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Abstract. A parallel composition is defined for Markov reward chains
with fast transitions and for discontinuous Markov reward chains. In
this setting, compositionality with respect to the relevant aggregation
preorders is established. For Markov reward chains with fast transitions
the preorders are 7-lumping and 7-reduction. Discontinuous Markov re-
ward chains are ‘limits’ of Markov reward chains with fast transitions,
and have related notions of lumping and reduction. In total, four compo-
sitionality results are shown. In addition, the two parallel operators are
related by a continuity property.
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1 Introduction

Compositionality is a central issue in the theory of concurrent processes. Dis-
cussing compositionality requires three ingredients: (1) a class of processes or
models; (2) a composition operation on the processes; and (3) a notion of behav-
iour, usually given by a semantic preorder or equivalence relation on the class
of processes. For the purpose of this paper, we will have semantic preorders and
the parallel composition as operation. Therefore, the compositionality result can
be stated as:
Py >P1, Pa>Py = Py ||[Py>Py [Py

where Py, Py, P; and Py are arbitrary processes, || and > denote their parallel
composition and the semantic preorder relation. Hence, compositionality enables
the narrowing of a parallel composition by composing simplifications of its com-
ponents, thus avoiding the construction of the actual parallel system. In this
paper, we study compositionality for augmented types of Markov chains.
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Homogeneous continuous-time Markov chains, Markov chains for short, are
among the most important and wide-spread analytical performance models. A
Markov chain is given by a graph with nodes representing states and outgoing
arrows determining the stochastic behavior of each state. An initial probability
vector indicates which states may act as starting ones. Markov chains often
come equipped with rewards that are used to measure their performance (e.g.,
throughput, utilization, etc.) [1]. In this paper, we focus on state rewards only,
and we refer to a Markov chain with rewards as a Markov reward chain.

To cope with the ever growing complexity of the systems, several perfor-
mance modeling techniques have been developed to support the compositional
generation of Markov reward chains. Such are stochastic process algebras [2, 3],
(generalized) stochastic Petri nets [4, 5], probabilistic I/O automata [6], stochas-
tic automata networks [7], etc. The compositional modeling enables composing
a bigger system from several smaller components. The size of the state space
of the resulting system is in the range of the product of the sizes of the con-
stituent state spaces. Hence, compositional modeling usually suffers from state
space explosion.

In the process of compositional modeling, performance evaluation techniques
produce intermediate constructs that are typically extensions of Markov chains
featuring transitions with communication labels. In the final modeling phase, all
labels are discarded and communication transitions are assigned instantaneous
behavior. Previous work [8-10] gave an account of handling these models by us-
ing Markov chains with fast transitions, which present extension of the standard
Markov reward chains with transitions decorated with a real-valued linear para-
meter. To capture the intuition that the labeled transitions are instantaneous, a
limit for the parameter to infinity is taken. The resulting process is a generaliza-
tion of the standard Markov chain that can perform infinitely many transitions
in a finite amount of time. This model was initially studied in[11, 12] without re-
wards, and is called a discontinuous Markov reward chain. The process exhibits
stochastic discontinuity and it is often considered as pathological. However, as
shown in [12, 13, 5], it proves very useful for explanation of results. Here, we con-
sider discontinuous Markov reward chains and Markov reward chains with fast
transitions. These two models are intimately related: Markov reward chains with
fast transitions are used for modeling, but the notions for these processes are
expressed asymptotically in terms of discontinuous Markov reward chains. We
define parallel composition of both models in vein of standard Markov reward
chains [14] using Kronecker products and sums.

As already mentioned, compositional modeling may lead to state space ex-
plosion. Current analytical and numerical methods can handle Markov reward
chains with millions of states efficiently. However, they only alleviate the problem
and many real world problems still cannot be feasibly solved. Several aggrega-
tion techniques have been proposed to reduce the state space of Markov reward
chains. Ordinary lumping is the most prominent one [15,14]. The method par-
titions the state space into partition classes. In each class, the states exhibit
equivalent behavior for transiting to other classes, i.e. the cumulative proba-



bility of transiting to another class is the same for every state of the class. If
non-trivial lumping exists, i.e. at least one partition contains more than one
state, then the method produces a smaller Markov chain that retains the perfor-
mance characteristics of the original one. For example, the total reward gained
in a given amount of time is the same for the original as for the reduced, so-
called lumped, process. Another lumping-based method is exact lumping [14].
This method requires that each partition class of states has the same cumulative
probability of transiting to every state of another class and also each state in
the class has the same initial probability. The gain of exact lumping is that the
probabilities of the original process can be computed for a special class of initial
probability vectors by using the lumped Markov reward chain only.

A preliminary treatment of relational properties of lumping-based aggrega-
tions of Markov chains has been given in [16]. It has been shown that the notion
of exact lumping is not transitive, i.e., there are processes which have exactly
lumped versions that can be non-trivially exactly lumped again, but the original
process cannot be exactly lumped directly to the resulting process. On the other
hand, ordinary lumping of Markov reward chains is transitive and, moreover,
it has a property of strict confluence. Strict confluence means that whenever a
process can be lumped using two different partitions, there is always a smaller
process to which the lumped processes can lump to. Coming back to our models
of interest, ordinary lumping is defined for discontinuous Markov reward chains
in [8-10]. Also, so-called 7-lumping is proposed for Markov reward chains with
fast transitions in [8-10]. The situation can be pictured as follows:

T-lumped
Markov Reward Chain
with Fast Transitions

Markov Reward Chain 7-lumping
with Fast Transitions

limit limit

ordinary

lumping lumped
Discontinuous

Markov Reward Chain

Discontinuous
Markov Reward Chain

In addition, the same paper [9, 10] provides an aggregation method by reduction
that eliminates the stochastic discontinuity and reduces a discontinuous Markov
reward chain to a Markov reward chain. The reduction method is an extension of
the method described in [17]. It is based on the elimination of stochastic discon-
tinuity that arises in the context of instantaneous probabilistic transitions. The
method is well-known in perturbation theory. Its advantage is the ability to split
states. The lumping method, in contrast, provides more flexibility: also states
that do not exhibit discontinuous behavior can be aggregated. The reduction-
based aggregation straightforwardly extends to 7-reduction of Markov reward



chains with fast transitions. Therefore, we have the following situation.

Markov reward chain
with fast transitions
T-reduction
limit

discontinuous reduction
Markov reward chain

Markov reward chain.

Both the lumping aggregation method and the reduction method induce seman-
tic preorders. Namely, for two processes P and P we say that P > P if P is an
aggregated version of P. We show that the relations induced by the lumping and
reduction methods indeed define preorders, i.e., reflexive and transitive relations.
Having all the ingredients in place, we show the compositionality of the aggre-
gation preorders with respect to the defined parallel composition(s). We also
show continuity of the parallel composition(s). In short, the parallel operators
preserve the two diagrams above.

The structure of the rest of the paper is as follows. We start by defining
the first model, discontinuous Markov reward chains, in Section 2, together with
its notions of lumping and reduction. Section 3 focuses on the second model,
Markov reward chains with fast transitions, and introduces 7-lumping and 7-
reduction. In Section 4, we show that the aggregation methods define preorders
on the models. Section 5 contains the main results of the paper, compositionality
of the new parallel operator for each type of Markov chains with respect to both
aggregation preorders. Section 6 wraps-up with conclusions.

Notation All vectors are column vectors if not indicated otherwise. By 1™ we
denote the vector of n 1’s; by 0™*™ the n x m zero matrix; by I™ the n x n
identity matrix. We omit the dimensions n and m when they are clear from the
context. By A[i,j] we denote an element of the matrix A € IR™*™ assuming
1<i<mand1l<j<n We write A > 0 when all elements of A are non-
negative. The matrix A is called stochastic if A > 0and A-1 =1. By AT we
denote the transpose of A.

Let S be a set. A set P ={S51,...,Sn} of N subsets of S is called a partition
of Sif S =5U...USN, S; #0 and S;NS; = 0 for all 7,5, with ¢ # j.
The partitions P = {S} and P = {{i} | i € S} are the trivial partitions.
Let Py = {S1,...,Sn} be a partition of § and Py = {T1,..., Ty}, in turn, a
partition of P;. The composition P10Ps of the partitions P; and Ps is a partition
of § given by Py oPy={Us,...,Upn }, where U; = UCeTi C.

2 Discontinuous Markov reward chains

In the standard theory (cf. [18, 19, 1]) Markov chains are assumed to be stochas-
tically continuous. This means that when ¢ — 0, the probability of the process
occupying at time ¢ the same state as at time 0 is 1. As we include instantaneous



transitions in our theory [12], this requirement must be dropped. Therefore, we
work in the more general setting of discontinuous Markov chains [11].

A discontinuous Markov reward chain is a time-homogeneous finite-state sto-
chastic process with an associated (state) reward structure that satisfies the
Markov property. It is completely determined by: (1) a stochastic row initial
probability vector that gives the starting probabilities of the process for each
state, (2) a transition matrix function P(t) that defines the stochastic behavior
of the transitions, at time ¢ > 0, and (3) a state reward vector that associates a
number to each state representing the gain of the process while spending time
in the state. The transition matrix function gives a stochastic matrix P(t) at
any time ¢ > 0, and has the property P(t + s) = P(t) - P(s) [18,19]. It has
a convenient characterization independent of time [12, 20], which allows for the
following equivalent definition.

Definition 1. A discontinuous Markov reward chain P is a quadruple P =
(0,11,Q, p) where o is a stochastic row initial probability vector, p is a state re-
ward vector and IT € R™™ and Q € R™™"™ satisfy the following siz conditions:
(1) >0,(2)M-1=1,(3)H*>=1II, (4) IQ=QI =Q, (5)Q-1=0, and
(6) Q+ cII >0, for some ¢ > 0.

The matrix function P(t) = ITe9! is the transition matrix of a discontinuous
Markov chain P = (o, II,Q, p). It is continuous at zero if and only if IT = I.
In this case, @ is a standard generator matrix [12,8]. Otherwise, the matrix @
might contain negative non-diagonal entries. We note that, unlike for standard
Markov reward chains, a meaningful graphical representation of discontinuous
Markov reward chains when IT # I is not possible. The intuition behind the
matrix IT is that IT[i, j] denotes the probability that a process occupies two
states via an instantaneous transition. Therefore, in case of no instantaneous
transitions, i.e., when IT = I, we get a standard (continuous) Markov chain.

For every discontinuous Markov chain P = (o, I1, Q, p), II gets the following
‘ergodic’ form after a suitable renumbering of the states [12]:

7,0 ...0 0 Lo, o
0. 00

0 Tr... 0 0 woo 00 o1 o

m=| e =TT R=|

0 0 ...1I0 o T 00...1

T, Ty... Ty 0 00...uu0 510 ... Our

where for all 1 <k < M, IIj; =1 - ug and I, = O - pg for a row vector py > 0
such that puy -1 =1 and a vector d; > 0 such that ZZ;I 0 = 1. Then the pair
of matrices (L, R) depicted above forms a canonical product decomposition of IT
(cf. Section 2.1 below), needed for the definition of the reduction-based method
of aggregation.

The new numbering induces a partition &€ = {Ey,..., Ep, T} of the state
set S = {1,...,n}, where Ei,..., Ep are the ergodic classes, determined by
I, ..., I, respectively, and T is the class of transient states, determined by



any I1;, 1 < i < M. The partition £ is called the ergodic partition. For every
ergodic class Fy, the vector py is the vector of ergodic probabilities. If an ergodic
class Ej, contains exactly one state, then i = (1) and the state is called regular.
The vector J; contains the trapping probabilities from transient states to the
ergodic class Fj.

We are now able to explain the behavior of a discontinuous Markov reward
chain P = (0,11, Q, p). It starts in a state with a probability given by the initial
probability vector ¢. In an ergodic class with multiple states the process spends
a non-zero amount of time switching rapidly (infinitely many times) among the
states. The probability that it is found in a specific state of the class is given by
the vector of ergodic probabilities. The time the process spends in the class is
exponentially distributed and determined by the matrix @. In an ergodic class
with a single state the row of @) corresponding to that state has the form of a
row in a generator matrix, and Q[¢, j] for ¢ # j is interpreted as the rate from i
to j. In a transient state the process spends no time (with probability one) and
goes to some ergodic class, where it is trapped for some amount of time. Note
that 0x[7] > 0 iff ¢ € T can be trapped in the ergodic class F.

The total reward gained by the process up to time ¢t > 0, notation R(¢), is
calculated as R(t) = o P(t)p. We have that the total reward remains unchanged
if the reward vector p is replaced by IIp. To see this, note that P(t) = P(t)II
(cf. [12]), so oP(t)IIp = oP(t)p = R(t). Intuitively, the reward in a transient
state can be replaced by the sum of the rewards of the ergodic states that it
can get trapped in as the process gains no reward while ‘residing’ in a transient
states. The reward of an ergodic state is the sum of the rewards of all states
inside its ergodic class weighted according to their ergodic probabilities.

2.1 Aggregation methods

In this section we recall the definitions and the main properties of the aggregation
methods for discontinuous Markov reward chains [8-10].

Ordinary Lumping We define ordinary lumping in terms of matrices. Every
partition P = {Cq,...,Cn} of S = {1,...,n} can be associated with a so-called
collector matrix V € R™ ¥ defined as V[i,k] = 0if i ¢ Cy, V]i,k] = 1if i € C},
and vice versa. The k-th column of V' has 1’s for elements corresponding to
states in C}, and has 0’s otherwise. Note that V -1 = 1. A distributor matrix
U € RY*™ for P is defined as a matrix U > 0, such that UV = IV. To satisfy
these conditions, the elements of the k-th row of U, which correspond to states
in the class Cy, sum up to one, whereas the other elements of the row are 0.

An ordinary lumping is a partition of the state space into classes such that
the states that are lumped together have equivalent behavior for transiting to
other classes and additionally they have the same reward.

Definition 2. A partition £ of {1,...,n} is an ordinary lumping, or lumping
for short, of a discontinuous Markov reward chain P = (0,II,Q, p) iff the fol-



lowing hold: (1) VUIIV = IV, (2) VUQV = QV and (3) VUp = p, where V
is the collector matriz and U is any distributor matriz for L.

The lumping conditions only require that the rows of ITV (resp. QV and p) that
correspond to the states of the same partition class are equal. The following
property [8-10] holds.

Proposition 3. Let P = (0,11,Q, p) be a discontinuous Markov reward chain
and let L= {C1,...,Cn} be an ordinary lumping. Define (1) 5 =0V, (2) Il =
UIIV, (3) Q =UQV and (4) p = Up, for the collector matriz V of L and any
distributor U. Then P = (5, II, Q, p) is a discontinuous Markov reward chain. O

Definition 4. If the conditions of Proposition & hold, then P = (o,1I,Q, p)
lumps to P = (7,1, Q, D), called the lumped discontinuous Markov reward chain,

with respect to L. We write P £P.

It can readily be seen that neither the definition of a lumping, nor the definition
of the lumped process depends on the choice of a distributor matrix U. In the
continuous case when IT = I we have IT = I, so @ is a generator matrix and our
notion of ordinary lumping coincides with the standard definition [15,21]. The
total reward is preserved by ordinary lumping: The lumped process has the same
reward R(t) as the one of the original process R(t), i.e., R(t) = cVUP(t)VUp =
oP(t)VUp = oP(t)p = R(t).

Reduction The reduction-based aggregation method masks the stochastic dis-
continuity of a discontinuous Markov reward chain P = (o, I, Q, p) and trans-
forms it into a Markov reward chain [17,12,9,10]. The idea of the method is to
abstract away from the behavior of individual states in an ergodic class. It is
based on the notion of a canonical product decomposition.

Definition 5. Let P = (0,11,Q, p) and assume that rank(Il) = M, i.e., that
there are M ergodic classes. A canonical product decomposition of II is a pair
of matrices (L, R) with L € R™*™ and R € R"*™ such that L > 0, R > 0,
rank(L) =rank(R) =M, L-1 =1, and IT = RL.

A canonical product decomposition always exists and can be constructed
from the ergodic form of IT (see page 5). Moreover, it can be shown that any other
canonical product decomposition is permutation equivalent to this one. Since a
canonical product decomposition (L, R) of IT is a full-rank decomposition, and
since I is idempotent, we also have that LR = I™. Note that R-1 = 1. Also,
we have LIl = LRL = L and IIR = RLR = R. Now we can define the reduction
method.

Definition 6. For a discontinuous Markov reward chain P = (0,11, Q, p), the
reduced discontinuous Markov reward chain P = (7,1,Q,p) is given by & = o R,
Q = LQR and p = Lp, where (L, R) is a canonical product decomposition. We
write P —,. P.



The reduced process is unique up to a permutation of the states, since so
is the canonical product decomposition. The states of the reduced process are
given by the ergodic classes of the original process, the transient states are
‘ignored’. Intuitively, the transient states are split probabilistically between the
ergodic classes according to their trapping probabilities. In case a transient state
is also an initial state, its initial probability is split according to its trapping
probabilities. The reward is calculated as the sum of the individual rewards
of the states of the ergodic class weighted by their ergodic probabilities. Like
lumping, the reduction also preserves the total reward: R(t) = cRLP(t)RLp =
oIl P(t)I1p = R(t). In case the original process has no stochastic discontinuity,
i.e., I = I, the reduced process is equal to the original.

3 Markov reward chains with fast transitions

A Markov reward chain with fast transitions is obtained by adding parameter-
ized, so-called fast, transitions to a standard Markov reward chain. The remain-
ing standard transitions are referred to as slow. The behavior of a Markov reward
chain with fast transitions is determined by two generator matrices Qs and Q,
which represent the rates of the normal or slow transitions and the speeds of the
fast transitions, respectively.

Definition 7. A Markov reward chain with fast transitions P = (o, Qs, Qy, p) is
a function assigning to each T > 0, the Markov reward chain

P‘r = (0717QS +7—Qf7p)

where o € RY™™ is an initial probability vector, Qs, Qr € R™™ are two generator
matrices, and p € R"*" is the reward vector.

By taking the limit when 7 — oo, fast transitions become instantaneous. Then,
a Markov reward chain with fast transitions behaves as a discontinuous Markov
reward chain [12].

Definition 8. Let P = (0,05, Qy, p) be a Markov reward chain with fast tran-
sitions. The discontinuous Markov chain Q = (0,I1,Q, IIp) is the limit of P,
where the matriz II is the so-called ergodic projection at zero of Qr, that is
IT = limy_ o0 €97, and Q = HQ,I1. If Q is the limit of P, we write P —. Q.

The initial probability vector and the reward vector are not affected by the limit
construction. It will become clear after the next definition why we choose to
replace the reward vector p by Ilp in the limit.

3.1 Aggregation methods

In this section we recall the aggregation methods for Markov reward chains with
fast transitions.



T-lumping The notion of 7-lumping is based on ordinary lumping for discon-
tinuous Markov reward chains.

Definition 9. A partition L of the state set of a Markov reward chain with fast
transitions P is called a T-lumping, if it is an ordinary lumping of the discontin-
uwous Markov reward chain Q, such that P —4 Q.

Note that since we defined the reward of the limit by Ilp, a 7-lumping may
identify states with different rewards.

Like for ordinary lumping: we define the 7-lumped process by multiplying o,
(s, Qr and p with a collector matrix and a distributor matrix. Unlike for ordinary
lumping: not all distributors are allowed! Following [8-10], we provide a class of
special distributors, called 7-distributors, that yield a 7-lumped process.

Definition 10. Let P = (0,I1,Q, p) be a discontinuous Markov reward chain.
Let V' be a collector matriz for this chain. A matriz W is a T-distributor for V.
if and only if it is a distributor for V., IVWII = IIVW , and the entries of W
for the transient states that lump only with other transient states are positive.

An alternative, explicit, definition of the 7-distributors can be found in [8-10].
Having defined 7-distributors, we can define a 7-lumped process.

Definition 11. Let P = (o, Qs, Qf, p) and let L be a lumping with a collector ma-
triz V', and a corresponding T-distributor W. The T-lumped Markov reward chain
with fast transitions P = (7, Qs, Qy, p) is defined as @ = oV, Q; = WQ,V, Q; =

WQ;V, p=Wp. We say that P 7-lumps to P and write P &P,

In general, for a lumping with collector V' and distributor U, UQ,V and
UQyV are not uniquely determined, i.e., they depend on the choice of the dis-
tributor. The restriction to 7-distributors does not change this. Subsequently,
the 7-lumped process depends on the choice of the 7-distributor. The motiva-
tion for restricting to 7-distributors is that all 7-lumped processes are equivalent
in the limit. This is shown in the following proposition that moreover gives the
exact connection between lumping and 7-lumping [8].

Proposition 12. The following diagram commutes

P"\/\./\/é_f\f\/\>

| |
i

that is, if P 4 P -4 Q and if P—s Q £ 6/, then Q = 6/, for P and P Markov

reward chains with fast transitions, and Q, Q, 6/ discontinuous Markov reward
chains. O

Moreover, the 7-lumped processes that originate from the same Markov re-
ward chain with fast transitions become exactly the same once all fast transitions
are eliminated [9, 10].



Proposition 13. Let P be a Markov reward chain with fast transitions. Suppose
P4 P and P has no fast transitions, i.e., the corresponding speed matrix is the

zero matriz. Then, whenever P &P for any (other) T-distributor, it holds that
[
P=P. U

T-reduction We now define a reduction-based aggregation method called 7-
reduction for Markov reward chains with fast transitions. It aggregates a Markov
reward chain with fast transitions to an asymptotically equivalent Markov reward
chain.

Definition 14. A Markov reward chain with fast transitions P = (o, Qs, Qy, p)
T-reduces to the Markov reward chain R = (7,1,Q,p), given by (1) & = oR,
(2) Q@ = LQsR and (3) p = Lp, where P — (0,I1,Q,IIp) and (L,R) is a

canonical product decomposition of II. When P 7-reduces to R, we write P ~~,. R.

The following simple property relates 7-reduction to reduction. It holds since
LQR = LQsR and LIIp = Lp.

Proposition 15. The following diagram commutes

P
et
A
ool’ \\\\

Q— IR
that is, if P ~, R and P — Q —, R/, then R = R, for P a Markov reward
chain with fast transitions, Q a discontinuous Markov reward chain and R,R’
(continuous) Markov reward chains. O

4 Relational properties

We investigate the relational properties of ordinary lumping for discontinuous
Markov reward chains and 7-lumping for Markov reward chains with fast tran-
sitions. We note that the combination of transitivity and strong confluence en-
sures that the process obtained by iterative application of the ordinary lumping
method is uniquely determined by the composition of the individual lumpings.
In the case of 7-lumping, by Proposition 12 and Proposition 13, only the limit
of the finally reduced process is uniquely determined, unless the final process
contains no fast transitions.

There is no need to investigate the relational properties of reduction and -
reduction, since they act in one step (no iteration is possible), in a unique way,
between different types of models.

Proofs of the results of this section can be found in Appendix A.

The following result gives the transitivity of ordinary lumping. Actually, we
show the transitivity of the relation on discontinuous Markov reward chains
defined by

Py >Py < (IL)P; 5P,

10



Transitivity enables replacement of iterative application of ordinary lumping
by a single application using an ordinary lumping that is a composition of the
individual lumpings.

Theorem 16. Let P 5P and let P 5 P. Then P = P.
The above relation is clearly reflexive, since the trivial partition is always a

lumping, i.e., we have P 2P where A is the trivial partition in which every class
is a singleton.

Transitivity of 7-lumping also holds, i.e. the relation defined by
P, >P, « (3L)P, 5P,
is transitive. This relation is reflexive as well, due to the trivial lumping A.

Theorem 17. Let P5 P and let P 5 P. Then P 22F P.

Lumping and 7-lumping also have the strict confluence property. In case of
lumping this means that if P £ P, and P £2 P,, then there exist two partitions £;

and Lo such that Py £10fa P and P, £20La P. One can prove the strict confluence
property by adapting the proof for Markov reward chains, from e.g. [16].

5 Parallel composition and compositionality

In this section we define the parallel composition operation for each of the mod-
els, and prove the compositionality results. The definitions of parallel composi-
tion are based on Kronecker products and sums, as for standard Markov reward
chains [14]. The intuition behind this is that the Kronecker sum represents inter-
leaving and the Kronecker product synchronization. We first recall the definition
of Kronecker product and sum.

Definition 18. Let A € R™*"™ and B € R™ *™2. The Kronecker product of
A and B is a matriz (A® B) € R™™ "2 defined as

(A® B)[(i — Dmy + k, (j — 1)mz + 1] = Ali, j]1 B[k, ]

for1<i<ng,1<j<ng, 1<k<miandl <] <ms.
The Kronecker sum of two square matrices A € R™*"™ and B € R™*™ is a
matriz (A @ B) € R"™ "™ defined as A@ B=A®I™ +I"® B.

We also need the notion of a Kronecker product of two partitions. Let £,
and Lo be two partitions with corresponding collector matrices Vi and V3, re-
spectively. Then £ ® Lo denotes the partition corresponding to the collector
matrix V3 ® Va.

In this section we present our results without proofs. Short proofs are given
in Appendix B.
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5.1 Composing discontinuous Markov reward chains

We start by presenting the definition of parallel composition of discontinuous
Markov reward chains. The intuition is that ‘rates’ interleave, and the probabil-
ities of the instantaneous transitions synchronize, i.e., are independent.

Definition 19. Let Py = (01, II1,Q1, p1) and Py = (02,115, Q2, p2) be two dis-
continuous Markov reward chains. Their parallel composition is defined as:

Py Py = (01 ® 09, I @ IT9, Q1 @ Ty + IT; @ Qa, p1 @ 11721 111711 @ py).

The following theorem shows that the parallel composition of two discontin-
uous Markov reward chains is well defined.

Theorem 20. Let Py and Py be two discontinuous Markov reward chains. Then
P1 || P2 is a discontinuous Markov reward chain.

In the special case, when both discontinuous Markov reward chains are con-
tinuous, their parallel composition is again a Markov reward chain as defined
in [14]. Moreover, the following property shows that the parallel composition
of two discontinuous Markov reward chains has a transition matrix that is the
Kronecker product of the individual transition matrices, corresponding to the
intuition that the Kronecker product represents synchronization. It justifies the
definition of the parallel composition.

Theorem 21. Let Py and Py be discontinuous Markov reward chains. If Py (t)
is the transition matriz of P1 and Ps(t) is the transition matriz of Pa, then the
transition matriz of Py || Py is given by Py (t) ® Pa(t).

It is easy to see that the total reward of the parallel composition is the sum
of the total rewards of the components.

The following theorem shows that both lumping and reduction are composi-
tional with respect to the parallel composition of discontinuous Markov reward
chains.

Theorem 22. If P; gﬁl and Ps %52, then Py || Po £18L2 Py || Py. Also, if

Pl — ﬁl and P2 —r ﬁQ, then P1 || P2 —r ﬁl || ﬁQ.

5.2 Composing Markov reward chains with fast transitions

We now present the definition of parallel composition of Markov reward chains
with fast transitions. It is based on taking a Kronecker sum of the generator
matrices, i.e. interleaving of the rates for both slow and fast transitions.

Definition 23. Let Py = (01,Qs1,Q¢,1,p1) and Py = (02, Qs.2, Qf.2, p2) be two
Markov reward chains with fast transitions. Then their parallel composition is
defined as:

Pi||P2=(01®02,Qs1 ®Qs2,Qf1 ®Qf2,p1 ®1+1® pa).

12



It is not difficult to see that the parallel composition of Markov reward chains
with fast transitions is well defined. In Figure 1 we present an example of parallel
composition of two Markov reward chains with fast transitions: 1c) is the parallel
composition of 1a) and 1b). The initial probabilities are depicted left above each
state, and the reward values right above. An exception is 1¢) where for readability
the rewards are omitted. They are given by the vector

pey = (ro + 173,70 + 74,70, 71 + 73,71 + T4, 71,72 + 13,72 + T4, T2).

bt

A
W /@ b /@ 0 @C@@
aTt A

O —C)

Fig. 1. Parallel composition of Markov reward chains with fast transitions

Next we show that 7-lumping and 7-reduction are also compositional, with
respect to the parallel composition of Markov reward chains with fast transitions.

Theorem 24. If Py % Py and Py 3 Py, then Py || Py ©%5 Py || Py. Also, if
P1 —r P1 and P2 —r PQ, then P1 || PQ — P1 || PQ.

Figure 2 presents the aggregated versions of the Markov reward chains with
fast transitions from Figure 1. The Markov reward chain with fast transitions
in 2c) is the parallel composition of the Markov reward chains with fast tran-
sitions in 2a) and 2b). Remarkably, the aggregated versions 2a), 2b) and 2c)
can be obtained from 1a), 1b), 1c), respectively, by either applying 7-reduction
or 7-lumping. The 7-lumpings used are {{1,2},{3}} for la) and 1b), and
{{1,2,4,5},{3,6},{7,8},{9}} for 1c). By Theorem 24, we have that the chain
in 1c) is the parallel composition of the chains in 1a) and 1b).

Having defined parallel composition for both models, we show how they are
related: the limit of the parallel composition of two Markov reward chains with
fast transitions is the parallel composition of the limits of the components (that
are discontinuous Markov reward chains). Hence, we have a continuity property
of the parallel composition, stated in the next theorem.

Theorem 25. Let P; —o, Q1 and Py —o Qa. Then Py || P2 —o Q1 || Qa.

13
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1 1 1 wrg+(l—m)ry 1 71 + mrg + ro + wrg +
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2 0

Fig. 2. Aggregated Markov reward chains with fast transitions

6 Conclusion

We considered two types of performance models: discontinuous Markov reward
chains and Markov reward chains with fast transitions. The former models repre-
sent the limit behavior of the later ones. For both types of models, we presented
two aggregation methods: lumping and reduction for discontinuous Markov re-
ward chains, respectively, 7-lumping and 7-reduction for Markov reward chains
with fast transitions. In short, the contributions of the paper are:

— A definition of parallel composition of discontinuous Markov reward chains
and of Markov reward chains with fast transitions, allowing for compositional
modeling.

— Identification of preorder properties of the aggregation methods for both
types of models.

— Compositionality theorems for each type of models and each corresponding
aggregation preorder, and continuity property of the parallel compositions.

L1 _ Lo — 1 2 — =
P1MP1 PQMPQ P1 ||P2'\’\N>P1 ||P2
Ool/ L1 J/oo OOJ/ Lo fJ/OC - Ooi/ L1®Ls — J/oi
QIHQl QQHQQ Ql ||Q2HQ1 ||Q2
P1 P Pi || P2
Q ——R; Q2 ——Ro Q1| Q2 ——R1 || Rz

Fig. 3. Overall compositionality result

The results on compositionality are summarized by Figure 3. In words, the par-
allel composition for Markov reward chains with fast transitions and the parallel
composition for discontinuous Markov reward chains preserve the diagrams from

14



Proposition 12 and Proposition 15. Figure 3 is justified by the Theorems 1624,
as well as by Proposition 12 and Proposition 15.

As future work we schedule the analysis of extensions of Markov reward
chains with fast and silent transitions to model both probabilistic and nondeter-
ministic behavior. We hope to extend the compositionality results to that setting,
as well as to add action labeled transitions so that in addition to interleaving,
synchronization can also be expressed.
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A Proofs for Section 4

Proof. [Theorem 16]
Let P = (0,11,Q, p), P = (7,1I,Q,p) and let P = (7, II,Q, p). Denote by V and
V, the collector matrices for £ and L, respectively. The collector matrix for Lo L
is VV. The following lumping conditions hold: VUIIV = IIV, VUQV = QV
and VUp = p. Also II = UIIV, Q = UQV and p = Up for any distributor U
for V. Similarly, it holds that: VULV =IOV, VUQV =QV and VUp = .
Moreover II =UII'V,Q =U QV and p = U p for any distributor U for V.
The iterative application of the ordinary lumping method can be replaced
by the ordinary lumping given by the partition £ o £, that corresponds to the
collector matrix V' = VV. A corresponding distributor is U = U U because
UV =UUVV = I. That the partition is really an ordinary lumping follows from:
VUnv =vvuounvv =VVUIV = VIV = VUNOVV = [IVV =
ITV; similarly one gets the condition for Q; and VU p=VVUUp=VVUp =
Vo=VUp=np.

O

Proof. [Theorem 17] B L
Let P = (07 vastp)’ ﬁ = (57@fa@s7p) and let ﬁ = (gaéfa@swﬁ)' Den0te by
V and V the collector matrices for £ and L, respectively. The collector matrix

for £ o L is then VV. Moreover, let T-lumped processes P and P correspond to
given 7-distributors W and W, respectively.
Since 7-lumping is defined in terms of ordinary lumping it is sufficient to

show that W = W W is a r-distributor. From Theorem 16 it follows that W is
a distributor. The condition requiring certain positive entries is easily checked.
Let IT and II be the ergodic projections of @y and Q. Then, IIVWII =

IOVW and IVW II = IIVW. Also we have that:

OVWH=IVVWWII =VWIVVWWII =VIIVWWII =

=VIVWIWI=VIVWWIVWI =VIVWWIVW = ...
=OVW. s

B Proofs for Section 5

Before we present the proofs, we list some basic properties of Kronecker product
and sum.

Proposition 26. The following equations hold:

1. (A® B)(C® D)= AC ® BD,

2. (A+B)®(C+D)=A®C+A®D+B®C+B®D,
3. c(A®B)=(cA®B) =(A®cB),

4. c(A@ B) = (cA®cB),
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5. eA®B — oA @ B, O

Proof. [Theorem 20] Let Py = (01, 111,Q1,p1) and Py = (09, 13, Q2, pa). As
01 ® 09 is a stochastic vector and the reward vector is well defined, it suffices to
show that ITy ® IIs and Q1 ® IIs + 111 ® Qo satisfies the conditions of Definition
1.

— It is clear that (II; ® IT3) > 0. Also, (IIL ® IT3) -1 = 1 and (I} ® II5)? =
11, @ IT.

— By straightforward matrix manipulation (IT; ® IT3) - (Q1 ® ITx + 11} ® Q2) =
QM RIL+IT®Q2 and (QIIr+1T1 ®Q2)- (I Q) = Q1 @Iy + 111 ® Q2.

— By the distributivity of the Kronecker product (Q1 ® Ilo + I ® Q2) -1 = 0.

— Let ¢; > 0 and ¢5 > 0 be such that Q1 4+c¢11l; > 0 and Q3+ co Il > 0. Then
(c1+¢2) > 0 and we calculate Q1 ® ITo + IT1 ® Q2 + (¢1 + ¢2) - (II ® IT3) =
(Q1+all) @ IIy + II @ (Q2 + collz) > 0. O

Proof. [Theorem 21]
Let Py = (01,111,Q1,p1) and Py = (02,Il2,Q2, p2). Since the matrices
Q1 ® Il and IT; ® Q2 commute, and since P;(t)II; = II; P;(t) = P;(t) we derive:

(Hl ® Hg)e(Q1®H2+H1®Q2)t —
= (II, ®172)(6(Q1®H2) - e(Im®R2)t)
= (II ® IT5) (Y2 (Q1 © II)™t" /nl) - (X0 (1 ® Q2)™t"/n!)
(Hl ® HQ)(I® I+ Z ,1( 1 ® Hz)ntn/n!)
T+~ (I ®Q2)"t" /n!)
= (L M) (Il +37,°,(QF ® I3)i" n))
(IT@I+Y7 (T2 Q3)t/n!)
=(ILh@IL)Iel+Y " 1(@" ® I12)t" /n!)
TeI+3,,(Ih®Q5)t"/n!)
(Ih @ IL)I @1+ (32,2, Q1" /nl) @ )
TRI+ILH Y2, Qut"/n!)
(

(I RIL)IRT+ (et — )@ ) - (IR1 + II; ® (92t — 1))
=(IHRILYIRI+et* @Iy, — IR I,) - (IR + 11, ® 2 — IT, @ I)
(H1®H2+P1()®H2—H1®H2) (I®I+H1®€Q2t—ﬂl®_{)
=(Pt)@I)- (I 1+ 1) ®et — I, @)
( Pi(t) @ I + 1T, @ Pa(t) — Pi(t) ® II2)
1(t)®P2(t). (|
Proof. [Theorem 22]
Let Py = (01,111,Q1, ), P1 = (01,111,Qy,7p1), P2 = (02,112,Q2, p2), and
Py = (72, IT2, Qy, Do)

We first prove the compositionality of lumping. We show that £ ® L5 is an
ordinary lumping of

Pi||P2= (01 ®02, 111 @ I3,Q1 @ Iy + II1 @ Q2,01 ®1 + 1 ® po).
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Let Uy, Uy and U; ® Us be any distributors for Vi, Vo and V; ® Vs, respectively.
We obtain straightforwardly that (V1 @ Va)(Ur @ U2)(ITy @ IT3) (Vi @ V2) = (I ®
IL) (Vi @ Va), (Vi @ Va) (U @ Us)(Q1 ® IIx + ITh @ Q2)(V1 ® Vo) = (Q1 ® I +
IeQ)(VieVy)and (Vi@ Va)(U1 @Us)(p1 ®1+1®p2) =p1 @1 +1Q pa.

Next we prove that the lumped parallel composition is a parallel composition
of the lumped components. We easily get, (U1 @Us) (I, @1I13)(Vi®@Va) = I, 115
and (U1 @ U2)(Q1 @ Iz + 11 @ Q2)(Vi @ Va) = Q, ® II2 + 111 © Q5.

Now we consider reduction. Let Il = R1L, and Il = RyLs be canonical
product decompositions. Let L = L1 ® Ly and R = R; ® Ry. Note that L > 0
and R > 0 because Ly, Ly, R, Ro > 0. We also have L-1 = (L1 ® Ls)- (1®1) =
L;-1®L2-1=1®1 = 1. Since rank(A ® B) = rank(A) - rank(B), we get that
(L, R) is a canonical product decomposition of IT = II; ® II,. Reducing Py || P2
using the canonical product decomposition (L, R) gives us Py || Pa. O

Proof. [Theorem 24|

Let Py = (01,Qs,1,Qf.1,p1), P2 = (02,Qs.2,Qf.2,p2), P1 = (G1,Q51,Q1,01),
and Py = (72,Q, 2, @2, Pa). By Theorem 22, we get that £ ® Ly is a 7-
lumping for Py || Py. Let Wy and W3 be the 7-distributors used for the r-lumped
processes in the assumption, respectively. It is easy to see, using Definition 10,
the continuity result Theorem 25, and the definition of parallel composition for
discontinuous Markov reward chains, Definition 19, that Wy ® Wy is then a 7-
distributor for P || P2. The 7-lumped process corresponding to Wy ® Ws is then
exactly Py || Pa.

We next show the compositionality of 7-reduction. Let I1; = Ry Lq and Il; =
Ry Ly be canonical product decompositions. Put L = L1 ® Ly and R = R; ® Rs.
Then (L, R) is a canonical product decomposition of IT = IT; ® Il, as in the
proof of Theorem 22. This canonical product decomposition applied to Py || P2
produces Py || Py as a 7-reduced process. O

Proof. [Theorem 25]
Let Py = (01,Qs,1,Qf1,p1), P2 = (02, Qs,2, Qr.2, p2) and let their corresponding
limits be Q1 = (O’l,Hl,Ql,Hlpl), and Q2 = (02,H27Q27H2p2).

Using item 5. from Proposition 26 we get that II; ® Ils is the ergodic pro-
jection of Q1 ® Qf.2, ie. lim . e(@118Qs2)t — JT) @ II,. As before, using
the distributivity of the Kronecker product and the fact that IT; is a stochastic
matrix we derive Ql ® HQ + H2 (29 Ql = (Hl ® Hg)(QSJ D Qs,2)(Hl ® HQ) and
(I @I)(p1 ®1+1R®p2) =I1Hp1 @1+ 1R [aps. O
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