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Labelled transition systems

LTS is a pair (S,a : S — PS4)
A - a fixed set of actions
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LTS is a pair (S,a : S — PS4)
A - a fixed set of actions

Hence a coalgebra
(S,ay, a: 8 — FS

of the functor F = P4
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LTS is a pair (S,a : S — PS4)
A - a fixed set of actions
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Labelled transition systems

LTS is a pair (S,a : S — PS4)
A - a fixed set of actions

Example:
b So— % .5y
S / x b
1 S5 S6
x .

Note: P4 = P(A x T)
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Concrete bisimulation for LTS

(S,a), (T, B) - LTS

R C S xT'Is a concrete bisimulation
if forall (s,t) € Randalla € A

s 5 s =3NS, (st € Rand
t St = (3s)s = &, (s, t'Y € R

s ~ t - there exists a concrete bisimulation
R with (s,t) € R
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Coalgebraic bisimulation

A bisimulation between two F-coalgebras (5, a)
and (7, ) is a span

(R,r1: R— S,r9: R—T)

such that there exists a F-coalgebra structure
~ on R making
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Coalgebraic bisimulation

A bisimulation between two F-coalgebras (5, a)
and (7, ) is a span

(R,r1: R— S,r9: R—T)

such that there exists a F-coalgebra structure
~ on R making

1 ()

S R T

Q 9 15}
]JSQJJRQJJT
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Concrete vs coalgebraic (LTS)

(S,a), (T, B) - LTS
(coalgebras of type F = P4)

(R,m1 : R — S 19 : R — T') - bisimulation
between (S, «) and (T, 3)
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<Sv &>1 <T7 ﬁ> - LTS
(coalgebras of type F = P4)

(R,m1 : R — S 19 : R — T') - bisimulation
between (S, «) and (T, 3)

sRt - there exists u with r1(u) = s, ro(u) =t

s ~ t - there exists a bisimulation
(R,r1: R— S,r9 : R — T) with sRt
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Concrete vs coalgebraic (LTS)

<Sv &>1 <T7 ﬁ> - LTS
(coalgebras of type F = P4)

(R,m1 : R — S 19 : R — T') - bisimulation
between (S, «) and (T, 3)

sRt - there exists u with r1(u) = s, r9(u) =t
s ~ t - there exists a bisimulation
(R,r1: R— S,r9 : R — T) with sRt

known: s~ tifandonly if s ~ ¢
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There are many ways to do it ...
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Introduction of probabilities

There are many ways to do it ...

Examples:

N
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Introduction of probabillities

There are many ways to do it ...

13 types of systems - from the literature
with (or without):

« action labels

* nondeterminism

 probabilities
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System types

The (probabilistic) models of systems we
consider are coalgebras

(S,a), a: S — FS

for a functor F built by the following syntax
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System types

The (probabilistic) models of systems we
consider are coalgebras

(S,a), a: 5 — FS

for a functor F built by the following syntax

Fu=C|IT|P|D,|F+F|FxF|F|FF
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Reactive and generative systems

A
evolve from LTS - functor P = P (Ax 1)
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Reactive and generative systems

A
evolve from LTS - functor @ = @(A x T)

Reactive systems
functor (D, + 1)*

Generative systems
functor (D, + 1) (AXZ) =D, (AXxT)+1

note:
In the probabillistic case

(D, + DA 2D (AXTI)+1
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Reactive and generative systems

A
evolve from LTS - functor @ = @(A x T)

Reactive systems - input type
functor (D, + 1)*

Generative systems - output type
functor (D, + 1)(AXZ) =D, (AxT)+1

note:
In the probabillistic case

(D, + DA 2D (AXTI)+1
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Reactive and generative systems

Example:
o o
ali] 2 b[1] als] o) b[5]
o o o o o o
b[1] al1] c[1] c[1]
o o o o

Reactive system Generative system
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Bisimulation - generative systems

(S,a), (T, ) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith = a(s), v = B(t)
and every component C' of R:

u(a, C) = v(a, C)
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Bisimulation - generative systems
(S,a), (T, ) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith = a(s), v = B(t)
and every component C' of R:

,LL(CL, O) — V(CL, O)

Z ,u a,s') v(a,t)

s'em (C t'emy(C)
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Bisimulation - generative systems

(S,a), (T, ) - generative systems

R C S x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith u = a(s), v = 5(t)
and every component C' of R:

u(a, C) = v(a, C)

s ~ t - there exists a concrete bisimulation
R with (s,t) € R
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Bisimulation - generative systems

Example:
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Bisimulation - generative systems

(S,a), (T, ) - generative systems

R C S5 x T'Is a concrete bisimulation if for all
a € A, forall (s,t) € Rwith y = af(s), v = ((t)
and every component C' of R:

p(a,C) = v(a,C)

s ~ t - there exists a concrete bisimulation
R with (s,t) € R

Property:

s~tifandonlyifs~t
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Systems with distinction of states

Alternating systems - functor D, + P(A x T)
Vardi systems - functor D,,(A x Z) + P(A x 1)
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Systems with distinction of states

Alternating systems - functor D, + P(A x T)
Vardi systems - functor D,,(A x Z) + P(A x 1)
Example:

AN
N / \
SN b
Alternating system Vardi system

HkIOJ

]

N —
DN —
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Structured transition function
Segala systems - functor PD,,(A x 7)
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D)
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Structured transition function
Segala systems - functor PD,,(A x 7)

simple Segala systems - functor P(A x D)

Example:

:L/a
i1

N
N

N
i

W
wIiIN
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Structured transition function
Segala systems - functor @w(A x T)
simple Segala systems - functor P(A x D)
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D)
Bundle systems - functor D, P (A x 1)
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D)

Bundle systems - functor D, P (A x 7T)
Example:

N
AN e\
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Structured transition function
Segala systems - functor PD,,(A x 7)
simple Segala systems - functor P(A x D)
Bundle systems - functor D,P(A x I)

Simple Segala system L Bundle system

SN, N
| o] VNN

3
4

=

Wl
WD
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An Intuitive translation

simple Segala system — Segala system

Hierarchy — p.14/3(
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An Intuitive translation

simple Segala system —

a(s) = {(ai p) | i € I}

Segala system

pi(ai, 8') = pi(s')
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Complicated system types

Pnueli-Zuck systems - functor PD,P(A x 1)

Example:

oo e g\



Complicated system types

Pnueli-Zuck systems - functor PD,P(A x T)
most general systems - functor PD,P(A x T+71)

Example:

/lb g l l\ /i o

® o ® o 0
Pnueli-Zuck system most general system



Expressiveness

When do we consider one type of system more
expressive than another?
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Expressiveness

When do we consider one type of system more
expressive than another?

Example:

LTS (functor: P(A x 7))
are clearly less expressive than
Alternating Systems (functor: D, + P(A x 1)):

Any LTS can be viewed as an Alternating System

that never uses the option to do a probabillistic
step.
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Expressiveness (2)

Our approach:

Systems of type F are at most as expressive as
systems of type G, If there is a mapping

7T : Coalgr — Coalgg
with
(S, a) <S )
that preserves and reflects bisimilarity:

S(S,a) ~ UT.B) = ST(S,a) ~ lT(TB)
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Translation of coalgebras

Note that in the LTS vs. Alternating Systems
example there exists a natural transformation

L P(AXT) = Dy +P(A x I).
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Translation of coalgebras

Note that in the LTS vs. Alternating Systems
example there exists a natural transformation

L P(AXT) = Dy +P(A x I).

Generally, a natural transformation 7 : 7 = G
gives rise to a translation of coalgebras
7 : Coalgr — Coalg; as follows:

S f
a I FS
Vs

FS GgS
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Preservation of bisimulations
The translation 7. preserves bisimulations:
A bisimulation (R, r,75) between
(5, a) and (T, 5

1 T2

S R T

a o 3
]JS&]-JR&]JT
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Preservation of bisimulations
The translation 7. preserves bisimulations:
A bisimulation (R, r,75) between
(5, a) and (T, 5

1 T2

S R T
O‘l Frq l7 Fro lﬁ
FS=—FR—FT
TSl nat. 7 T\Eﬁ? nat. 7 lTT

QSWQRWQT

IS a bisimulation between
7.(S,ay and 7.(T, 3) as well.

Hierarchy — p.19/3(



Reflection of bisimilarity

But: 7, need not reflect bisimilarity.

Example:
Let 7 be the natural transformation

supp: D, +1="7P

that forgets the probabillities.
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Reflection of bisimilarity

But: 7, need not reflect bisimilarity.

Example:
Let 7 be the natural transformation

supp: D, +1="7P

VAN A

that forgets the probabillities.
T, 7. o

1

i

| |

pid o
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Assumption: Injectivity

Observation:
the components of supp are not injective.
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.

Note that It Is not a necessary condition.
Counter-example:
supp: D, = P
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Assumption: Injectivity

Observation:
the components of supp are not injective.

= to obtain reflection of bisimilarity we assume
that 7 Is componentwise injective.

Note that It Is not a necessary condition.
Counter-example:

supp

Ont
com

: D, =P

ne other hand, although intuitively
ponentwise injectivity should be a sufficient

conc

ition for reflection of bisimilarity,

a proof is not immediate.
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Cocongruences

A cocongruence between two F-coalgebras
(S,a) and (T, 3) is a cospan

(Q,q1:5—=Q,¢:T — Q)

such that there exists a F-coalgebra structure
~v on () making the diagram below commute.

S d1 Q q2 T

A

fS]_-—qf]:Q?qQ}_T
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Behavioural equivalence

Two states s and ¢ in two F-coalgebras
(S,ay and (T, 3) respectively

are called behavioural equivalent if they are
idenitfied by some cocongruence.
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Behavioural equivalence

Two states s and ¢ In two F-coalgebras
(S,a) and (T, 3) respectively

are called behavioural equivalent if they are
idenitfied by some cocongruence.

Result:
If all components of the natural transformation

T F=G

are injective, then 7. reflects behavioural
equivalence.
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Bisimularity vs. beh. equivalence

« Generally, bisimilarity implies behavioural
equivalence.
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« Generally, bisimilarity implies behavioural
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« If the functor F preserves weak pullbacks,
then behavioural equivalence implies
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= both notions coincide.

Hierarchy — p.24/3(



Bisimularity vs. beh. equivalence

« Generally, bisimilarity implies behavioural
equivalence.

« If the functor F preserves weak pullbacks,
then behavioural equivalence implies
bisimilarity.
= both notions coincide.

Corollary:
If F preserves weak pullbacks and all

components of 7 : 7 = G are Injective,
then 7. reflects bisimilarity.
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Need of w.p. preservation

The corollary is not valid without assuming
that F preserves weak pullbacks.

Counter-example:
Consider the functors

FX = {{z,y,2) € X° | |[{z,y, 2}| < 2}
and
GX = X°

and let 7 : F = @ be the set inclusion.
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Weak pullback preservation here

 The functors A, Z, P, and D,
preserve weak pullbacks.
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Weak pullback preservation here

 The functors A, Z, P, and D,
preserve weak pullbacks.

 If 7 and G preserve weak pullbacks,
sodo F+ G, F x G, F¢, and FG.
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Weak pullback preservation here

 The functors A, Z, P, and D,
preserve weak pullbacks.

 If 7 and G preserve weak pullbacks,
sodo F+ G, F x G, F¢, and FG.

= All functors used to define the different

probabilistic system types preserve weak
pullbacks.
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= P with nx(x):= 0,
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y: F=F+Gand. : G = F+G,
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y: F=F+Gand. : G = F+G,

c o+ : F+G=>F +G for
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y: F=F+Gand. : G = F+G,

c o+ : F+G=>F +G for
¢:F=F and vy : G = G’ (both with i.c.),

* k:AXP="P(AxI)with
kx(a, M) :={{a,z) |z € M},
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Some basic transformations

Examples of natural transformations with
Injective components:

e n: 1= Pwith nx(x) := 0,

e 0:7=Pwithox(z):={x},

* 0:7Z =D, with 6x(z) := 9, (Dirac),
e y: F=F+Gand. : G = F+G,

c o+ : F+G=>F +G for
¢:F=F and vy : G = G’ (both with i.c.),

* k:AXP="P(AxI)with
kx(a, M) :={{a,z) |z € M},
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One expressiveness statement

To show for instance that
Generative systems

(functor: F :=D, (A XZ)+1)

are at most as expressive as
Vardi systems
(functor: G :=D, (A XZI)+P(AX1T))

we employ the natural transformation

D,AxZ)+nAxTI): F=G.
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The hierarchy of system types
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Conclusion

 Various probabilistic system types were
compared
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Conclusion

 Various probabilistic system types were
compared

« The coalgebraic approach proved useful for:
* providing a uniform framework
* a general notion of bisimulation
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Conclusion

 Various probabilistic system types were
compared
« The coalgebraic approach proved useful for:
* providing a uniform framework
* a general notion of bisimulation
* proving a comparison result
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