Concurrent Data Structures:
Semantics and Relaxations

Ana Sokolova PUNERSITY

IMDEA, Madrid, 17.7.17

Background big picture

IIIIIIIIII
A R

IMDEA 17-7-17

Background big picture

Computer Science

IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Background big picture

Computer Science

Ana Sokolova PRz IMDEA 17-7-17

Favourites

Computer Science

IMDEA 17-7-17

Concurrent Data Structures:
Semantics and Relaxations

Ana Sokolova PUNERSITY

IMDEA, Madrid, 17.7.17

Concurrent Data Structures:
Correctness and Performance

Ana Sokolova PRSizEike IMDEA 17-7-17

Semantics of concurrent
data structures

Ana Sokolova PRSizEike IMDEA 17-7-17

Semantics of concurrent
data structures

e.g. pools, queues, stacks

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics of concurrent
data structures

t1: -enq(2) -deq(1)
. e.g. pools, queues, stacks
i deq(2)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics of concurrent
data structures

t1: -enq(Z) -deq(1)
. e.g. pools, queues, stacks
5 deq(2)

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence

eng(1)enqg(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

e.g. the concurrent history above is a

linearizable queue concurrent history

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRSizEike IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRSizEike IMDEA |7-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

there exists a legal
seguence that preserves
per-thread precedence
(program order)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Performance and scalabillity

-)))

throughput ._)

of threads / cores

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxations allow trading

correctness
for
performance

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Relaxing the semantics

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxing the semantics

* Sequential specification = set of legal sequences

* Consistency condition = e.q. linearizability /
seqguential consistency

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxing the semantics

Quantitative relaxations

POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxing the semantics

NOt
“sequentially
correct”

Quantitative relaxations
POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRSizEike IMDEA |7-7-17

Relaxing the semantics

NOt
“sequentially
correct”

Quantitative relaxations
POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability

CONCUR16

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Relaxing the semantics

NOt
“sequentially
correct”

Quantitative relaxations
POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
CONCUR16

UNIVERSITY

Ana Sokolova P IMDEA |7-7-17

Relaxing the semantics

NOt
“sequentially
correct”

Quantitative relaxations
POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
CONCUR16

for queues/stacks only

(feel free to ask for more)

IIIIIIIIII

Ana Sokolova P IMDEA 17-7-17

Relaxing
the
seguential
specification

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxing
the
sequential
specification

relaxations
REORELS)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Goal

e trade correctness for performance

¢ in a controlled way with quantitative bounds

measure the

error from correct
behaviour

Ana Sokolova PRSizEike IMDEA 17-7-17

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the

error from correct
behaviour

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

HOwW can relaxing
help”?

top Rl\ thread 1
l thread 2

thread n K {

Ana Sokolova PRSizEike IMDEA |7-7-17

k-Relaxed stack

+op

thread 1

}K thread 2
thread n

e

—
b
—
L/

What we have

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances

Ana Sokolova PRSizEike IMDEA |7-7-17

The big picture

sequential specification

> - methods with arguments

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

The big picture

seguential specification

relaxed sequential specification

> - methods with arguments

Ana Sokolova PRz IMDEA 17-7-17

Syntactic distances do
not nelp

push(a)[push(@)pop(i)]*push(b)[push()pop()]™pop(a)

Ana Sokolova PRSizEike IMDEA |7-7-17

Syntactic distances do
not nelp

push(a)[push(@)pop(i)]*push(b)[push()pop()]™pop(a)

Is a 1-out-of-order stack sequence
top top
top ,lﬁ !
} b b |
() -) - o
eece a oo 8,
—

Ana Sokolova PRSizEike IMDEA 17-7-17

Syntactic distances do

not nelp
/\/\

push(a)[push(@)pop(i)]*push(b)[push()pop()]™pop(a)

Is a 1-out-of-order stack sequence
top top
top)

|
l (o) (s
&) - @ -

its permutation distance is min(2n,2m)

Ana Sokolova PRSizEike IMDEA 17-7-17

Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

e TwO sequences in S are equivalent iff they have an indistinguishable future

Ana Sokolova PRSizEike IMDEA 17-7-17

Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

e TwO sequences in S are equivalent iff they have an indistinguishable future

b et S AR S T O SV =SSR R S)

Ana Sokolova PRSizEike IMDEA |7-7-17

Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

e TwO sequences in S are equivalent iff they have an indistinguishable future

b et S AR S T O SV =SSR R S)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics goes
operational

S € 2* is the sequential specification

m labels Initial state

LTS(S) = (S/=, 2, =, [e]-) with

transition relation

[s]le > [sm]: < smeS

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Semantics goes
operational

S € 2* is the sequential specification

m labels Initial state

LTS(S) = (S/=, 2, =, [e]-) with

transition relation

[s]le > [sm]: < smeS

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

1he relaxation
framework

o Start from LTS(S)
e Add transitions with transition costs

e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17

1he relaxation
framework

o Start from LTS(S)
e Add transitions with transition costs

e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17

1he relaxation
framework

C
o Start from LTS(S) >

® — 0 — o

l_'\;‘—»‘
ey I
e __— .0 — 0

e Add transitions with transition costs

e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17

1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17

1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

- minimal cost on all paths labelled by the sequence

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Generic out-of-order

Where v is a sequence of minimal length s.t.

removing v enables a transition

inserting v enables a transition

goes with different path costs

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Ana Sokolova

Out-of-order stack

Sequence of push’s with no matching pop

e Canonical representative of a state

e Add incorrect transitions with segment-costs

top
\

— top
pop(a) |

— >

Q

o
N
(o)

0
(=3

——— ——

e Possible path cost functions max, sum,... also more advanced

UNIVERSITY
of SALZBURG

IMDEA 17-7-17

Relaxing
the
Consistency
Condition

Ana Sokolova PRSizEike IMDEA 17-7-17

Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

IIIIIIIIII
A R

Local Linearizability
main idea

IMDEA 17-7-17

Local Linearizability
main idea

* Partition a history into a set of local histories

* Require linearizability per local history

Ana Sokolova PRSizEike IMDEA 17-7-17

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
main idea

Already present in some shared-memory
consistency conditions

(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also

possible

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

IIIIIIIIII
oooooooooo

Local Linearizability
(Queue) example

IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

t1-induced history,
linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

t1-induced history,
linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

IIIIIIIIII
fSA R

Local Linearizability
(queue) definition

IMDEA 17-7-17

Local Linearizability
(queue) definition

Queue signature Y = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

Ana Sokolova PRSiEzsiks IMDEA 17-7-17

Local Linearizability
(queue) definition

Queue signature > = {enqg(x) | x e V} u

{deq(x) | x € V} u

{deqg(empty)}

IMDEA 17-7-17

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Where do we stand?

ova PUSaTeuee IMDEA 17-7-17

Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency

Ana Sokolova PRSizEike IMDEA 17-7-17

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'*\ Sequential Consistency

Ana Sokolova PRSizEike IMDEA 17-7-17

Properties

Ana Sokolova PRSizEike IMDEA 17-7-17

Properties

Local linearizability is compositional

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

Local linearizability is modular /
‘decompositional”

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller

Local linearizability is modular / histories, by definition
‘decompositional”

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller

Local linearizability is modular /
‘decompositional”

histories, by definition

may allow for modular verification

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Generic Implementations

Ana Sokolova PRSizEike IMDEA 17-7-17

Generic Implementations

Your favorite linearizable data structure implementation

Ana Sokolova PRSizEike IMDEA |7-7-17

Generic Implementations

Your favorite linearizable data structure implementation

Ana Sokolova PRSizEike IMDEA 17-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

Ana Sokolova PRrsiZsurs IMDEA 17-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

Ana Sokolova PRSizEike IMDEA 17-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

IIIIIIIIII

Ana Sokolova PRsAEzEurs

IMDEA 17-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

local inserts / global (randomly distributed) removes

Ana Sokolova PRSizEike IMDEA |7-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

local inserts / global (randomly distributed) removes

Ana Sokolova PRSizEike IMDEA |7-7-17

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

LL+D ® local inserts / global (randomly distributed) removes

(also pool
Ana Sokolova Pz |inearizab|e) IMDEA 17-7-17

million operations per sec (more is better)

Ana Sokolova

26 |

Performance

24 +
22 +
20 +
18 +
16 +
14 +
12 +
10 +

Lt
AR et
. -
e
ols
-
e -
7
.
Dt .
B
IS g0t
P et
PSS -
L 25 N
e - - -
{257 D o
?-/.,._____ ___X _____
Py ol I N X
- X
.7, A
PSS h
T
¢");/
R
Pt
N2
Py~
>
s

-'/"
=

S D B N X
|

UNIVERSITY
of SALZBURG

number of threads

LLD LCRQ :-- -
LLD k-FIFO -

80

I-RADQ i--@-—

(a) Queues, LL queues, and “queue-like” pools

IMDEA 17-7-17

million operations per sec (more is better)

Ana Sokolova

26 T
24 |
22t
20T LL+D MS
s | + queue
16 L performs
14 L /ﬁ " significantly better
12 L e o than
10 | Q,E:ffi“"/ MS queue
8 B X
6 L B e e S
; _ /ﬁ”/ |
L |
o =7 B I— I — E—— e fooeeonoe- o . +
2 10 20 30 40 50 60 70 80
number of threads
O I-RADQ - -@ -
LLD LCRQ :----A----:
LLD k-FIFO -4
(a) Queues, LL queues, and “queue-like” pools
S IMDEA 17-7-17

26 -
24 +
22 +
20 +
18 +

* -
PR .t
> - ..
. -
. .
LR
., .
.%o .
" .
% et
. .
— el P
. =t
PR P
-
e
‘e
Pals
.
PR
PRSRS

="
—:, _////
- Rt-1a
12 | -/
',‘/hﬁ///
LAt
Lenile
PR i
10 |
e
B errorms
o
- 0

I i’/ _____ O S X | significantly better
.) than
[®

million operations per sec (more is better)

S N B~ O\
|
N

number of threads

Sk O SEL 1—RA DQ PR ® - 5
LLD LCRQ :--kooes
LLD k-FIFO -4

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRrsiZsurs IMDEA 17-7-17

26 ,
24 | g
e
Q

.
Phd "
- "
_
ot
.
e e =
‘G’ ST
-~
_ 4
PR - -
-
v—' -
.

PSc
—‘ - -
et Ditia
|- (% Pictas -
P
- /‘-/
.- PR
»‘4'
* .
1 “'
4 .
L.
PRSEE
.t
" . B cd
By
-~
" D
12 — s 2 - —
"«://

.
7
-
- e -
Wt —
B
Dt .
Pyt
e
z .
D¢ 9
s
.
e -

-'/‘-
=

- LL+D MS
=i queue
i B I— B it . fonmmmnee- . 4 performs better

2 10 20 30 40 50 60 than
the best known

oJole]lS

million operations per sec (more is better)

S NNV B~ O ©
|
)

number of threads

R A 1-RA DQ f—ee—-
LLD LCRQ :----A--o-s
LLD k-FIFO ----A----

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRrsiZsurs IMDEA 17-7-17

and many thanks to
my dear coauthors

UNVERSITY Cf

Andreas Holzer G(_)\,-Sle

Ali Sezgin G

= UXIVERETY O

& TORONTO

Michael Lippautz

Hannes Payer
Google

Andreas Haas G(,)\,‘Sle

Tom Henzinger

I‘ST AUSTRIA

Helmut Veith

Christoph Kirsch

UNIVERSITY
of SALZBURG

