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I will tell you: 
  

1. Just the absolute basics of coalgebra  

2. (Trace) semantics via determinisation… 

3. …enabled by algebraic structure

Ana Sokolova 

Mathematical framework  
based on category theory   

for state-based  
systems semantics

for 
nondeterministic/ 

probabilistic… 
systems

systems with 
algebraic effects

syntax
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Coalgebras

Uniform framework for dynamic transition systems, based on 
category theory.  

X
cÑ FX generic notion of behavioural equivalence   

(bisimilarity)
«

states

object in the base 
category C

type

functor on the  
base category C 

form a 
category too

CoAlgCpF q

Ana Sokolova HVW’19



Examples
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X
cÑ FX
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systems with 
nondeterminism 

and  
probability
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In general
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X
cÑ FX

with M-effects

with M-effects

Labelled  
Transition 
Systems

with 
observations 

 in O

Systems

X ➝ (MX)A 

a b

Automata

X ➝ O x (MX)A 

ba
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M = PD ???  
for nondeterminism  

and probability

For a monad M
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X
cÑ FX

M = P  
for nondeterminism

M = D  
for probability

Powerset, subsets

Distributions

providing 
algebraic  

effects

NFA

X ➝ 2 x (PX)A 

Rabin PA

X ➝ [0,1] x (D≤1X)A 

Simple PA

X ➝ ? x (PDX)A 

µ : TT ñ T

⌘ : Id ñ T
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For a monad M
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X
cÑ FX

providing 
algebraic  

effects

NFA

X ➝ 2 x (PX)A M = P  
for nondeterminism

Rabin PA

X ➝ [0,1] x (D≤1X)A M = D  
for probability

Simple PA

X ➝ ? x (CX)A 
M = C   

for nondeterminism  
and probability !

Powerset, subsets

Distributions

Convex subsets of  
distributions

µ : TT ñ T

⌘ : Id ñ T
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Semantics
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NFA = LTS + termination

X ➝ 2 x (PX)A 

Are the (top states of the) following systems equivalent?

y1
a ✏✏
y2

b
��

c
��

y3
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✏✏˚ ˚
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a
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a
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b ✏✏

x3
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x4
1 ✏✏

x5
1✏✏˚ ˚

• no, they are not wrt. bisimilarity 
• yes, they are wrt. trace equivalence as

tr : X Ñ PpA˚qtrpx1q “ trpy1q “ tab, acu
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Semantics

Ana Sokolova 

• different wrt. bisimilarity 
• equivalent wrt. trace equivalence as

tr : X Ñ DpA˚q

y1
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c, 18
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6
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8

˙

Rabin PA

X ➝ [0,1] x (D≤1X)A 

Are the (top states of the) following systems equivalent?
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Trace semantics coalgebraically?
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X
cÑ FX

    

(1)  unfold branching + transitions on words 

(2)  trace = bisimilarity after determinisation
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monads !
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Trace semantics coalgebraically
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X
cÑ FX

Two approaches:  

(1)  modelling in a Kleisli category  
  
(2)  modelling in an Eilenberg-Moore category  

we can relate (1) and (2)

Hasuo, 
Jacobs, S.
LMCS ’07

Silva, Bonchi, 
Bonsangue, Rutten 

FSTTCS’10

Jacobs, Silva, S.
JCSS’15

algebras of a monad M
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MX carries 
the free M-

algebra

Traces via determinisation

Ana Sokolova 

X
cÑ FX

trace = bisimilarity after 
            determinisation

Algebras for M

ideally 
we have a 

presentation

Automaton with M-effects

X ➝ O x (MX)A 

Determinisation

MX ➝ O x (MX)A 

O has to 
be an  

M-algebra !

Eilenberg-Moore algebras
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Eilenberg-Moore Algebras

• objects 
 

• morphisms

Ana Sokolova 

abstractly

satisfying

EMpMq

hMA
a✏✏

A
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b✏✏

B

MA
a✏✏

A

MA
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b✏✏

A
h // B

A
a

⌘ // MA
a✏✏

A

MMA
Ma ✏✏

µ // MA
a✏✏

MA
a // A
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Traces via determinisation
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X
cÑ FX

trace = bisimilarity after 
            determinisation Algebras for P

join 
semilattices 
with bottom

NFA
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b // x3 bgg

˚

finite powerset !
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Traces via determinisation
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X
cÑ FX

trace = bisimilarity after 
            determinisation

Algebras for D(≤1)

(positive) 
convex 

algebras
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finitely supported 
(sub)distributions!
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Traces via determinisation

Ana Sokolova 

X
cÑ FX

trace = bisimilarity after 
            determinisation

Algebras for C convex 
semilattices

finitely generated 
convex sets of distr…

Simple PA
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Presentation for C

Ana Sokolova 

X
cÑ FX

Algebras for C convex 
semilattices

finitely generated 
convex sets of distr…

Bonchi, S., 
Vignudelli ‘19
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Figure 1. NPLTS

If � : MX ! M̂X is an epi monad map, then M̂ is a
quotient of M . If it is a mono, then M is a submonad of
M̂ . If it is an iso, the two monads are isomorphic.

2.3. Distributive Laws

Let (M, ⌘, µ) and (M̂, ⌘̂, µ̂) be two monads. A monad
distributive law of M over M̂ is a natural transformation
� : MM̂ ) M̂M that commutes appropriately with the
units and the multiplications of the monads, see Appendix A.

Given a monad distributive law � : MM̂ ) M̂M , we
get a composite monad M̄ = M̂M with unit ⌘̄ = ⌘̂⌘ and
multiplication µ̄ = µ̂µ � M̂�M .

For any monad M on Sets, there exists a distributive
law ◆ : M + 1 ) M(·+ 1) defined as

◆X =
�
MX + 1

[Mil,⌘X+1�ir]
//M(X + 1)

�
. (1)

As a consequence, M(·+ 1) is a monad. Moreover, we
get the following useful property.

Lemma 2. Whenever � : M ) M̂ is a monad map, also
�(·+1): M(·+1) ) M̂(·+1) is a monad map. Injectivity
of � implies injectivity of �(·+ 1).

2.4. Algebraic Theories

With a monad M one associates the Eilenberg-Moore
category EM(M) of M -algebras. Objects of EM(M) are
pairs A = (A, a) of a set A 2 Sets and a map a : MA ! A,
making the first two diagrams below commute.

A
⌘
//MA

a
✏✏

M
2
A

µ
✏✏

Ma
//MA

a
✏✏

MA

a
✏✏

Mh
//MB

b
✏✏

A MA a
// A A

h
// B

A homomorphism from an algebra A = (A, a) to an algebra
B = (B, b) is a map h : A ! B between the underlying sets
making the third diagram above commute.

In this paper we care for both categorical algebra, alge-
bras of a monad, and their presentations in terms of algebraic

theories and their models. An algebraic theory is a pair
(⌃, E) of signature ⌃ (a set of operation symbols) and a set
of equations E (a set of pairs of terms). A (⌃, E)-algebra,
or a model of the algebraic theory (⌃, E) is an algebra
A = (A,⌃A) with carrier set A and a set of operations
⌃A, one for each operation symbol in ⌃, that satisfies the
equations in E. A homomorphism from a (⌃, E)-algebra
A = (A,⌃A) to a (⌃, E)-algebra B = (B,⌃B) is a
function h : A ! B that commutes with the operations, i.e.,
h � fA = fB � h

n for all n-ary f 2 ⌃, and fA, fB its in-
terpretations in A,B, respectively. (⌃, E)-algebras together
with their homomorphisms form a category and a variety.

Definition 3. A presentation of a monad M is an algebraic
theory, (⌃, E) such that the category (variety) of (⌃, E)-
algebras is isomorphic to EM(M).

Given a presentation (⌃, E) of a monad M , M is
isomorphic to the monad M⌃,E of ⌃-terms modulo E-
equations, i.e., there is an isomorphism monad map between
them.

Given a signature ⌃, the free monad T⌃ = T⌃,; of
terms over ⌃ maps a set X to the set of all ⌃-terms with
variables in X , and a map f : X ! Y to the map that maps
a term over X to a term over Y obtained by substitution
according to f . The unit maps a variable X to itself, and
the multiplication is term composition. We have that T⌃,E

is a quotient of T⌃. Moreover, for two sets of equations
E1 ✓ E2 we have that the monad T⌃,E2 is a quotient of
T⌃,E1 .

In the sequel we present several algebraic theories that
give presentations to the monads of interest.

Presenting the monad Pne. Let ⌃N be the signature
consisting of a binary operation �. Let EN be the following
set of axioms.

(x� y)� z
(A)
= x� (y � z)

x� y
(C)
= y � x

x� x
(I)
= x

The algebraic theory (⌃N , EN ) of semilattices provides
a presentation for the monad Pne. We refer to this theory
as the theory of nondeterminism. To avoid confusion later,
it is convenient to fix here the interpretation of � as a join
(rather than a meet) and, thus, to think of the induced order
as x v y iff x+ y = y.

Presenting the monad D. Let ⌃P be the signature consist-
ing of binary operations +p for all p 2 (0, 1). Let EP be
the following set of axioms.

(x+q y) +p z
(Ap)
= x+pq (y + p(1�q)

1�pq

z)

x+p y
(Cp)
= y +1�p x

x+p x
(Ip)
= x

Here, (Ap), (Cp), and (Ip) are the axioms of parametric as-
sociativity, commutativity, and idempotence. The algebraic
theory (⌃P , EP ) of convex algebras, see [23], [24], [25],
[26], [27], provides a presentation for the monad D.

Another presentation of convex algebras is given by the
algebraic theory with infinitely many operations denoting ar-
bitrary (and not only binary) convex combinations (⌃P̂ , EP̂ )
where ⌃P̂ consists of operations

Pn
i=1 pi(·)i for all n 2 N

and (p1, . . . , pn) 2 [0, 1]n such that
Pn

i=1 pi = 1 and EP̂
is the set of the following two axioms.

nX

i=0

pixi
(P )
= xj if pj = 1

nX

i=0

pi

 
mX

j=0

qi,jxj

!
(BC)
=

mX

j=0

 
nX

i=0

piqi,j

!
xj .

Here, (P ) stands for projection, and (BC) for barycentre.
Convex algebras are known under many names: “con-

vex modules” in [28], “positive convex structures” in [25]
(where X is taken to be endowed with the discrete topol-
ogy), “sets with a convex structure” in [23], and barycentric
algebras [29].

Remark 4. Let X be a (⌃P̂ , EP̂ )-algebra. Then (for pn 6= 1
and pn = 1� pn)

nX

i=1

pixi = pn

 
n�1X

j=1

pj

pn
xj

!
+ pnxn. (2)

Hence, an n-ary convex combination can be written as a
binary convex combination using an (n � 1)-ary convex
combination.

One can also see Equation (2) as a definition – the
classical definition of Stone [29, Definition 1]. The following
property, whose proof follows by induction along the lines
of [29, Lemma 1–Lemma 4], gives the connection:

Let X be the carrier of a (⌃P , EP )-algebra. Define
n-ary convex operations inductively by the projection ax-
iom and the formula (2). Then X becomes an algebra in
(⌃P̂ , EP̂ ).

This allows us to interchangeably use binary convex
combinations or arbitrary convex combinations whenever

more convenient. Moreover, we can write binary convex
combinations +p for p 2 [0, 1] and not just p 2 (0, 1).
We refer to the theory of convex algebras as the algebraic
theory for probability.

Presenting +1. The algebraic theory (⌃T , ET ) for the
termination monad consists of a single constant (nullary
operation symbol) ⌃T = {?} and no equations ET = ;.
This is called the theory of pointed sets.

Combining Algebraic Theories. Algebraic theories can be
combined in a number of general ways []: by taking their ref.

miss-
ing

coproduct, their tensor, or by means of distributive laws.
Unfortunately, these abstract constructions do not lead to a
presentation for the monad we are interested in. We will
thus devote the next two sections to show a “hand-made”
presentation for this monad.

We conclude this section with a well known fact that can
be easily proved by several of the aforementioned general
ways: given a presentation (⌃, E) for a monad M , the
monad M(· + 1) is presented by the theory (⌃0

, E) where
⌃0 is ⌃ together with an extra constant ? (see e.g. []). ref.

miss-
ing

For instance, the subdistributions monad D(· + 1) is
presented by the theory (⌃P [ ⌃T , EP ) of pointed convex
algebras, also known as positive convex algebras. The the-
ory (⌃N [⌃T , EN ) of pointed semilattices provides instead
a presentation for the monad Pne(·+ 1). It is interesting to
observe that the powerset monad P is presented by adding
to (⌃N [ ⌃T , EN ) the equation

x� ?
(B)
= x

leading to the theory of semilattices with bottom. The theory
of semilattices with top can be obtained by adding instead
the following equation:

x� ?
(T )
= ?.

It is interesting to observe that similar axioms can be added
to the theory of pointed convex algebras (⌃P [ ⌃T , EP ).
The axiom

x+p ?
(Bp)
= x

makes the probabilistic structure collapse. Indeed,

x+p y
(Bp)
= (x+q ?) +p y

(Ap)
= x+pq (?+ p(1�q)

1�pq

y)

(Bp)
= x+pq y

(Bp)
= x+pq (?+ q(1�p)

1�pq

y)

(Ap)
= (x+p ?) +q y

(Bp)
= x+q y

for all p, q 2 (0, 1). Therefore, this theory also pro-
duces semilattices with bottom. At the monad level, adding
the axioms (Bp) can be seen as the quotient of monads
supp: D(·+1) ) P mapping each sub-distribution into its
support (e.g., (x+p y) +q ? becomes x+ y).

On the other hand, the axiom

x+p ?
(Tp)
= ?

quotients the monad D(· + 1) into D + 1: intuitively, each
term of this theory is either a sum of only variables (a
distribution) or an extra element (?). This axiom describes
the unique functorial way of adding termination to a convex
algebra, the so-called black-hole behaviour of ?, cf. [?].mis.

ref!
3. Algebraic Theory for Nondeterminism and

Probability

In this section we recall the definition of the monad C

for probability and nondeterminism, give its presentation via
convex semilattices, and present examples of C-algebras.

We would like to emphasise that having the presentation
makes finding examples of algebras and working with them
much easier. The presentation result that we show here is to
some extent known2. However, we could not find a proof of
it in the literature and therefore present a proof of our own
which is valuable on its own right.

3.1. The monad C of convex subsets of distributions

The monad C origins in the field of domain theory [11],
[12], [13], and in the work of Varacca and Winskel [4], [10],
[30]. Jacobs [9] gives a detailed study of (a generalization
of) this monad.

Recall that whenever p 2 [0, 1] we set p = 1� p.
For a set X , CX is the set of non-empty, finitely-

generated convex subsets of distributions on X , i.e.,

CX = {S ✓ DX |S 6= ;, conv(S) = S,

S is finitely generated}.
Recall that, for a subset S of a convex algebra, conv(S) is
the convex closure of S, i.e., the smallest convex set that
contains S, i.e.,

conv(S) = {
X

pixi | pi 2 [0, 1],
X

pi = 1, xi 2 S}.

We say that a convex set S is generated by its subset B if
S = conv(B). In such a case we also say that B is a basis
for S. A convex set S is finitely generated if it has a finite
basis.

For a function f : X ! Y , Cf : CX ! CY is given by

Cf(S) = {Df(d) | d 2 S} = Df(S).

The unit of C is ⌘ : X ! CX given by ⌘(x) = {�x}.
The multiplication of C, µ : CCX ! CX can be

expressed in concrete terms as follows [9]. Given a
nonempty finitely generated convex set S of distributions
over nonempty finitely generated convex sets of distributions
over a set X ,

µ(S) =
[

�2S

{
X

U2supp�

�(U) · d | d 2 U}.

2. Personal communication with Gordon Plotkin.

3.2. The presentation of C

We now introduce the algebraic theory (⌃NP , ENP ) of
convex semilattices, that gives us the presentation of C and
thus provides an algebraic theory for nondeterminism and
probability.

A convex semilattice A is an algebra A = (A,�,+p)
with a binary operation � and for each p 2 (0, 1) a binary
operation +p satisfying the axioms (A), (C), (I) of a semi-
lattice, the axioms (Ap), (Cp), (Ip) for a convex algebra,
and the following distributivity axiom:

(x� y) +p z
(D)
= (x+p z)� (y +p z)

Hence, (⌃NP , ENP ) for ⌃NP = ⌃N [ ⌃P and ENP =
EN [ EP [ {(D)}.

In every convex semilattice there also holds a convexity
law, of which we directly present the generalized version in
the following lemma.

Lemma 5. Let A = (A,�,+p) be a convex semilattice.
Then for all n 2 N, all a1, . . . an 2 A and all p1, . . . , pn 2
[0, 1] with

Pn
i=1 pi = 1 we have

a1 � . . .� an �
nX

i=1

piai
(C)
= a1 � . . .� an.

Let X be an arbitrary set. We define ⌃NP -operations on
CX by

S1 � S2 = conv(S1 [ S2)

and for p 2 (0, 1)

S1+pS2 = {' | ' = p'1+p'2 for some '1 2 S1,'2 2 S2}

where p'1 + p'2 = '1 +p '2 is the binary convex com-
bination of '1 and '2 in DX , defined point-wise. Note
that S1 +p S2 is the Minkowski sum of two convex sets.
If convenient, we may sometimes also write, as usual,
pS1 + pS2 for the Minkowski sum S1 +p S2.

To prove the presentation theorem, we identify a generic
proof method that we only present in the appendix for lack
of space. We encourage the reader to read the appendix,
also for many other useful properties that deepen the under-
standing of convex semilattices.

Theorem 6. The theory for nondeterminism and probability
(⌃NP , ENP ), i.e., the theory of convex semilattices, is a
presentation for the monad C.

Remark 7. Having the presentation enables us to identify
and interchangeably use convex subsets of distributions and
terms in ⌃NP modulo equations in ENP . This is particu-
larly useful in examples and our further developments. Note
that in the syntactic view ⌘(x) is identified with the term x.

Remark 8. Varacca and Winskel give a monad for prob-
ability and nondeterminism starting from a similar alge-
braic theory (with somewhat different basic algebraic struc-
ture) [4], [10], [30]. There is also another possible way of

semilattice

convex 
algebra

distributivity

A “ pA,‘,`pq

p P p0, 1q

S., Woracek 
’15, ’17, ‘18
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X
cÑ FX

Three things to take home: 
  

1. Semantics via determinisation  
    is easy for systems / automata with M-effects  

2. Having a presentation for M gives us syntax 

3. Having the syntax makes determinisation natural !

Many general properties  
follow 

also a sound  
up-to context  

proof technique

combining 
nondeterminism  
and probability  
becomes easy Thank You !
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