Syntax and Semantics for Nondeterminism and Probability

Ana Sokolova Of SALZBURG

Helmut Veith Workshop, Turracher Höhe, 19.3.19

Joint work with

Ana Sokolova

HVW'I9

Coalgebras

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

Ana Sokolova

Semantics

NFA = LTS + termination

 $X \rightarrow 2 \times (\mathcal{P}X)^{A}$

Are the (top states of the) following systems equivalent?

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence as

 $\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$

$$\operatorname{tr} \colon X \to \mathcal{P}(A^*)$$

Semantics

Are the (top states of the) following systems equivalent?

- different wrt. bisimilarity
- equivalent wrt. trace equivalence as

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

$$\operatorname{tr} \colon X \to \mathcal{D}(A^*)$$

Ana Sokolova

Trace semantics coalgebraically?

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

HVW'I9

 objects satisfying MA $\bigvee a$ $A \xrightarrow{\eta} MA$ $MMA \xrightarrow{\mu} MA$ A $\stackrel{a}{\searrow} \psi a$ $Ma \bigvee$ $\bigvee a$ $MA \xrightarrow{a} A$

morphisms

$$\begin{array}{c|cccc}
MA & & & MB \\
& & & & & \downarrow_b \\
& & & & & B
\end{array}$$

$$MA \xrightarrow{Mh} MB$$

$$a \downarrow \qquad \qquad \downarrow b$$

$$A \xrightarrow{h} B$$

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- Semantics via determinisation is easy for systems / automata with M-effects
- 2. Having a presentation for M gives us syntax

3. Having the syntax makes determinisation natural !

combining nondeterminism and probability becomes easy

Thank You !

HVW'I9

