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Inspired lot of new research: 

• Congruences of convex algebras  
 

• Proper functors 

our axiomatisation is 
complete since a functor 

F* (on positive convex 
algebras) is proper

f.p. = f.g.  
for (positive) 

convex algebras

if f.p. = f.g. and 

then completeness

does not hold

Now
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But also positive convex algebras and two functors for  
WA with weights in positive convex algebras.
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the semiring functor FS “ S ˆ p´qA

If a semiring is proper and effectively representable, 
then equivalence of weighted automata is decidable,  
for finite alphabets.

 Why study proper semirings ?

A semiring is proper iff  the semiring functor on              is.S-SMOD

 Connection: 
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languages… 
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is difficult
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Noetherian 

A coalgebra structure c : X → F SX writes as

c(x) =
#
co(x), (ca(x))a∈A

$
, x ∈ X,

and we use co : X → S and ca : X → X as generic notation for the components
of the map c. More generally, we define cw : X → X for any word w ∈ A∗

inductively as cε = idX and cwa = ca ◦ cw, w ∈ A∗, a ∈ A.

The map from a coalgebra (X, c) into the final F S-coalgebra, the trace map,
is then given as trc(x) =

#
(co ◦ cw)(x)

$
w∈A∗ for x ∈ X. Behavioural equivalence

for cubic functors is the kernel of the trace map.

3 Properness of cubic functors

Our proofs of properness in this section and in Section 6 below start from the
following idea. Let S be a semiring, and assume we are given two F S-coalgebras
which have free finitely generated carrier, say (Sn1 , c1) and (Sn2 , c2). Moreover,
assume x1 ∈ Sn1 and x2 ∈ Sn2 are two elements having the same trace. For
j = 1, 2, let dj : Sn1 × Sn2 → F S(Sn1 × Sn2) be given by

dj(y1, y2) =
%
cjo(yj), ((c1a(y1), c2a(y2)))a∈A

&
.

Denoting by πj : Sn1 ×Sn2 → Snj the canonical projections, both sides of the
following diagram separately commute.

Sn1

c1

""

Sn1 × Sn2
π1## π2 !!

d1

((

d2

))

Sn2

c2

""

∕=

F SSn1 F S(Sn1 × Sn2)
F Sπ1## F Sπ2 !! F SSn2

However, in general the maps d1 and d2 do not coincide.

The next lemma contains a simple observation: there exists a subsemimodule
Z of Sn1 × Sn2 , such that the restrictions of d1 and d2 to Z coincide and turn Z
into an F S-coalgebra.

Lemma 3.1. Let Z be the subsemimodule of Sn1 × Sn2 generated by the pairs
(c1w(x1), c2w(x2)) for w ∈ A∗. Then d1|Z = d2|Z and dj(Z) ⊆ F S(Z).

6

FS “ S ˆ p´qA
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6

The significance of Lemma 3.1 in the present context is that it leads to the

diagram (we denote d = dj |Z)

Sn1

c1

""

Z
π1## π2 !!

d

""

⊆

Sn1× Sn2

Sn2

c2

""

F SSn1 F SZ
F Sπ1## F Sπ2 !!

⊆

S× (Sn1× Sn2)
A

F SSn2

In other words, it leads to the zig-zag in Coalg(F S)

(Sn1 , c1) (Z, d)
π1## π2 !! (Sn2 , c2) (2)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z. If it can be shown that Z is

always finitely generated, it will follow that F S is proper.

Let S be a Noetherian semiring, i.e., such that every S-subsemimodule of

some finitely generated S-semimodule is itself finitely generated. Then Z is, as an

S-subsemimodule of Sn1 ×Sn2 , finitely generated. We reobtain [8, Theorem 4.2].

Corollary 3.2 (Esik–Maletti 2010). Every Noetherian semiring is proper.

Our first main result is Theorem 3.3 below, where we show properness of the

cubic functors F S on S-SMOD, for S being one of the semirings N, Q+, R+, and of

the cubic functor F [0,1] on PCA. The case of FN is known from [2, Theorem 4]
5
,

the case of F [0,1] is stated as an open problem in [16, Example 3.19].

Theorem 3.3. The cubic functors FN, FQ+
, FR+

, and F [0,1] are proper.
In fact, for any two coalgebras with free finitely generated carrier and any two

elements having the same trace, a zig-zag with free and finitely generated nodes
relating those elements can be found, which is a span (has a single intermediate
node with outgoing arrows).

The proof proceeds via relating to the Noetherian case. It always follows the

same scheme, which we now outline. Observe that the ring completion of each of

N, Q+, R+, is Noetherian (for the last two it actually is a field), and that [0, 1]
is the positive part of the unit ball in R.

Step 1. The extension lemma: We use an extension of scalars process to pass

from the given category C to an associated category E-MOD with a Noetherian

ring E. This is a general categorical argument.

5 In [2] only a sketch of the proof is given, cf. [2, §3.3]. In this sketch one important
point is not mentioned. Using the terminology of [2, §3.3]: it could a priori be possible
that the size of the vectors in G and the size of G both oscillate.

7

FS “ S ˆ p´qA
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Corollary 3.2 (Esik–Maletti 2010). Every Noetherian semiring is proper.

Our first main result is Theorem 3.3 below, where we show properness of the

cubic functors F S on S-SMOD, for S being one of the semirings N, Q+, R+, and of

the cubic functor F [0,1] on PCA. The case of FN is known from [2, Theorem 4]
5
,

the case of F [0,1] is stated as an open problem in [16, Example 3.19].

Theorem 3.3. The cubic functors FN, FQ+
, FR+

, and F [0,1] are proper.
In fact, for any two coalgebras with free finitely generated carrier and any two

elements having the same trace, a zig-zag with free and finitely generated nodes
relating those elements can be found, which is a span (has a single intermediate
node with outgoing arrows).

The proof proceeds via relating to the Noetherian case. It always follows the

same scheme, which we now outline. Observe that the ring completion of each of

N, Q+, R+, is Noetherian (for the last two it actually is a field), and that [0, 1]
is the positive part of the unit ball in R.

Step 1. The extension lemma: We use an extension of scalars process to pass

from the given category C to an associated category E-MOD with a Noetherian

ring E. This is a general categorical argument.

5 In [2] only a sketch of the proof is given, cf. [2, §3.3]. In this sketch one important
point is not mentioned. Using the terminology of [2, §3.3]: it could a priori be possible
that the size of the vectors in G and the size of G both oscillate.
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Proposition 3.5 (Extension Lemma). For every F S-coalgebra TSB
c→ F S(TSB)

with free finitely generated carrier TSB for a finite set B, there exists an FE-

coalgebra TEB
c̃→ FE(TEB) with free finitely generated carrier TEB such that

TSB
ιB !!

c ""
TEB

c̃""
F S(TSB)

ι1×(ιB)A !! FE(TEB)

where the horizontal arrows (ιB and ι1 × ιAB) are TS ≤ TE-homomorphisms, and
moreover they both amount to inclusion.

Step 2. The basic diagram: Let n1, n2 ∈ N, let Bj be the nj-element set consisting
of the canonical basis vectors of Enj , and set Xj = TSBj . Assume we are given
F S-coalgebras (X1, c1) and (X2, c2), and elements xj ∈ Xj with trc1 x1 = trc2 x2.

The extension lemma provides FE-coalgebras (Enj , c̃j) with c̃j |Xj = cj .
Clearly, trc̃1 x1 = trc̃2 x2. Using the zig-zag diagram (2) in Coalg(FE) and append-
ing inclusion maps, we obtain what we call the basic diagram. In this diagram
all solid arrows are arrows in E-MOD, and all dotted arrows are arrows in C. The
horizontal dotted arrows denote the inclusion maps, and πj are the restrictions
to Z of the canonical projections.

X1
!!

c1

""

En1

c̃1

""

Z
π1## π2 !!

d

""

⊆

En1× En2

En2

c̃2

""

X2
##

c2

""

F SX1
!! FEEn1 FEZ

F Eπ1## F Eπ2 !!

⊆

E× (En1× En2)A

FEEn2 F SX2
##

Sn1 !!

c1

""

En1

c̃1

""

Z
π1## π2 !!

d

""
⊆

En1× En2

En2

c̃2

""

Sn2##

c2

""

F SSn1 !! FEEn1 FEZ
F Eπ1## F Eπ2 !!

⊆
E× (En1× En2)A

FEEn2 F SSn2##

Commutativity of this diagram yields d
#
π−1
j (Xj)

$
⊆ (FEπj)

−1
#
F SXj) for

j = 1, 2. Now we observe the following properties of cubic functors.
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Lemma 3.6. We have FEX ∩ F SY = F S(X ∩ Y ). Moreover, if Yj ⊆ Xj, then
(FEπ1)

−1(F SY1) ∩ (FEπ2)
−1(F SY2) = F S(Y1 × Y2).

Using this, yields

d
#
Z ∩ (X1 ×X2)

$
⊆FEZ ∩ (FEπ1)

−1
#
F SX1) ∩ (FEπ2)

−1
#
F SX2)

=FEZ ∩ F S(X1 ×X2) = F S
#
Z ∩ (X1 ×X2)

$
.

This shows that Z ∩ (X1 × X2) becomes an F S-coalgebra with the restriction
d|Z∩(X1×X2). Again referring to the basic diagram, we have the following zig-
zag in Coalg(FS) (to shorten notation, denote the restrictions of d,π1,π2 to
Z ∩ (X1 ×X2) again as d,π1,π2):

(X1, c1)
#
Z ∩ (X1 ×X2), d

$π1## π2 !! (X2, c2) (3)

(Sn1 , c1)
#
Z ∩ (Sn1 × Sn2), d

$π1## π2 !! (Sn2 , c2)

This zig-zag relates x1 with x2 since (x1, x2) ∈ Z ∩ (X1 ×X2).

Step 3. The reduction lemma: In view of the zig-zag (3), the proof of Theorem 3.3
can be completed by showing that Z∩(X1×X2) is finitely generated as an algebra
in C. Since Z is a submodule of the finitely generated module En1 ×En2 over the
Noetherian ring E, it is finitely generated as an E-module. The task thus is to
show that being finitely generated is preserved when reducing scalars.

This is done by what we call the reduction lemma. Contrasting the exten-
sion lemma, the reduction lemma is not a general categorical fact, and requires
specific proof in each situation.

Proposition 3.7 (Reduction Lemma). Let n1, n2 ∈ N, let Bj be the set con-
sisting of the nj canonical basis vectors of Enj , and set Xj = TSBj. Moreover,
let Z be an E-submodule of En1 ×En2 . Then Z ∩ (X1 ×X2) is finitely generated
as an algebra in C.

4 A subcubic convex functor

Recall the following definition from [26, p.309].

Definition 4.1. We introduce a functor !F : PCA → PCA.

1. Let X be a PCA. Then

!FX =
'
(o,φ) ∈ [0, 1]×XA |

∃na ∈ N. ∃ pa,j ∈ [0, 1], xa,j ∈ X for j = 1, . . . , na, a ∈ A.

o+
(

a∈A

na(

j=1

pa,j ≤ 1, φ(a) =

na(

j=1

pa,jxa,j

)
.
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Sn1 !!
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""
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c̃1
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Z
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d

""
⊆
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Commutativity of this diagram yields d
#
π−1
j (Xj)

$
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−1
#
F SXj) for

j = 1, 2. Now we observe the following properties of cubic functors.
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Step 1. The extension lemma: We use an extension of scalars process to pass

from the given category C to an associated category E-MOD with a Noetherian

ring E. This is a general categorical argument.

To unify notation, we agree that S may also take the value [0, 1], and that

T[0,1] is the monad of finitely supported subprobability distributions giving rise

to the category PCA.

S N Q+ R+ [0, 1]

E Z Q R R

C N-SMOD (CMON) Q+-SMOD R+-SMOD (CONE) PCA

E-MOD Z-MOD (AB) Q-MOD (Q-VEC) R-MOD (R-VEC) R-MOD (R-VEC)

S N Q+ R+

E Z Q R

S-SMOD N-SMOD (CMON) Q+-SMOD R+-SMOD (CONE)

E-MOD Z-MOD (AB) Q-MOD (Q-VEC) R-MOD (R-VEC)

For the formulation of the extension lemma, recall that the starting category

C is the Eilenberg-Moore category of the monad TS and the target category

E-MOD is the Eilenberg-Moore category of TE. We write ηS and µS for the unit

and multiplication of TS and analogously for TE. We have TS ≤ TE, via the

inclusion monad morphism ι : TS ⇒ TE given by ιX(u) = u, as ηE = ι ◦ ηS

and µE ◦ ιι = ι ◦ µS where ιι
def
= TEι ◦ ι

nat.
= ι ◦ TSι. Recall that a monad

morphism ι : TS → TE defines a functor Mι : Set
TE → Set

TS which maps a TE-
algebra (X,αX) to (X, ιX ◦ αX) and is identity on morphisms. Obviously, Mι

commutes with the forgetful functors US : Set
TS → Set and UE : Set

TE → Set,

i.e., US ◦ Mι = UE.

Definition 3.4. Let (X,αX) ∈ Set
TS and (Y,αY ) ∈ Set

TE where TS and TE are

monads with TS ≤ TE via ι : TS ⇒ TE. A Set-arrow h : X → Y is a TS ≤ TE-
homomorphism from (X,αX) to (Y,αY ) if and only if the following diagram

commutes (in Set)

TSX
ιh !!

αX ""
TEY

αY""
X

h !! Y

where ιh denotes the map ιh
def
= TEh ◦ ιX

nat.
= ιY ◦ TSh. In other words, a

TS ≤ TE-homomorphism from (X,αX) to (Y,αY ) is a morphism in Set
TS from

(X,αX) to M(Y,αY ).

Now we can formulate the extension lemma.

8
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Step 1. The extension lemma: We use an extension of scalars process to pass

from the given category C to an associated category E-MOD with a Noetherian

ring E. This is a general categorical argument.

To unify notation, we agree that S may also take the value [0, 1], and that

T[0,1] is the monad of finitely supported subprobability distributions giving rise
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For the formulation of the extension lemma, recall that the starting category

C is the Eilenberg-Moore category of the monad TS and the target category

E-MOD is the Eilenberg-Moore category of TE. We write ηS and µS for the unit

and multiplication of TS and analogously for TE. We have TS ≤ TE, via the
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algebra (X,αX) to (X, ιX ◦ αX) and is identity on morphisms. Obviously, Mι
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TE where TS and TE are
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Thank You !


