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Concurrent Data Structures:
Correctness and Performance

Ana Sokolova PRSizEike IMDEA 17-7-17



Semantics of concurrent
data structures

Ana Sokolova PRSizEike IMDEA 17-7-17



Semantics of concurrent
data structures

e.g. pools, queues, stacks

Ana Sokolova PRrsiZsurs IMDEA 17-7-17



Semantics of concurrent
data structures

t1: -enq(2) -deq(1)
. e.g. pools, queues, stacks
i deq(2)

Ana Sokolova PRrsiZsurs IMDEA 17-7-17



Semantics of concurrent
data structures

t1: -enq(Z) -deq(1)
. e.g. pools, queues, stacks
5 deq(2)

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRrsiZsurs IMDEA 17-7-17



Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence

eng(1)enqg(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRrsiZsurs IMDEA 17-7-17



Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

e.g. the concurrent history above is a

linearizable queue concurrent history
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Consistency conditions

Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]
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sequence that preserves . . -
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per-thread precedence
(program order)
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Performance and scalabillity

-)))

throughput ._)

# of threads / cores

Ana Sokolova PRSizEike IMDEA 17-7-17



Relaxations allow trading

correctness
for
performance

Ana Sokolova PRSizEike IMDEA 17-7-17



Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations
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Relaxing the semantics

NOt
“sequentially
correct”

Quantitative relaxations
POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
CONCUR16

for queues/stacks only

(feel free to ask for more)
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Relaxing
the
sequential
specification

relaxations
REORELS)
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Goal

e trade correctness for performance

¢ in a controlled way with quantitative bounds

measure the

error from correct
behaviour
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Stack - incorrect behavior
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Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?
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HOwW can relaxing
help”?

top Rl\ thread 1
l thread 2

thread n K {
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What we have

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances
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The big picture

sequential specification

> - methods with arguments

Ana Sokolova PRrsiZsurs IMDEA 17-7-17



The big picture

seguential specification

relaxed sequential specification

> - methods with arguments
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Syntactic distances do
not nelp

push(a)[push(@)pop(i)]*push(b)[push()pop()]™pop(a)
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Is a 1-out-of-order stack sequence
top top
top ,lﬁ !
} b b |
() - ) - o
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Syntactic distances do

not nelp
/\/\

push(a)[push(@)pop(i)]*push(b)[push()pop()]™pop(a)

Is a 1-out-of-order stack sequence
top top
top )

|
l (o) (s
&) - @ -

its permutation distance is min(2n,2m)
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Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

e TwO sequences in S are equivalent iff they have an indistinguishable future
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Semantic distances
need a notion of state

e States are equivalence classes of sequences in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

e TwO sequences in S are equivalent iff they have an indistinguishable future

b et S AR S T O SV =SSR R S )
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Semantics goes
operational

S € 2* is the sequential specification

m labels Initial state

LTS(S) = (S/=, 2, =, [e]-) with

transition relation

[s]le > [sm]: < smeS
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1he relaxation
framework

o Start from LTS(S)
e Add transitions with transition costs

e Fix a path cost function
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C
o Start from LTS(S) >

® — 0 — o

l\_'\;‘—»‘
ey I
e __— .0 — 0
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e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17



1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

Ana Sokolova PRSizEike IMDEA 17-7-17



1he relaxation
framework

o Start from LTS(S)

e Add transitions with transition costs

e Fix a path cost function

- minimal cost on all paths labelled by the sequence
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Generic out-of-order

Where v is a sequence of minimal length s.t.

removing v enables a transition

inserting v enables a transition

goes with different path costs
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Ana Sokolova

Out-of-order stack

Sequence of push’s with no matching pop

e Canonical representative of a state

e Add incorrect transitions with segment-costs

top
\

— top
pop(a) |

— >

Q

o
N
(o)

0
(=3

——— ——

e Possible path cost functions max, sum,... also more advanced

UNIVERSITY
of SALZBURG
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Relaxing
the
Consistency
Condition
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Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)
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Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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not linearizable
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e
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Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable
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Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency
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Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'\*\ Sequential Consistency
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller

Local linearizability is modular / histories, by definition
‘decompositional”
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller

Local linearizability is modular /
‘decompositional”

histories, by definition

may allow for modular verification
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turns into a locally linearizable implementation by:

segment of possibly
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Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

LL+D ® local inserts / global (randomly distributed) removes

(also pool
Ana Sokolova Pz |inearizab|e) IMDEA 17-7-17
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million operations per sec (more is better)
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