Linearizability via Order Extension Theorems

Ana Sokolova

Dagstuhl, 25.5.2018
• Part I: Concurrent data structures correctness and performance

• Part II: Order extension results for verifying linearizability

via semantic relaxations

structure and power
Concurrent Data Structures
Correctness and Relaxations
Data structures

- Queue FIFO
 - enq
 - f e d c b a
 - deq

- Stack LIFO
 - push
 - x
 - y
 - z
 - pop

- Pool unordered
 - ins
 - k
 - n
 - m
 - j
 - o
 - l
 - rem
Concurrent data structures

- Queue FIFO
- Stack LIFO
- Pool unordered
Semantics of concurrent data structures

- **Sequential specification** = set of legal sequences

 e.g. queues

- **Consistency condition** = e.g. linearizability / sequential consistency

 e.g. queue legal sequence
 enq(1)enq(2)deq(1)deq(2)

 e.g. the concurrent history above is a linearizable queue concurrent history
Consistency conditions

there exists a legal sequence that preserves precedence order

Linearizability [Herlihy, Wing ’90]

\[
t_1: \text{enq}(2) \rightarrow \text{deq}(1) \\
_2: \text{enq}(1) \rightarrow \text{deq}(2)
\]

there exists a legal sequence that preserves per-thread precedence (program order)

Sequential Consistency [Lamport’79]

\[
t_1: \text{enq}(1) \rightarrow \text{deq}(2) \\
_2: \text{deq}(1) \rightarrow \text{enq}(2)
\]

consistency is about extending partial orders to total orders
Performance and scalability

throughput

of threads / cores

Dagstuhl 25.5.18
Relaxations allow trading correctness for performance.
Relaxing the Semantics

- **Sequential specification** = set of legal sequences
- **Consistency condition** = e.g. linearizability / sequential consistency

- Quantitative relaxations
 Henzinger, Kirsch, Payer, Sezgin, S. POPL13

- Local linearizability
 Haas, Henzinger, Holzer, ..., S, Veith CONCUR16
Lead to scalable implementations

e.g. k-FIFO, k-Stack

k-out-of-order queue

locally linearizable distributed implementation

local inserts / global removes

LLD Φ
LL+D Φ
Performance

Figure 8: Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyperthreads per core) machine.

(a) Queues, LL queues, and “queue-like” pools
Performance

![Performance graph](image)

(a) Queues, LL queues, and “queue-like” pools

- MS
- LCRQ
- k-FIFO
- LL+D MS
- LLD LCRQ
- LLD k-FIFO
- 1-RA DQ

LLD \(\Phi\) performs significantly better than \(\Phi\)
Performance

(a) Queues, LL queues, and “queue-like” pools
Linearizability via Order Extension Theorems

foundational results for verifying linearizability

joint work with

Harald Woracek
Inspiration

Queue sequential specification (axiomatic)

- \(s \) is a legal queue sequence

 iff

 1. \(s \) is a legal pool sequence, and
 2. \(\text{enq}(x) <_s \text{enq}(y) \land \text{deq}(y) \in s \implies \text{deq}(x) \in s \land \text{deq}(x) <_s \text{deq}(y) \)

Queue linearizability (axiomatic)

- \(h \) is queue linearizable

 iff

 1. \(h \) is pool linearizable, and
 2. \(\text{enq}(x) <_h \text{enq}(y) \land \text{deq}(y) \in h \implies \text{deq}(x) \in h \land \text{deq}(y) <_h \text{deq}(x) \)

Henzinger, Sezgin, Vafeiadis CONCUR13

As well as

Reducing Linearizability to State Reachability
[Bouajjani, Emmi, Enea, Hamza]
ICALP15 + …
Concurrent Queues

Data independence \Rightarrow verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking $=$ exclusion of "bad patterns"

Value v dequeued without being enqueued
$$\text{deq} \Rightarrow v$$

Value v dequeued before being enqueued
$$\text{deq} \Rightarrow v \quad \text{enq}(v)$$

Value v dequeued
$$\text{deq} \Rightarrow v \quad \text{deq} \Rightarrow v$$

Value v_1 and v_2 dequeued in the wrong order
$$\text{enq}(v_1) \quad \text{enq}(v_2) \quad \text{deq} \Rightarrow v_2 \quad \text{deq} \Rightarrow v_1$$
Concurrent Queues

Data independence \Rightarrow verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking $=$ exclusion of "bad patterns"

- Value v dequeued without being enqueued
 - $\text{deq} \Rightarrow v$

- Value v dequeued before being enqueued
 - $\text{deq} \Rightarrow v$, $\text{enq}(v)$

- Value v dequeued twice
 - $\text{deq} \Rightarrow v$, $\text{deq} \Rightarrow v$

- Value v_1 and v_2 dequeued in the wrong order
 - $\text{enq}(v_1)$, $\text{enq}(v_2)$, $\text{deq} \Rightarrow v_2$, $\text{deq} \Rightarrow v_1$

- Dequeue wrongfully returns empty
 - $\text{deq} \Rightarrow \text{empty}$

- $\text{enq}(v_1)$, $\text{enq}(v_2)$, $\text{deq} \Rightarrow v_1$, $\text{deq} \Rightarrow v_2$, $\text{deq} \Rightarrow v_{n-3}$, $\text{deq} \Rightarrow v_n$
Linearizability verification

Data structure

- signature Σ - set of method calls including data values
- sequential specification $S \subseteq \Sigma^*$, prefix closed

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that $s \in S$ iff s has no violations $P(s) \cap V = \emptyset$

Linearizability verification

Find a set of violations CV such that: every interval order with no CV violations extends to a total order with no V violations.

We build CV iteratively from V
Pool without empty removals

Pool sequential specification (axiomatic)

\(s \) is a legal pool (without empty removals) sequence iff

1. \(\text{rem}(x) \in s \Rightarrow \text{ins}(x) \in s \land \text{ins}(x) <_s \text{rem}(x) \)

Pool linearizability (axiomatic)

\(h \) is pool (without empty removals) linearizable iff

1. \(\text{rem}(x) \in h \Rightarrow \text{ins}(x) \in h \land \text{rem}(x) <_h \text{ins}(x) \)

V violations
\(\text{rem}(x) <_s \text{ins}(x) \)

CV violations
\(= V \text{ violations} \)
Queue without empty removals

Queue sequential specification (axiomatic)

\(s \) is a legal queue (without empty removals) sequence
iff
1. \(\text{deq}(x) \in s \implies \text{enq}(x) \in s \land \text{enq}(x) \less s \text{ deq}(x) \)
2. \(\text{enq}(x) \less s \text{ enq}(y) \land \text{deq}(y) \in s \implies \text{deq}(x) \in s \land \text{deq}(x) \less s \text{ deq}(y) \)

Queue linearizability (axiomatic)

\(h \) is queue (without empty removals) linearizable
iff
1. \(\text{rem}(x) \in h \implies \text{ins}(x) \in h \land \text{rem}(x) \less h \text{ ins}(x) \)
2. \(\text{enq}(x) \less h \text{ enq}(y) \land \text{deq}(y) \in h \implies \text{deq}(x) \in h \land \text{deq}(y) \less h \text{ deq}(x) \)

\(V \) violations
\(\text{deq}(x) \less s \text{ enq}(x) \)
and
\(\text{enq}(x) \less s \text{ enq}(y) \land \text{deq}(y) \less s \text{ deq}(x) \)

\(CV \) violations
\(= V \) violations
Pool sequential specification (axiomatic)

\(s\) is a legal pool (with empty removals) sequence iff

1. \(\text{rem}(x) \in s \Rightarrow \text{ins}(x) \in s \land \text{ins}(x) <_s \text{rem}(x)\)
2. \(\text{rem}(⊥) <_s \text{rem}(x) \Rightarrow \text{rem}(⊥) <_s \text{ins}(x) \land \text{ins}(x) <_s \text{rem}(⊥) \Rightarrow \text{rem}(x) <_s \text{rem}(⊥)\)

Pool linearizability (axiomatic)

\(h\) is pool (with empty removals) linearizable iff

1. \(\text{rem}(x) \in h \Rightarrow \text{ins}(x) \in h \land \text{rem}(x) <_h \text{ins}(x)\)
2. \(\ldots \ldots\)

infinitely many CV violations

\(\text{ins}(x_1) <_h \text{rem}(⊥) \land \text{ins}(x_2) <_h \text{rem}(x_1) \land \ldots \land \text{ins}(x_{n+1}) <_h \text{rem}(x_n) \land \text{rem}(⊥) <_h \text{rem}(x_{n+1})\)
It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue
- Priority queue

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases

Thank You!