Convexity Meets Coalgebra in Probabilistic Systems

Ana Sokolova

of SALZBURG

Coalgebra Now @ FloC 2018

Coalgebras

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

$$\mathcal{D}X = \{\xi \colon X \to [0,1] \mid \sum_{x \in X} \xi(x) = 1, \operatorname{supp}(\xi) \text{ is finite} \}$$

for $f: X \to Y$ we have $\mathcal{D}f: \mathcal{D}X \to \mathcal{D}Y$ by

$$\mathcal{D}f(\xi)(y) = \sum_{x \in f^{-1}(y)} \xi(x) = \xi(f^{-1}(y))$$

Ana Sokolova

convex (affine) maps

$$h\left(\sum_{i=1}^{n} p_i a_i\right) = \sum_{i=1}^{n} p_i h(a_i)$$

satisfying

Projection

$$\sum_{i=1}^{n} p_i a_i = a_k, \quad p_k =$$

Barycenter

$$\sum_{i=1}^{n} p_i a_i = a_k, \quad p_k = 1$$
$$\sum_{i=1}^{n} p_i \left(\sum_{j=1}^{m} p_{i,j} a_j\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} p_i p_{i,j}\right) a_j$$

• objects $\begin{array}{c}
 \mathcal{D}A \\
 \frac{1}{\sqrt{a}} \\
 A
\end{array}$ $\begin{array}{c}
 satisfying \\
 A \xrightarrow{\eta} \mathcal{D}A \\
 \frac{\eta}{\sqrt{a}} \\
 \frac{\eta}{\sqrt{a}} \\
 A
\end{array}$ $\begin{array}{c}
 \mathcal{D}DA \xrightarrow{\mu} \mathcal{D}A \\
 \frac{\eta}{\sqrt{a}} \\
 \frac{\eta$

morphisms

 $\mathcal{D}A \xrightarrow{\mathcal{D}h} \mathcal{D}B$ $a \downarrow$ h

Free Convex Algebras

Convexity in Probabilistic Systems Semantics

Traces

Generative PTS

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

$$\operatorname{tr}\colon X \to \mathcal{D}A^*$$

Ana Sokolova Runiversity

Traces via determinisation

Generative PTS

Happens in convex algebra

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6}$$
 $\operatorname{tr}(x_1)(ac) = \frac{1}{8}$

tr: $X \rightarrow \mathcal{D}A^*$ trace = bisimilarity after determinisation

Ana Sokolova Runiversity

Trace axioms for generative PTS

Axioms for bisimilarity

Trace axioms for generative PTS

Generative PTS

The quest for completeness

Inspired lots of new research:

• A. S., H. Woracek Congruences of convex algebras JPAA'15

Ana Sokolova

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

finitely presentable (f.p.) = quotients of free finitely generated ones under finitely generated congruences

> smallest congruence containing a finite set of pairs

Theorem

Ana Sokolova

Every congruence of convex algebras is f.g. Hence f.p. = f.g.

[S., Woracek JPAA'15]

Proper semirings

Ésik&Maletti 2010

Ana Sokolova

Ana Sokolova

Proper functors Milius 2017

Proper functors enable "easy" completeness proofs of axiomatizations of expression languages...

proving properness is difficult

Ana Sokolova

Previous results

Ana Sokolova

We have

[S., Woracek FoSSaCS'18]

Framework for proving properness

Noetherian

Naturals ℕ

Ana Sokolova

Prove new semirings proper

• Non-negative rationals \mathbb{Q}_+

Non-negative reals

```
\mathbb{R}_+
```

1

 $\mathbf{1}$

Coa

Coalgebra Now @ FloC 8.7.18

Ana Sokolova

Belief-state transformers

MC

Ana Sokolova

Belief-state transformers

PA

Ana Sokolova

Probabilistic Automata

Ana Sokolova

PA coalgebraically

Ana Sokolova

Ana Sokolova

Ana Sokolova

Ana Sokolova

Coinductive proof method for distribution bisimilarity

Coalgebra Now @ FloC 8.7.18

Ana Sokolova

Termination?

 We looked at one-point extensions of convex algebras, for termination.

Every convex algebra can be extended by a single point

• What are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way

MC and PA belief-state transformers

[S., Woracek CALCO'17]

It's time to terminate this talk..

Ana Sokolova