Quantitatively Relaxed Concurrent Data Structures

Thomas A. Henzinger Christoph M. Kirsch Hannes Payer Ali Sezgin Ana Sokolova

IST Austria
University of Salzburg
University of Salzburg
IST Austria
University of Salzburg

- Sequential specification set of legal sequences
- Correctness condition linearizability

Stack - legal sequence push(a)push(b)pop(b)

- Sequential specification set of legal sequences
- Correctness condition linearizability

Stack - legal sequence push(a)push(b)pop(b)

- Sequential specification set of legal sequences
- Correctness condition linearizability

Stack - concurrent history

begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Stack - legal sequence push(a)push(b)pop(b)

Sequential specification - set of legal sequences

linearizable wrt seq.spec.

Correctness condition - linearizability

Stack - concurrent history

begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Stack - legal sequence

push(a)push(b)pop(b)

we relax this

Sequential specification - set of legal sequences

linearizable wrt seq.spec.

Correctness condition - linearizability

Stack - concurrent history

begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Performance and scalability

The goal

- Trading correctness for performance
- In a controlled way with quantitative bounds

measure the error from correct behavior

The goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

- Trading correctness for performance
- In a controlled way with quantitative bounds

correct in a relaxed stack ... 2-relaxed? 3-relaxed?

measure the error from correct behavior

Why relax?

- It is interesting
- Provides potential for better performing concurrent implementations

top thread 1 thread 2 c ... thread n b

What we have

Framework

for semantic relaxations

Generic examples

out-of-order / stuttering

Concrete relaxation examples

stacks, queues, priority queues,.. / CAS, shared counter

Efficient concurrent implementations

of relaxation instances

The big picture

 Σ - methods with arguments

The big picture

semantics
sequential specification
legal sequences

relaxed semantics

 Σ - methods with arguments

The big picture

 Σ - methods with arguments

distance?

Challenge

There are natural concrete relaxations...

Stack

Each **pop** pops one of the (k+1)-youngest elements

Each **push** pushes

k-out-of-order relaxation

Challenge

There are natural concrete relaxations...

Stack

Each **pop** pops one of the (k+1)-youngest elements

Each **push** pushes

k-out-of-order relaxation

makes sense also for queues, priority queues,

How is it reflected by a distance between sequences?

one distance for all?

Syntactic distances do not help

push(a) [push(i)pop(i)] push(b) [push(j)pop(j)] pop(a)

Syntactic distances do not help

push(a) [push(i)pop(i)] push(b) [push(j)pop(j)] pop(a)

is a 1-out-of-order stack sequence

Syntactic distances do not help

push(a) [push(i)pop(i)] push(b) [push(j)pop(j)] pop(a)

is a 1-out-of-order stack sequence

its permutation distance is min(n,m)

Semantic distances need a notion of state

States are equivalence classes of sequences in S

Two sequences in S are equivalent if they have an indistinguishable future

Semantic distances need a notion of state

States are equivalence classes of sequences
in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

Two sequences in S are equivalent if they have an indistinguishable future

state

Semantic distances need a notion of state

States are equivalence classes of sequences
in S

example: for stack

push(a)push(b)pop(b)push(c) = push(a)push(c)

Two sequences in S are equivalent if they have an indistinguishable future

 $x = y \Leftrightarrow \forall u \in \Sigma^*. (xu \in S \Leftrightarrow yu \in S)$

state

Semantics goes operational

 \bullet S $\subseteq \Sigma^*$ is the sequential specification

states

labels

initial state

transition relation

$$[s]_{\equiv} \xrightarrow{m} [sm]_{\equiv} \Leftrightarrow sm \in S$$

Semantics goes operational

 \bullet S $\subseteq \Sigma^*$ is the sequential specification

initial state labels states

transition relation

$$[s]_{\equiv} \xrightarrow{m} [sm]_{\equiv} \Leftrightarrow sm \in S$$

Start from LTS(S)

Add transitions with transition costs

Start from LTS(S)

Add transitions with transition costs

Start from LTS(S)

Add transitions with transition costs

Start from LTS(S)

Add transitions with transition costs

Start from LTS(S)

Add transitions with transition costs

Fix a path cost function

distance - minimal cost on all paths labelled by the sequence

Generic out-of-order

```
segment_cost(q \xrightarrow{m} q') = |v| transition cost
```

where v is a sequence of minimal length s.t.

```
(1) [uvw] = q, uvw is minimal, uw is minimal (1.1removing v enables a transition q' (1.2) [uw] = [uw'] = , [uvw'] = q'
```

(2) [uw] = q, uw is minimal, uvw is minimal (1.1 inserting) v enables a transition = q' (1.2)

goes with different path costs

Out-of-order stack

Sequence of **push's** with no matching **pop**

- Canonical representative of a state
- Add incorrect transitions with segment-costs

Possible path cost functions max, sum,...

also more advanced

Out-of-order queue

Sequence of enq's with no matching deq

- Canonical representative of a state
- Add incorrect transitions with segment-costs

Possible path cost functions max, sum,...

also more advanced

How about implementations? Performance?

Lessons learned

The way from sequential specification to concurrent implementation is hard

Being relaxed not necessarily means better performance

Well-performing implementations of relaxed specifications do exist!

Stack

Scalability comparison

"80"-core machine

lock-free segment stack

k-Stack

The more relaxed, the better

lock-free segment stack

Conclusions

all kinds of

Contributions

Framework for quantitative relaxations generic relaxations, concrete examples, efficient implementations exist

Difficult open problem

THANK YOU

How to get from theory to practice?

Study applicability

Learn from efficient implementations

Study applicability

which applications tolerate relaxation?

maybe there is nothing to tolerate!

Learn from efficient implementations

Study applicability

which applications tolerate relaxation?

maybe there is nothing to tolerate!

Learn from efficient implementations

towards synthesis

lock-free universal construction ?

Study applicability

which applications tolerate relaxation?

maybe there is nothing to tolerate!

Learn from efficient implementations

towards synthesis

THANK YOU

lock-free universal construction ?