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Semantics of concurrent
data structures

@ Sequential specification - set of legal
sequences

@ Correctness condition - linearizability
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Performance and
scalability

)

throughput

# threads/cores
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The goal

@ Trading correctness for performance

@ In a controlled way with quantitative bounds

measure the error from
correct behavior
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The goal

Stack - incorrect behavior

push (a)push (b)push(c)pop (a)pop (b)

@ Trading correctness for performance

@ In a controlled way with quantitative bounds

correct in a relaxed stack

measure the error from
Ses 2-r€|ClX€d? 3-r€|dxed? correct behavior
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Why relax?

o It is interesting

@ Provides potential for better performing concurrent
implementations

Stack k-Relaxed stack

= {3}
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What we have

for semantic
® Framework relaxations

out-of-order /

@ Generic examples e,

stacks, queues,

@ Concrete relaxation examples  priority queues,.. /
CAS, shared counter

@ Efficient concurrent implementations .
of relaxation

instances
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The big picture

& )

semantics
sequential specification

leqal sequences
— g q )

2 - methods with arguments
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Challenge

There are natural concrete relaxations...

Stack
Each pop pops one of the (k+1)-youngest elements
EClCh puSh PUShQS ..... k-out-of-order
relaxation
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Challenge

There are natural concrete relaxations...

Stack
Each pop pops one of the (k+1)-youngest elements
EClCh puSh PUShQS ..... k-out-of-order
relaxation

makes sense also for queues,
priority queues, ...

How is it reflected by a distance between sequences?

one distance for all?
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Syntactic distances do
not help

push () [push (i) pop (i) ]*push (b) [Push () pop (G) 1™pop (a)
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Syntactic distances do
not help

push () [push (i) pop (i) ]*push (b) [push () pop (G) 1™ pop (a)

is a 1-ouf-of-order stack sequence

Its permutation distance is
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Semantic distances
need a notion of state

@ States are equivalence classes of sequences
in S

@ Two sequences in S are equivalent
if they have an indistinguishable future
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Semantic distances
need a notion of state

state n
@ States are equivalence classes of sequences

in S example: for stack
push(a)push(b)pop(b)push(c) = push(a)push(c)

@ Two sequences in S are equivalent
if they have an indistinguishable future

X=y < VYueX*.(xucS < yucsS)
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Semantics goes operational

@S C 2* is the sequential specification

states labels initial state

@ LTS(S) = (S/=, 2, —, [€)-) with
transition relation

[s]- > [sml. <& smesS
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Semantics goes operational

@S C 2* is the sequential specification

states labels initial state
Stack

o LTS(S) = (S/=, =, —, [e].) with rusico) (@D

transition relation

[s]. > [sml- & smesS
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The framework

® Start from LTS(S)

® Add transitions with
transition costs

@ Fix a path cost function
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The framework

@ Start from
2 - singleton

gD .0

@ Add fransitions with |
transition costs '\: PRI

o »— 0

@ Fix a path cost function
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The framework

® Start from LTS(S)

2 : ef 9 . @

@ Add transitions with | T
transition costs ® \: & i e
o e

@ Fix a path cost function

distance - minimal cost on all paths
labelled by the sequence
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Generic out-of-order

segment_cost( q ) Q) = ‘V‘ transition cost

where v is a sequence of minimal length s.t.

- (1)

removing Vv enables a transition

(2)

Inserting v enables a transition

goes with different path costs
Ana Sokolova 16.11.2012



Out-of-order stack

Sequence of push’s with no matching pop

@ Canonical representative of a state

@ Add incorrect transitions with segment-costs

Qo -
o @ o

® Possible path cost functions max, sum,...

also more advanced
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Out-of-order queue

Sequence of enq’s with no matching deq

@ Canonical representative of a state

@ Add incorrect transitions with segment-costs

deq(c)

. EBED

® Possible path cost functions max, sum,...

also more advanced
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How about
implementations?
Performance?
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Lessons learned

The way from sequential specification

to concurrent implementation is hard

Being relaxed not necessarily means
better performance
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Stack

Scalability comparison machine
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K-Stack

The more relaxed, the better

lock-free
segment stack
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Conclusions

all kinds of
Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

Difficult open problem

How to get from theory to practice?
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For the future

@ Study applicability

@ Learn from efficient implementations
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