The Theory of Traces for Nondeterminism and Probability

Ana Sokolova Of SALZBURG

Coalgebra Day @ NII, Tokyo 28.10.19

It's all about leaving a trace...

Joint work with

Ana Sokolova

- I will talk about:
- 1. The absolute basics of coalgebra
- 2. Trace semantics via determinisation
- 3. ...enabled by algebraic structure

Mathematical framework based on category theory for state-based systems semantics

1. The absolute basics of coalgebra

2. Trace semantics via determinisation

3. ...enabled by algebraic structure

- **2.** Trace semantics via determinisation
- 3. ...enabled by algebraic structure

3. ...enabled by algebraic structure

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

Uniform framework for dynamic transition systems, based on category theory.

Ana Sokolova

Ana Sokolova

Coalgebras

Uniform framework for dynamic transition systems, based on category theory.

Examples

NFA

Examples

NFA

a, b

 $x\downarrow_0$

Examples Rabin PA NFA $X \rightarrow [0, I] \times (\mathcal{D}_{\leq 1}X)^{A}$ $X \rightarrow 2 \times (\mathcal{P}X)^A$ $\frac{1}{2}$ a, ba, b $\xrightarrow{b} y \downarrow_1$ $x\downarrow_0$ Simple NPA $X \rightarrow ? \times (\mathcal{PD}X)^A$ $\frac{1}{2}$ x_1

 $\frac{1}{2}$

 x_3

 x_2

NII Tokyo 28.10.19

Examples

In general

In general

Automata

for a monad M

NFA X \rightarrow 2 x (\mathcal{P} X)^A

Rabin PA $X \rightarrow [0,1] \times (\mathcal{D}_{\leq 1}X)^{A}$

Simple PA $X \rightarrow ? \times (\mathcal{PD}X)^A$

Ana Sokolova

Simple PA $X \rightarrow ? \times (\mathcal{PD}X)^A$

Ana Sokolova

Simple PA $X \rightarrow ? \times (\mathcal{PD}X)^A$

Ana Sokolova

Ana Sokolova

Ana Sokolova

Trace Semantics

Ana Sokolova

language semantics

NFA = LTS + termination

NFA = LTS + termination

language semantics

$$\operatorname{tr} \colon X \to 2^{A^*}$$

 $tr(x) = (a \cup b)^* b = \{w \in \{a, b\}^* \mid w \text{ ends with a } b\}$

Rabin PA = RPTS + termination

$$\operatorname{tr}(x) = \left(a \mapsto \frac{1}{2}, aa \mapsto \frac{3}{4}, \dots\right) \qquad \qquad \operatorname{tr}: X \to [0, 1]^{A^*}$$

probabilistic

language

semantics

$$\operatorname{tr}(x) = \left(a \mapsto \frac{1}{2}, aa \mapsto \frac{3}{4}, \dots\right) \qquad \qquad \operatorname{tr}: X \to [0, 1]^{A^*}$$

Ana Sokolova

Simple NPA

Ana Sokolova

Simple NPA

$$\operatorname{tr}(x) = ???$$

$$\operatorname{tr} \colon X \to ?^{A^*}$$

nondet.

probabilistic

language

semantics?

Simple NPA

nondet. probabilistic language semantics?

> Existing definitions are "local" given in terms of schedulers

$$\operatorname{tr}(x) = ???$$

$$\operatorname{tr}: X \to ?^{A^*}$$

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

Ana Sokolova

Ana Sokolova

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

algebras of a monad M

Two approaches:

Hasuo, Jacobs, S. LMCS '07

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

algebras of a monad M

(1) and (2) are related

Ana Sokolova

Automaton with M-effects

Automaton with M-effects

Automaton with M-effects

$X \rightarrow O \times (MX)^A$

Determinisation

Ana Sokolova

Ana Sokolova

Ana Sokolova

 objects satisfying MA $\bigvee a$ $A \xrightarrow{\eta} MA$ $MMA \xrightarrow{\mu} MA$ A $\overset{a}{\searrow} \overset{\downarrow a}{A} \qquad \begin{array}{c} Ma & \downarrow \\ MA \xrightarrow{a} & A \end{array}$

morphisms

$$\begin{array}{c|c}
MA & h & MB \\
\downarrow a & & & \downarrow b \\
A & & & B
\end{array}$$

$$MA \xrightarrow{Mh} MB$$

$$a \downarrow \qquad \qquad \downarrow b$$

$$A \xrightarrow{h} B$$

NFA

 $X \rightarrow 2 \times (\mathcal{P}X)^A$

NFA

 $X \rightarrow 2 \times (\mathcal{P}X)^A$

NFA

 $X \rightarrow 2 \times (\mathcal{P}X)^A$

DFA $\mathcal{P}X \rightarrow 2 \times (\mathcal{P}X)^{A}$

Rabin PA

Rabin PA

Ana Sokolova

Ana Sokolova

Simple NPA

Simple NPA

Simple NPA

Simple NPA

Simple NPA

Simple NPA

DNPA $\mathscr{C} \times \rightarrow ? \times (\mathscr{C} \times)^{A}$ $\begin{array}{c} x_{1} \\ a \downarrow \\ x_{1} \oplus (x_{3} + \frac{1}{2} x_{2}) \end{array}$

Algebras for C

convex semilattices

finitely generated convex sets of distr...

Simple NPA

DNPA $\mathcal{C}X \rightarrow ? \times (\mathcal{C}X)^A$ x_1 a $x_1 \oplus (x_3 + \frac{1}{2} x_2)$

Algebras for C

convex semilattices

finitely generated convex sets of distr...

convex semilattices

finitely generated convex sets of distr...

Algebras for \mathcal{C}

convex semilattices

Algebras for *C*

finitely generated convex sets of distr...

Bonchi, S., Vignudelli '19

Bonchi, S.,

Vignudelli '19

convex semilattices

Algebras for *C*

finitely generated convex sets of distr...

 $\mathbb{A} = (A, \oplus, +_p)$

Ana Sokolova

convex semilattices

Algebras for *C*

finitely generated convex sets of distr...

 $\mathbb{A} = (A, \oplus, +_p)$ $p \in (0, 1)$

Bonchi, S., Vignudelli '19

Ana Sokolova

Ana Sokolova

Bonchi, S., Vignudelli '19

Bonchi, S., Vignudelli '19

> We explore the whole space and prove coincidence with "local" trace semantics

Algebras for "C"

nonempty f.g. convex subsets of **sub**distr... Bonchi, S., Vignudelli '19

> We explore the whole space and prove coincidence with "local" trace semantics

Algebras for "C"

nonempty f.g. convex subsets of **sub**distr... Bonchi, S., Vignudelli '19

> We explore the whole space and prove coincidence with "local" trace semantics

I.pointed convex semilattices

Intervals in [0,1] with min-max Minkowski [0,0] = "C"1

Ana Sokolova

Ana Sokolova

nonempty f.g. convex subsets of **sub**distr...

We explore the whole space and prove coincidence with "local" trace semantics

I.pointed convex semilattices

Ana Sokolova

Intervals in [0,1] with min-max Minkowski [0,0] = "C"1

Three things to take home:

- **1.** Semantics via determinisation is easy for automata with M-effects
- 2. Having a presentation for M gives us syntax
- 3. Having the syntax makes determinisation natural !

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for automata with M-effects
- 2. Having a presentation for M gives us syntax
- 3. Having the syntax makes determinisation natural !

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for automata with M-effects
- 2. Having a presentation for M gives us syntax

3. Having the syntax makes determinisation natural !

combining nondeterminism and probability becomes easy

Many general properties follow also a sound up-to context proof technique

Three things to take home:

- **1.** Semantics via determinisation is easy for automata with M-effects
- 2. Having a presentation for M gives us syntax

3. Having the syntax makes determinisation natural !

combining nondeterminism and probability becomes easy

Thank You !