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Labelled transition systems

LTS is a pair (S,a : S — PS4)
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LTS is a pair (S,a : S — PS4)
A - a fixed set of actions

Hence a coalgebra
(S,ay, a: S — FS

of the functor F = P4
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Labelled transition systems

LTS is a pair (S,a : S — PS4)
A - a fixed set of actions

Example:
b So— % .5y
S / x b
1 S5 S6
x .

Note: P4 = P(A x T)
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Concrete bisimulation for LTS

(S,a), (T, 0) - LTS

R C S xT'Is a concrete bisimulation
if forall (s,t) € Randalla € A
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Concrete bisimulation for LTS

(S,a), (T, 0) - LTS

R C S xT'Is a concrete bisimulation
if forall (s,t) € Randalla € A

s 5 s =3NS, (st € Rand
t St = (3s)s = &, (s, t'Y € R

s ~ t - there exists a concrete bisimulation
R with (s,t) € R
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Coalgebraic bisimulation

A bisimulation between two F-coalgebras (5, a)
and (7', 3) is a relation

RCSxT

such that there exists an F-coalgebra structure
~ on R making
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Coalgebraic bisimulation

A bisimulation between two F-coalgebras (S, a)
and (7', 3) is a relation

RCSxT

such that there exists an F-coalgebra structure
~ on R making

™ 2

S R T

Q y I}
flsﬂflRﬂ;flT
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Concrete vs coalgebraic (LTS)
<S7 &>’ <T7 ﬁ> - LTS
(coalgebras of type F = P4)

R C S x T - bisimulation between
(S, ) and (T, §)
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Concrete vs coalgebraic (LTS)

<Sv O‘>1 <T7 ﬁ> - LTS
(coalgebras of type F = P4)

R C S x T - bisimulation between
(S, ) and (T, 5)

s ~ t - there exists a bisimulation
R with sRt

known: s~ tifandonly if s ~ ¢
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Introduction of probabilities

There are many ways to do it ...

Examples:
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Introduction of probabilities

There are many ways to do it ...

Examples:
SN
| 7N,
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Introduction of probabillities

There are many ways to do it ...

13 types of systems - from the literature
with (or without):

« action labels

* nondeterminism

 probabilities
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EXisting system types

MG
PZ
Alt Seg
SSeg Var
Str React NA Gen

MC DA

Bun
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System types

The (probabilistic) models of systems we
consider are coalgebras

(S,a), a: S — FS

for a functor F built by the following syntax
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System types

The (probabillistic) models of systems we
consider are coalgebras

(S,a), a: 85— FS

for a functor F built by the following syntax

Fu=A|T|P|D,|F+F|FxF|F* | FF
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Reactive and generative systems

A
evolve from LTS - functor P = P (Ax 1)

Hierarchy — p.10/31



Reactive and generative systems

A
evolve from LTS - functor @ = @(A x T)

Reactive systems
functor (D,, + 1)*
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Reactive and generative systems

A
evolve from LTS - functor @ = @(A x T)

Reactive systems
functor (D, + 1)*

Generative systems
functor (D, + 1)(AXZ) =D, (AXxT)+1

note:
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Reactive and generative systems

A
evolve from LTS - functor @ = @(A x T)

Reactive systems - input type
functor (D, + 1)*

Generative systems - output type
functor (D, + 1)(AXZ) =D, (AXxT)+1

note:
In the probabillistic case

(D, + DA 2D (AXT)+1
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Reactive and generative systems

Example:
o o
: )
a L ( a 1 ) b 1
y a[eg]w\ y a[ei] )
0 0
® ® ® ® ® ®
. . ) .
) , ) ,
b[1] ¢ o all] c[1]¢ Gel1]
é 5 é é
o o o o

Reactive system Generative system
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Bisimulation - generative systems

(S,a), (T, 3) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith u = a(s), v = 5(t)
and every component C' of R:

u(a, C) = v(a, C)
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Bisimulation - generative systems

(S,a), (T, 3) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith u = a(s), v = 5(t)
and every component C' of R:

u(a, C) = v(a, C)

Z M(av S/) = V(CL, t/)

s'em (C) t'emy(C)
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(S,a), (T, 3) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith u = a(s), v = 5(t)
and every component C' of R:

u(a, C) = v(a, C)

s ~ t - there exists a concrete bisimulation
R with (s,t) € R
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Bisimulation - generative systems

(S,a), (T, ) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith y = «a(s), v = ((t)
and every component C' of R:

M(aa C) — V(CL, C)

s ~ t - there exists a concrete bisimulation
R with (s,t) € R

Property:

s~tifandonlyifs~t
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Systems with distinction of states

Alternating systems - functor D, + P(A x 7)
Vardi systems - functor D,,(A x Z) + P(A x 1)
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Systems with distinction of states

Alternating systems - functor D, + P(A x 7)
Vardi systems - functor D,,(A x Z) + P(A x 1)
Example:

AR Y
o/ \<> o/ O
4 S A B

Alternating system Vardi system
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Structured transition function
Segala systems - functor PD,,(A x 7)
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Structured transition function
Segala systems - functor PD,,(A x 7)
Example:

VN

RS TT TN
o o o

WIN
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Structured transition function
Segala systems - functor PD,(A x T)
simple Segala systems - functor P(A x D)
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D)
Example:

SN,
é

N
® [

OS]\

\\

\\\QIOJ
=

Wl
2
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Structured transition function
Segala systems - functor @W(A x T)
simple Segala systems - functor P(A x D)
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D,,)
Bundle systems - functor D, P(A x 1)
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Structured transition function
Segala systems - functor PD,(A x T)
simple Segala systems - functor P(A x D,,)

Bundle systems - functor D, P (A x T)

Example:
SR
AN N
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Structured transition function
Segala systems - functor PD,(A x T)
simple Segala systems - functor P(A x D,,)
Bundle systems - functor D, P(A x 1)

Simple Segala system L Bundle system

2N, SN

)

[ %2 1% gg‘\i ® o %i\ o G&Y o
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Complicated system types

Pnueli-Zuck systems - functor PD,P(A x I)

Example:
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Complicated system types

Pnueli-Zuck systems - functor PD,P(A x T)
most general systems - functor PD,P(A x T+71)

Example:
/\ /\
ST iy

V4N l\ V4 B A

Pnueh Zuck system most general system

N[OV
/lw
N [GV)
//o/ollw

W=
W=

\w

S
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An Intuitive translation

simple Segala system — Segala system
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An Intuitive translation

simple Segala system — Segala system
® ®

g l
1 N P alp1] o alpy]
I T Uy R
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An Intuitive translation

simple Segala system —

o
a:S — P(AxD,S)
as) = {(a; ps) | 1 € I}

Segala system

l
alpi] 4P
o z/./[f/z[m] “\:\\x
(5, )
o S — PD,(AXS)
o/(s) = {0 - i | i € 1}

where (p - p')(z,2") = p(x) - p'(2)

and ¢,(b)

1 1fa=05b,
0 otherwise.
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An Intuitive translation

simple Segala system — Segala system

d |
P1 \X\,\pn
/2/;2 haSN
® ® e S

When do we consider one type of systems more
expressive than another?

N

a[pl] \\\q [pn]
il
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Expressiveness

When do we consider one type of system more
expressive than another?
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Expressiveness

When do we consider one type of system more
expressive than another?

Example:

LTS (functor: P(A x 7))
are clearly less expressive than
Alternating Systems (functor: D, + P(A x 1)):

Any LTS can be viewed as an Alternating System

that never uses the option to do a probabillistic
step.
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Expressiveness (2)

Our approach:

Systems of type F are at most as expressive as
systems of type G, If there is a mapping

7T : Coalgr — Coalgg
with
(S, a) <S Q)
that preserves and reflects bisimilarity:

S(S,a) ~ UT.B) = ST(S,a) ~ LT(TB)
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Translation of coalgebras

Note that in the LTS vs. Alternating Systems
example there exists a natural transformation

b P(AXT) = Dy +P(A x I).

Hierarchy — p.19/31



Translation of coalgebras

Note that in the LTS vs. Alternating Systems
example there exists a natural transformation

b P(AXT) = Dy +P(A x I).

Generally, a natural transformation 7 : 7 = G
gives rise to a translation of coalgebras
7. : Coalgy — Coalg; as follows:

S f
a I FS
Vs

FS GgS
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Preservation of bisimulations
The translation 7. preserves bisimulations:
A bisimulation R C S x T' between
(5, a) and (T, 5)

1 )

S R T

a o 3
]—"lSﬂ]:lRﬂflT
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Preservation of bisimulations
The translation 7. preserves bisimulations:
A bisimulation R C S x T' between
(5, a) and (T, 5)

1 2

S R T
L T
FS<™FR-">FT
TSl nat. = 7 nat. 7 \LTT

QS?MQRQ—W;QT

IS a bisimulation between
7.(S, oy and 7.(T, 3) as well.
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Reflection of bisimilarity

But: 7, need not reflect bisimilarity.

Example:
Let 7 be the natural transformation

supp: D, +1=7P

that forgets the probabillities.
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Reflection of bisimilarity

But: 7, need not reflect bisimilarity.

Example:
Let 7 be the natural transformation

supp: D, +1=7P

VAN A

that forgets the probabillities.
T, 7. o

1

i

| |

pid o
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Assumption: Injectivity

Observation:
the components of supp are not injective.
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.

Note that It Is not a necessary condition.
Counter-example:
supp: D, = P
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.

Note that It Is not a necessary condition.
Counter-example:
supp : D, = P

... although intuitive, sufficiency proof is not
Immediate...
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Cocongruences

A cocongruence between two F-coalgebras
(S,a) and (T, 3) is a cospan

(Q,q1:5—=Q,¢:T — Q)

such that there exists a F-coalgebra structure
~v on () making the diagram below commute.

S d1 Q q2 T

A

fS?ql}-@?qQ}_T
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Behavioural equivalence

Two states s and ¢ in two F-coalgebras
(S,a) and (T, 3) respectively

are called behavioural equivalent if they are
identified by some cocongruence.
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Behavioural equivalence

Two states s and ¢ In two F-coalgebras
(S,a) and (T, 3) respectively

are called behavioural equivalent if they are
identified by some cocongruence.

Result:
If all components of the natural transformation

T F=(

are injective, then 7. reflects behavioural
equivalence.
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Bisimularity vs. beh. equivalence

« Generally, bisimilarity implies behavioural
equivalence.
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« Generally, bisimilarity implies behavioural
equivalence.

« If the functor F preserves weak pullbacks,
then behavioural equivalence implies
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= both notions coincide.
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Bisimularity vs. beh. equivalence

« Generally, bisimilarity implies behavioural
equivalence.

« If the functor F preserves weak pullbacks,
then behavioural equivalence implies
bisimilarity.
= both notions coincide.

Corollary:
If F preserves weak pullbacks and all

components of 7 : 7 = G are Injective,
then 7. reflects bisimilarity.
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Need of w.p. preservation

The corollary is not valid without assuming
that F preserves weak pullbacks.

Counter-example:
Consider the functors

FX = {{z,y,2) € X° | |[{z,y, 2}| < 2}
and
GX = X°

and let 7 : F = ¢ be the set inclusion.
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Weak pullback preservation here

 The functors A, 7, P, and D,
preserve weak pullbacks.
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Weak pullback preservation here

 The functors A, 7, P, and D,
preserve weak pullbacks.

« If 7 and G preserve weak pullbacks,
sodo F+ G, F x G, F¢, and FG.
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Weak pullback preservation here

 The functors A, Z, P, and D,
preserve weak pullbacks.

« If 7 and G preserve weak pullbacks,
sodo F+G, Fx@G,F¢ and FG.

= All functors used to define the different

probabilistic system types preserve weak
pullbacks.
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= P with nx(x):= 0,
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Some basic transformations

Examples of natural transformations with
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y:F=F+Gand. :G=F+G,
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y:F=F+Gand. :G=F+G,

c o+ : F+G=F +G for
¢:F=F and vy : G = G’ (both with i.c.),

* k:AXP=P(A xI)with
kx(a, M) :={{a,z) |z € M},
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y:F=F+Gand. :G=F+G,

c o+ : F+G=F +G for
¢:F=F and vy : G = G’ (both with i.c.),

* k:AXP=P(A xI)with
kx(a, M) :={{a,z) |z € M},
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One expressiveness statement

To show for instance that
Generative systems

(functor: 7 :=D, (A xXZI)+1)

are at most as expressive as
Vardi systems
(functor: G :=D, (A XZI)+P(AXT))

we employ the natural transformation

D, AxZ)+nAxTI): F=4G.
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The hierarchy of system types

/ N

/SSe \ /V(ar\
f X

MC DA



Conclusion

 Various probabilistic system types were
compared
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Conclusion

 Various probabilistic system types were
compared

« The coalgebraic approach proved useful for:
* providing a uniform framework
* a general notion of bisimulation
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Conclusion

 Various probabilistic system types were
compared
« The coalgebraic approach proved useful for:
* providing a uniform framework
* a general notion of bisimulation
* proving a comparison result
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