Quantitatively Relaxed
Concurrent Datfta Structures

Thomas A. Henzinger
Christoph M. Kirsch
Hannes Payer

Ali Sezgin

Ana Sokolova

16.11.2012

Semantics of concurrent
data structures

@ Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Ana Sokolova 16.11.2012

Semantics of concurrent
data structures

Stack - legal sequence

push (a)push (b)pop (b)

@ Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Ana Sokolova 16.11.2012

Semantics of concurrent
data structures

Stack - legal sequence

push (a)push(b)pop (b)

@ Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push (a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 16.11.2012

Semantics of concurrent
data structures

Stack - leaal sequence

push (a)push(b)pop (b)

@ Sequential specification - set of legal

sequences linearizable
wrt seq.spec.

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push (a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 16.11.2012

Semantics of concurrent
data structures

Stack - leaal sequence

push (a)push(b)pop (b)
we
relax . . .
tie @ Sequential specification - set of legal

sequences linearizable
wrt seq.spec.

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push (a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 16.11.2012

Performance and
scalability

)

throughput

threads/cores

Ana Sokolova 16.11.2012

The goal

@ Trading correctness for performance

@ In a controlled way with quantitative bounds

measure the error from
correct behavior

Ana Sokolova 16.11.2012

The goal

Stack - incorrect behavior

push (a)push (b)push(c)pop (a)pop (b)

@ Trading correctness for performance

@ In a controlled way with quantitative bounds

correct in a relaxed stack

measure the error from
Ses 2-r€|ClX€d? 3-r€|dxed? correct behavior

Ana Sokolova 16.11.2012

Why relax?

o It is interesting

@ Provides potential for better performing concurrent
implementations

Stack k-Relaxed stack

= {3}

Ana Sokolova 16.11.2012

What we have

for semantic
® Framework relaxations

out-of-order /

@ Generic examples e,

stacks, queues,

@ Concrete relaxation examples priority queues,.. /
CAS, shared counter

@ Efficient concurrent implementations .
of relaxation

instances

Ana Sokolova 16.11.2012

The big picture

&)

semantics
sequential specification

leqal sequences
— g q)

2 - methods with arguments

Ana Sokolova 16.11.2012

The big picture

SkrC X%

G semantics %

sequential specification
legal sequences

o/

relaxed semantics

2 - methods with arguments

Ana Sokolova 16.11.2012

The big picture

ﬂ (d semantics g
sequential specification

legal sequences

o/

relaxed semantics

2 - methods with arguments

Ana Sokolova 16.11.2012

Challenge

There are natural concrete relaxations...

Stack
Each pop pops one of the (k+1)-youngest elements
EClCh puSh PUShQS k-out-of-order
relaxation

Ana Sokolova 16.11.2012

Challenge

There are natural concrete relaxations...

Stack
Each pop pops one of the (k+1)-youngest elements
EClCh puSh PUShQS k-out-of-order
relaxation

makes sense also for queues,
priority queues, ...

How is it reflected by a distance between sequences?

one distance for all?

Ana Sokolova 16.11.2012

Syntactic distances do
not help

push () [push (i) pop (i)]*push (b) [Push () pop (G) 1™pop (a)

Ana Sokolova 16.11.2012

Syntactic distances do
not help

push () [push (i) pop (i)]*push (b) [push () pop (G) 1™ pop (a)

is a 1-ouf-of-order stack sequence

Ana Sokolova 16.11.2012

Syntactic distances do
not help

push () [push (i) pop (i)]*push (b) [push () pop (G) 1™ pop (a)

is a 1-ouf-of-order stack sequence

Its permutation distance is

Ana Sokolova 16.11.2012

Semantic distances
need a notion of state

@ States are equivalence classes of sequences
in S

@ Two sequences in S are equivalent
if they have an indistinguishable future

Ana Sokolova 16.11.2012

Semantic distances
need a notion of state

state n
@ States are equivalence classes of sequences

in S example: for stack
push(a)push(b)pop(b)push(c) = push(a)push(c)

@ Two sequences in S are equivalent
if they have an indistinguishable future

Ana Sokolova 16.11.2012

Semantic distances
need a notion of state

state n
@ States are equivalence classes of sequences

in S example: for stack
push(a)push(b)pop(b)push(c) = push(a)push(c)

@ Two sequences in S are equivalent
if they have an indistinguishable future

X=y < VYueX*.(xucS < yucsS)

Ana Sokolova 16.11.2012

Semantics goes operational

@S C 2* is the sequential specification

states labels initial state

@ LTS(S) = (S/=, 2, —, [€)-) with
transition relation

[s]- > [sml. <& smesS

Ana Sokolova 16.11.2012

Semantics goes operational

@S C 2* is the sequential specification

states labels initial state
Stack

o LTS(S) = (S/=, =, —, [e].) with rusico) (@D

transition relation

[s]. > [sml- & smesS

Ana Sokolova 16.11.2012

The framework

® Start from LTS(S)

® Add transitions with
transition costs

@ Fix a path cost function

Ana Sokolova 16.11.2012

The framework

@ Start from
2 - singleton

gD .0

@ Add fransitions with |
transition costs '\: PRI

o »— 0

@ Fix a path cost function

Ana Sokolova 16.11.2012

The framework

® Start from LTS(S)

® Add transitions with

@ Fix a path cost function

Ana Sokolova 16.11.2012

The framework

® Start from LTS(S)

2 : ef 9 . @

@ Add transitions with | T
transition costs ® \: & i e
o e

® Fix a

Ana Sokolova 16.11.2012

The framework

® Start from LTS(S)

2 : ef 9 . @

@ Add transitions with | T
transition costs ® \: & i e
o e

@ Fix a path cost function

distance - minimal cost on all paths
labelled by the sequence

Ana Sokolova 16.11.2012

Generic out-of-order

segment_cost(q) Q) = ‘V‘ transition cost

where v is a sequence of minimal length s.t.

- (1)

removing Vv enables a transition

(2)

Inserting v enables a transition

goes with different path costs
Ana Sokolova 16.11.2012

Out-of-order stack

Sequence of push’s with no matching pop

@ Canonical representative of a state

@ Add incorrect transitions with segment-costs

Qo -
o @ o

® Possible path cost functions max, sum,...

also more advanced

Ana Sokolova 16.11.2012

Out-of-order queue

Sequence of enq’s with no matching deq

@ Canonical representative of a state

@ Add incorrect transitions with segment-costs

deq(c)

. EBED

® Possible path cost functions max, sum,...

also more advanced

Ana Sokolova 16.11.2012

How about
implementations?
Performance?

Ana Sokolova 16.11.2012

Lessons learned

The way from sequential specification

to concurrent implementation is hard

Being relaxed not necessarily means
better performance

Ana Sokolova 16.11.2012

Stack

Scalability comparison machine

=
©
=
©
o
R
o
—
o
E
)
S
£
)
c
el
=
©
S
©
Q
o

lock-free
segment stack

Ana Sokolova 16.11.2012

K-Stack

The more relaxed, the better

lock-free
segment stack

_
(0]
=
(O]
o]
@
(O]
S
@]
£
[%2]
£
~
[%2]
C
S
2
©
—
(O]
Q
o

32 64 128 256 512 1024 2048 4096
k (logscale)

1thread —+— 40 threads ---%--- 80 threads
20 threads ———><___. 60 threads B

Ana Sokolova 16.11.2012

Conclusions

all kinds of
Contributions

Framework for quantitative relaxations
generic relaxations, concrete examples,
efficient implementations exist

Difficult open problem

How to get from theory to practice?

Ana Sokolova 16.11.2012

For the future

@ Study applicability

@ Learn from efficient implementations

Ana Sokolova 16.11.2012

For the future

which applications

@ Study applicability tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations

Ana Sokolova 16.11.2012

For the future

which applications

@ Study applicability tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations ol

synthesis

lock-free universal
construction ?

Ana Sokolova 16.11.2012

For the future

which applications

@ Study applicability tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations ol

synthesis

lock-free universal
construction ?

Ana Sokolova 16.11.2012

