitative bounds

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

measure the
error from correct

behaviourcorrect in a relaxed stack
... 2-relaxed? 3-relaxed?

Ana Sokolova

Goal

IFIP WG 1.3 - RHUL 5.7.18

How can relaxing
help?

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack

top

a

b

c

thread 1
thread 2

thread n

...{ }k

Ana Sokolova IFIP WG 1.3 - RHUL 5.7.18

What we have

• Framework 

• Generic examples 

• Concrete relaxation examples  

• Efficient concurrent implementations

stacks, queues,
priority queues,.. /

CAS, shared counter

for semantic
relaxations

of relaxation
instances

out-of-order /
stuttering

Ana Sokolova IFIP WG 1.3 - RHUL 5.7.18

The big picture

S ⊆ Σ*

Σ - methods with arguments

sequential specification
legal sequences

Ana Sokolova IFIP WG 1.3 - RHUL 5.7.18

The big picture

S ⊆ Σ*

Σ - methods with arguments

sequential specification
legal sequences

Ana Sokolova

Sk ⊆ Σ*

relaxed sequential specification
sequences at distance up to k from S

.
. k

IFIP WG 1.3 - RHUL 5.7.18

Relaxing
the

Consistency
Condition

Ana Sokolova

Local Linearizability
(CONCUR16)

IFIP WG 1.3 - RHUL 5.7.18

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova

Already present in some shared-memory
consistency conditions

(not in our form of choice)

Local sequential consistency… is also
possible

no global witness

IFIP WG 1.3 - RHUL 5.7.18

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

t2-induced history,
linearizable

locally
linearizable

IFIP WG 1.3 - RHUL 5.7.18

Local Linearizability
(queue) definition

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

in-methods of thread T
are

enqueues performed
by thread T

out-methods of thread T
are dequeues

(performed by any thread)
corresponding to enqueues that

are in-methods
h is locally linearizable iff every thread-induced history
 hT= h | (IT ∪ OT)
 is linearizable.

Ana Sokolova IFIP WG 1.3 - RHUL 5.7.18

Where do we stand?

Ana Sokolova

In general

Linearizability

Sequential Consistency

Local Linearizability

IFIP WG 1.3 - RHUL 5.7.18

Where do we stand?

Ana Sokolova

For queues (and most container-type data structures)

Linearizability

Sequential Consistency

Local Linearizability

IFIP WG 1.3 - RHUL 5.7.18

Lead to scalable
implementations

Ana Sokolova

e.g. k-FIFO, k-Stack

locally linearizable distributed implementation

local inserts / global removes
t2t1 tn…

Φ Φ Φ
LLD Φ

LL+D Φ

a1
…

ak

b1
…

bk

x1
…

xk

…
y1
…

yk

k-out-of-order
queue

IFIP WG 1.3 - RHUL 5.7.18

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LL+D MS queue
performs

significantly better
than

MS queue

IFIP WG 1.3 - RHUL 5.7.18

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LLD Φ
performs

significantly better
than
Φ

IFIP WG 1.3 - RHUL 5.7.18

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LL+D MS queue
performs better

than
the best known

pools

IFIP WG 1.3 - RHUL 5.7.18

Linearizability via Order
Extension Theorems

foundational results
for

verifying linearizability

Harald Woracek

joint work with

Inspiration (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
 iff
1. h is pool linearizable, and
2. enq(x) <h enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

precedence order

As well as
Reducing Linearizability to

State Reachability
[Bouajjani, Emmi, Enea, Hamza]

ICALP15 + …

IFIP WG 1.3 - RHUL 5.7.18

Linearizability verification

Ana Sokolova

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V = ∅

Data structure
• signature Σ - set of method calls including data values
• sequential specification S ⊆ Σ*, prefix closed

identify
sequences with

total orders

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

Linearizability verification

concurrent history

it is easy to find a large CV,
but difficult to find a small representative

we build
CV iteratively

from V
legal sequence

IFIP WG 1.3 - RHUL 5.7.18

• Pool without empty removals

• Queue without empty removals

• Priority queue without empty removals

• Pool

• Queue

• Priority queue

It works for

Ana Sokolova

infinite
inductive
violations

But not yet for Stack:
infinite CV violations

without clear
inductive structure

Exploring the space of
data structures

as well as new ideas
for problematic cases

IFIP WG 1.3 - RHUL 5.7.18

• Pool without empty removals

• Queue without empty removals

• Priority queue without empty removals

• Pool

• Queue

• Priority queue

It works for

Ana Sokolova

infinite
inductive
violations

But not yet for Stack:
infinite CV violations

without clear
inductive structure

Exploring the space of
data structures

as well as new ideas
for problematic cases

Thank You !

IFIP WG 1.3 - RHUL 5.7.18

