
Local Linearizability for Concurrent
Container-Type Data Structures
Andreas Haas1, Thomas A. Henzinger2, Andreas Holzer3,
Christoph M. Kirsch4, Michael Lippautz1, Hannes Payer1,
Ali Sezgin5, Ana Sokolova4, and Helmut Veith6,7

1 Google Inc.

2 IST Austria, Austria

3 University of Toronto, Canada

4 University of Salzburg, Austria

5 University of Cambridge, UK

6 Vienna University of Technology, Austria

7 Forever in our hearts

Abstract
The semantics of concurrent data structures is usually given by a sequential specification and a
consistency condition. Linearizability is the most popular consistency condition due to its sim-
plicity and general applicability. Nevertheless, for applications that do not require all guarantees
o�ered by linearizability, recent research has focused on improving performance and scalability
of concurrent data structures by relaxing their semantics.

In this paper, we present local linearizability, a relaxed consistency condition that is applicable
to container-type concurrent data structures like pools, queues, and stacks. While linearizability
requires that the e�ect of each operation is observed by all threads at the same time, local
linearizability only requires that for each thread T, the e�ects of its local insertion operations and
the e�ects of those removal operations that remove values inserted by T are observed by all threads
at the same time. We investigate theoretical and practical properties of local linearizability and
its relationship to many existing consistency conditions. We present a generic implementation
method for locally linearizable data structures that uses existing linearizable data structures as
building blocks. Our implementations show performance and scalability improvements over the
original building blocks and outperform the fastest existing container-type implementations.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; E.1 [Data Structures]: Lists, stacks, and queues; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming

Keywords and phrases (concurrent) data structures, relaxed semantics, linearizability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.06

1 Introduction

Concurrent data structures are pervasive all along the software stack, from operating system
code to application software and beyond. Both correctness and performance are imperative
for concurrent data structure implementations. Correctness is usually specified by relat-
ing concurrent executions, admitted by the implementation, with sequential executions,
admitted by the sequential version of the data structure. The latter form the sequential
specification of the data structure. This relationship is formally captured by consistency
conditions, such as linearizability, sequential consistency, or quiescent consistency [22].

licensed under Creative Commons License CC-BY
27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 06; pp. 06:1–06:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.06
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

06:2 Local Linearizability for Concurrent Container-Type Data Structures

Linearizability [23] is the most accepted consistency condition for concurrent data struc-
tures due to its simplicity and general applicability. It guarantees that the e�ects of all
operations by all threads are observed consistently. This imposes the need of extensive
synchronization among threads which may in turn jeopardize performance and scalability.
In order to enhance performance and scalability of implementations, recent research has
explored relaxed sequential specifications [20, 35, 2], resulting in well-performing imple-
mentations of concurrent data structures [2, 16, 20, 25, 33, 6]. Except for [24], the space
of alternative consistency conditions that relax linearizability has been left unexplored to a
large extent. In this paper, we explore (part of) this gap by investigating local linearizability,
a novel consistency condition that is applicable to a large class of concurrent data struc-
tures that we call container-type data structures, or containers for short. Containers include
pools, queues, and stacks. A fine-grained spectrum of consistency conditions enables us to
describe the semantics of concurrent implementations more precisely, e.g. in the extended
version of our paper [15] we show that work stealing queues [30] which could only be proven
to be linearizable wrt pool are actually locally linearizable wrt double-ended queue.

T1

T2

enq(1) deq(2)

enq(2) deq(1)

The thread-induced history of thread T1
is enclosed by a dashed line while the
thread-induced history of thread T2 is
enclosed by a solid line.

Figure 1 Local Linearizability

Local linearizability is a (thread-)local consistency
condition that guarantees that insertions per thread are
observed consistently. While linearizability requires
a consistent view over all insertions, we only require
that projections of the global history—so called thread-
induced histories—are linearizable. The induced his-
tory of a thread T is a projection of a program ex-
ecution to the insert-operations in T combined with
all remove-operations that remove values inserted by
T irrespective of whether they happen in T or not. Then, the program execution is locally
linearizable i� each thread-induced history is linearizable. Consider the example (sequen-
tial) history depicted in Figure 1. It is not linearizable wrt a queue since the values are not
dequeued in the same order as they were enqueued. However, each thread-induced history
is linearizable wrt a queue and, therefore, the overall execution is locally linearizable wrt
a queue. In contrast to semantic relaxations based on relaxing sequential semantics such
as [20, 2], local linearizability coincides with sequential correctness for single-threaded his-
tories, i.e., a single-threaded and, therefore, sequential history is locally linearizable wrt a
given sequential specification if and only if it is admitted by the sequential specification.

Local linearizability is to linearizability what coherence is to sequential consistency. Co-
herence [19], which is almost universally accepted as the absolute minimum that a shared
memory system should satisfy, is the requirement that there exists a unique global order per
shared memory location. Thus, while all accesses by all threads to a given memory location
have to conform to a unique order, consistent with program order, the relative ordering of
accesses to multiple memory locations do not have to be the same. In other words, coherence
is sequential consistency per memory location. Similarly, local linearizability is linearizab-
ility per local history. In our view, local linearizability o�ers enough consistency for the
correctness of many applications as it is the local view of the client that often matters. For
example, in a locally linearizable queue each client (thread) has the impression of using a
perfect queue—no reordering will ever be observed among the values inserted by a single
thread. Such guarantees su�ce for many e-commerce and cloud applications. Implement-
ations of locally linearizable data structures have been successfully applied for managing
free lists in the design of the fast and scalable memory allocator scalloc [5]. Moreover, ex-
cept for fairness, locally linearizable queues guarantee all properties required from Dispatch

A. Haas et al. 06:3

Queues [1], a common concurrency programming mechanism on mobile devices.
In this paper, we study theoretical and practical properties of local linearizability. Local

linearizability is compositional—a history over multiple concurrent objects is locally linear-
izable i� all per-object histories are locally linearizable (see Thm. 12) and locally linearizable
container-type data structures, including queues and stacks, admit only “sane” behaviours—
no duplicated values, no values returned from thin air, and no values lost (see Prop. 4). Local
linearizability is a weakening of linearizability for a natural class of data structures including
pools, queues, and stacks (see Sec. 4). We compare local linearizability to linearizability,
sequential, and quiescent consistency, and to many shared-memory consistency conditions.

Finally, local linearizability leads to new e�cient implementations. We present a generic
implementation scheme that, given a linearizable implementation of a sequential specific-
ation S, produces an implementation that is locally linearizable wrt S (see Sec. 6). Our
implementations show dramatic improvements in performance and scalability. In most cases
the locally linearizable implementations scale almost linearly and even outperform state-of-
the-art pool implementations. We produced locally linearizable variants of state-of-the-art
concurrent queues and stacks, as well as of the relaxed data structures from [20, 25]. The
latter are relaxed in two dimensions: they are locally linearizable (the consistency condi-
tion is relaxed) and are out-of-order-relaxed (the sequential specification is relaxed). The
speedup of the locally linearizable implementation to the fastest linearizable queue (LCRQ)
and stack (TS Stack) implementation at 80 threads is 2.77 and 2.64, respectively. Verifica-
tion of local linearizability, i.e. proving correctness, for each of our new locally linearizable
implementations is immediate, given that the starting implementations are linearizable.

2 Semantics of Concurrent Objects

The common approach to define the semantics of an implementation of a concurrent data
structure is (1) to specify a set of valid sequential behaviors—the sequential specification, and
(2) to relate the admissible concurrent executions to sequential executions specified by the
sequential specification—via the consistency condition. That means that an implementation
of a concurrent data structure actually corresponds to several sequential data structures, and
vice versa, depending on the consistency condition used. A (sequential) data structure D is
an object with a set of method calls �. We assume that method calls include parameters,
i.e., input and output values from a given set of values. The sequential specification S of D

is a prefix-closed subset of �ú. The elements of S are called D-valid sequences. For ease of
presentation, we assume that each value in a data structure can be inserted and removed at
most once. This is without loss of generality, as we may see the set of values as consisting
of pairs of elements (core values) and version numbers, i.e. V = E ◊ N. Note that this
is a technical assumption that only makes the presentation and the proofs simpler, it is
not needed and not done in locally linearizable implementations. While elements may be
inserted and removed multiple times, the version numbers provide uniqueness of values. Our
assumption ensures that whenever a sequence s is part of a sequential specification S, then,
each method call in s appears exactly once. An additional core value, that is not an element,
is empty. It is returned by remove method calls that do not find an element to return. We
denote by Emp the set of values that are versions of empty, i.e., Emp = {empty} ◊ N.

I Definition 1 (Appears-before Order, Appears-in Relation). Given a sequence s œ �ú in which
each method call appears exactly once, we denote by ªs the total appears-before order over
method calls in s. Given a method call m œ �, we write m œ s for m appears in s. ù

CONCUR 2016

06:4 Local Linearizability for Concurrent Container-Type Data Structures

(1) ’i, j œ {1, . . . , n}. s = m1 . . . mn · mi = mj ∆ i = j

(2) ’x œ V. r(x) œ s ∆ i(x) œ s · i(x) ªs r(x)
(3) ’e œ Emp. ’x œ V. i(x) ªs r(e) ∆ r(x) ªs r(e)
(4) ’x, y œ V. i(x) ªs i(y) · r(y) œ s ∆ r(x) œ s · r(x) ªs r(y)
(5) ’x, y œ V. i(x) ªs i(y) ªs r(x) ∆ r(y) œ s · r(y) ªs r(x)

Table 1 The pool axioms (1), (2), (3); the queue order axiom (4); the stack order axiom (5)

Throughout the paper, we will use pool, queue, and stack as typical examples of con-
tainers. We specify their sequential specifications in an axiomatic way [21], i.e., as sets of
axioms that exactly define the valid sequences.

I Definition 2 (Pool, Queue, & Stack). A pool, queue, and stack with values in a set V

have the sets of methods �P = {ins(x), rem(x) | x œ V } fi {rem(e) | e œ Emp}, �Q =
{enq(x), deq(x) | x œ V } fi {deq(e) | e œ Emp}, and �S = {push(x), pop(x) | x œ V } fi
{pop(e) | e œ Emp}, respectively. We denote the sequential specification of a pool by SP ,
the sequential specification of a queue by SQ, and the sequential specification of a stack
by SS . A sequence s œ �ú

P belongs to SP i� it satisfies axioms (1) - (3) in Table 1—the
pool axioms—when instantiating i() with ins() and r() with rem(). We keep axiom (1)
for completeness, although it is subsumed by our assumption that each value is inserted
and removed at most once. Specification SQ contains all sequences s that satisfy the pool
axioms and axiom (4)—the queue order axiom—after instantiating i() with enq() and r()
with deq(). Finally, SS contains all sequences s that satisfy the pool axioms and axiom
(5)—the stack order axiom—after instantiating i() with push() and r() with pop(). ù

We represent concurrent executions via concurrent histories. An example history is
shown in Figure 1. Each thread executes a sequence of method calls from �; method
calls executed by di�erent threads may overlap (which does not happen in Figure 1). The
real-time duration of method calls is irrelevant for the semantics of concurrent objects;
all that matters is whether method calls overlap. Given this abstraction, a concurrent
history is fully determined by a sequence of invocation and response events of method calls.
We distinguish method invocation and response events by augmenting the alphabet. Let
�i = {mi | m œ �} and �r = {mr | m œ �} denote the sets of method-invocation events
and method-response events, respectively, for the method calls in �. Moreover, let I be the
set of thread identifiers. Let �I

i = {mk
i | m œ �, k œ I} and �I

r = {mk
r | m œ �, k œ I}

denote the sets of method-invocation and -response events augmented with identifiers of
executing threads. For example, mk

i is the invocation of method call m by thread k. Before
we proceed, we mention a standard notion that we will need in several occasions.

I Definition 3 (Projection). Let s be a sequence over alphabet � and M ™ �. By s|M
we denote the projection of s on the symbols in M , i.e., the sequence obtained from s by
removing all symbols that are not in M . ù

I Definition 4 (History). A (concurrent) history h is a sequence in (�I
i fi �I

r)ú where (1) no
invocation or response event appears more than once, i.e., if h = m1 . . . mn and mh = mk

ú(x)
and mj = ml

ú(x), for ú œ {i, r}, then h = j and k = l, and (2) if a response event mk
r appears

in h, then the corresponding invocation event mk
i also appears in h and mi ªh mr. ù

I Example 5. A queue history (left) and its formal representation as a sequence (right):

T1

T2

enq(2) deq(1)

enq(1) enq(2)1
i enq(1)2

i enq(2)1
rdeq(1)1

i enq(1)2
rdeq(1)1

r

A. Haas et al. 06:5

A history is sequential if every response event is immediately preceded by its match-
ing invocation event and vice versa. Hence, we may ignore thread identifiers and identify
a sequential history with a sequence in �ú, e.g., enq(1)enq(2)deq(2)deq(1) identifies the
sequential history in Figure 1.

A history h is well-formed if h|k is sequential for every thread identifier k œ I where h|k
denotes the projection of h on the set {mk

i | m œ �} fi {mk
r | m œ �} of events that are local

to thread k. From now on we will use the term history for well-formed history. Also, we
may omit thread identifiers if they are not essential in a discussion.

A history h determines a partial order on its set of method calls, the precedence order:

I Definition 6 (Appears-in Relation, Precedence Order). The set of method calls of a history h

is M(h) = {m | mi œ h}. A method call m appears in h, notation m œ h, if m œ M(h).
The precedence order for h is the partial order <h such that, for m, n œ h, we have that
m <h n i� mr ªh ni. By <k

h we denote <h|k, the subset of the precedence order that relates
pairs of method calls of thread k, i.e., the program order of thread k. ù

We can characterize a sequential history as a history whose precedence order is total. In
particular, the precedence order <s of a sequential history s coincides with its appears-before
order ªs. The total order for history s in Fig. 1 is enq(1) <s enq(2) <s deq(2) <s deq(1).

I Definition 7 (Projection to a set of method calls). Let h be a history, M ™ �, M I
i = {mk

i |
m œ M, k œ I}, and M I

r = {mk
r | m œ M, k œ I}. Then, we write h|M for h|(M I

i fi M I
r). ù

Note that h|M inherits h’s precedence order: m <h|M n … m œ M · n œ M · m <h n

A history h is complete if the response of every invocation event in h appears in h. Given
a history h, Complete(h) denotes the set of all completions of h, i.e., the set of all complete
histories that are obtained from h by appending missing response events and/or removing
pending invocation events. Note that Complete(h) = {h} i� h is a complete history.

A concurrent data structure D over a set of methods � is a (prefix-closed) set of concur-
rent histories over �. A history may involve several concurrent objects. Let O be a set of
concurrent objects with individual sets of method calls �q and sequential specifications Sq

for each object q œ O. A history h over O is a history over the (disjoint) union of method
calls of all objects in O, i.e., it has a set of method calls

t
qœO{q.m | m œ �q}. The added

prefix q. ensures that the union is disjoint. The projection of h to an object q œ O, denoted
by h|q, is the history with a set of method calls �q obtained by removing the prefix q. in
every method call in h|{q.m | m œ �q}.

I Definition 8 (Linearizability [23]). A history h is linearizable wrt the sequential specific-
ation S if there is a sequential history s œ S and a completion hc œ Complete(h) such
that (1) s is a permutation of hc, and (2) s preserves the precedence order of hc, i.e., if
m <hc n, then m <s n. We refer to s as a linearization of h. A concurrent data structure
D is linearizable wrt S if every history h of D is linearizable wrt S. A history h over a set
of concurrent objects O is linearizable wrt the sequential specifications Sq for q œ O if there
exists a linearization s of h such that s|q œ Sq for each object q œ O. ù

3 Local Linearizability

Local linearizability is applicable to containers whose set of method calls is a disjoint union
� = Ins fi Rem fi DOb fi SOb of insertion method calls Ins, removal method calls Rem, data-
observation method calls DOb, and (global) shape-observation method calls SOb. Insertions
(removals) insert (remove) a single value in the data set V or empty; data observations return

CONCUR 2016

06:6 Local Linearizability for Concurrent Container-Type Data Structures

a single value in V ; shape observations return a value (not necessarily in V) that provides
information on the shape of the state, for example, the size of a data structure. Examples
of data observations are head(x) (queue), top(x) (stack), and peek(x) (pool). Examples of
shape observations are empty(b) that returns true if the data structure is empty and false
otherwise, and size(n) that returns the number of elements in the data structure.

Even though we refrain from formal definitions, we want to stress that a valid sequence
of a container remains valid after deleting observer method calls:

S | (Ins fi Rem) ™ S. (1)

There are also containers with multiple insert/remove methods, e.g., a double-ended queue
(deque) is a container with insert-left, insert-right, remove-left, and remove-right methods,
to which local linearizability is also applicable. However, local linearizability requires that
each method call is either an insertion, or a removal, or an observation. As a consequence,
set is not a container according to our definition, as in a set ins(x) acts as a global observer
first, checking whether (some version of) x is already in the set, and if not inserts x. Also
hash tables are not containers for a similar reason.

Note that the arity of each method call in a container being one excludes data structures
like snapshot objects. It is possible to deal with higher arities in a fairly natural way,
however, at the cost of complicated presentation. We chose to present local linearizability
on simple containers only. We present the definition of local linearizability without shape
observations here and discuss shape observations in [15].

I Definition 9 (In- and out-methods). Let h be a container history. For each thread T

we define two subsets of the methods in h, called in-methods IT and out-methods OT of
thread T , respectively:

IT = {m | m œ M(h|T) fl Ins}
OT = {m(a) œ M(h) fl Rem | ins(a) œ IT } fi {m(e) œ M(h) fl Rem | e œ Emp}

fi {m(a) œ M(h) fl DOb | ins(a) œ IT }. ù

Hence, the in-methods for thread T are all insertions performed by T . The out-methods
are all removals and data observers that return values inserted by T . Removals that remove
the value empty are also automatically added to the out-methods of T as any thread (and
hence also T) could be the cause of “inserting” empty. This way, removals of empty serve as
means for global synchronization. Without them each thread could perform all its operations
locally without ever communicating with the other threads. Note that the out-methods OT

of thread T need not be performed by T , but they return values that are inserted by T .

I Definition 10 (Thread-induced History). Let h be a history. The thread-induced history
hT is the projection of h to the in- and out-methods of thread T , i.e., hT = h| (IT fi OT). ù

I Definition 11 (Local Linearizability). A history h is locally linearizable wrt a sequential
specification S if (1) each thread-induced history hT is linearizable wrt S, and (2) the
thread-induced histories hT form a decomposition of h, i.e., m œ h ∆ m œ hT for some
thread T . A data structure D is locally linearizable wrt S if every history h of D is locally
linearizable wrt S. A history h over a set of concurrent objects O is locally linearizable wrt
the sequential specifications Sq for q œ O if each thread-induced history is linearizable over O

and the thread-induced histories form a decomposition of h, i.e., q.m œ h ∆ q.m œ hT for
some thread T . ù

Local linearizability is sequentially correct, i.e., a single-threaded (necessarily sequential)
history h is locally linearizable wrt a sequential specification S i� h œ S. Like linearizabil-

A. Haas et al. 06:7

ity [22], local linearizability is compositional. The complete proof of the following theorem
and missing or extended proofs of all following properties can be found in [15].

I Theorem 12 (Compositionality). A history h over a set of objects O with sequential specific-
ations Sq for q œ O is locally linearizable i� h|q is locally linearizable wrt Sq for every q œ O.

Proof (Sketch). The property follows from the compositionality of linearizability and the
fact that (h|q)T = hT |q for every thread T and object q. J

The Choices Made. Splitting a global history into subhistories and requiring consistency
for each of them is central to local linearizability. While this is common in shared-memory
consistency conditions [19, 27, 28, 3, 14, 4, 18], our study of local linearizability is a first
step in exploring subhistory-based consistency conditions for concurrent objects.

We chose thread-induced subhistories since thread-locality reduces contention in concur-
rent objects and is known to lead to high performance as confirmed by our experiments. To
assign method calls to thread-induced histories, we took a data-centric point of view by (1)
associating data values to threads, and (2) gathering all method calls that insert/return a
data value into the subhistory of the associated thread (Def. 9). We associate data values to
the thread that inserts them. One can think of alternative approaches, for example, associ-
ate with a thread the values that it removed. In our view, the advantages of our choice are
clear: First, by assigning inserted values to threads, every value in the history is assigned
to some thread. In contrast, in the alternative approach, it is not clear where to assign the
values that are inserted but not removed. Second, assigning inserted values to the inserting
thread enables eager removals and ensures progress in locally linearizable data structures.
In the alternative approach, it seems like the semantics of removing empty should be local.

An orthogonal issue is to assign values from shape observations to threads. In [15],
we discuss two meaningful approaches and show how local linearizability can be extended
towards shape and data observations that appear in insertion operations of sets.

Finally, we have to choose a consistency condition required for each of the subhistories.
We chose linearizability as it is the best (strong) consistency condition for concurrent objects.

4 Local Linearizability vs. Linearizability

We now investigate the connection between local linearizability and linearizability.
I Proposition 1 (Lin 1). In general, linearizability does not imply local linearizability.

Proof. We provide an example of a data structure that is linearizable but not locally
linearizable. Consider a sequential specification SNearlyQ which behaves like a queue ex-
cept when the first two insertions were performed without a removal in between—then
the first two elements are removed out of order. Formally, s œ SNearlyQ i� (1) s =
s1enq(a)enq(b)s2deq(b)s3deq(a)s4 where s1enq(a)enq(b)s2deq(a)s3deq(b)s4 œ SQ and s1 œ
{deq(e) | e œ Emp}ú for some a, b œ V , or (2) s œ SQ and s ”= s1enq(a)enq(b)s2 for
s1 œ {deq(e) | e œ Emp}ú and a, b œ V . The example below is linearizable wrt SNearlyQ.
However, T1’s induced history enq(1)enq(2)deq(1)deq(2) is not.

T1

T2

enq(1) enq(2) deq(3) deq(2)

enq(3) deq(1)
J

The following condition on a data structure specification is su�cient for linearizability
to imply local linearizability and is satisfied, e.g., by pool, queue, and stack.

CONCUR 2016

06:8 Local Linearizability for Concurrent Container-Type Data Structures

T1

T2

i(1) r(empty)

i(2) r(1)

r(2)

Figure 2 LL, not SC (Pool, Queue, Stack)

T1

T2

i(1) r(1)

r(empty)

Figure 3 SC, not LL (Pool, Queue, Stack)

I Definition 13 (Closure under Data-Projection). A seq. specification S over � is closed
under data-projection1 i� for all s œ S and all V Õ ™ V , s|{m(x) œ � | x œ V Õ fi Emp} œ S. ù

For s = enq(1)enq(3)enq(2)deq(3)deq(1)deq(2) we have s œ SNearlyQ, but s|{enq(x), deq(x) |
x œ {1, 2} fi Emp} /œ SNearlyQ, i.e., SNearlyQ is not closed under data-projection.
I Proposition 2 (Lin 2). Linearizability implies local linearizability for sequential specifica-
tions that are closed under data-projection.

Proof (Sketch). The property follows from Definition 13 and Equation (1). J

There exist corner cases where local linearizability coincides with linearizability, e.g., for
S = ÿ or S = �ú, or for single-producer/multiple-consumer histories.

We now turn our attention to pool, queue, and stack.
I Proposition 3. The seq. specifications SP , SQ, and SS are closed under data-projection.

Proof (Sketch). Let s œ SP , V Õ ™ V , and let s

Õ = s| ({ins(x), rem(x) | x œ V Õ fi Emp}).
Then, it su�ces to check that all axioms for pool (Definition 2 and Table 1) hold for s

Õ. J

I Theorem 14 (Pool & Queue & Stack, Lin). For pool, queue, and stack, local linearizability
is (strictly) weaker than linearizability.

Proof. Linearizability implies local linearizability for pool, queue, and stack as a con-
sequence of Proposition 2 and Proposition 3. The history in Figure 2 is locally linearizable
but not linearizable wrt pool, queue and stack (after suitable renaming of method calls). J

Although local linearizability wrt a pool does not imply linearizability wrt a pool (The-
orem 14), it still guarantees several properties that ensure sane behavior as stated next.
I Proposition 4 (LocLin Pool). Let h be a locally linearizable history wrt a pool. Then:
1. No value is duplicated, i.e., every remove method appears in h at most once.
2. No out-of-thin-air values, i.e., ’x œ V. rem(x) œ h ∆ ins(x) œ h · rem(x)”<hins(x).
3. No value is lost, i.e., ’x œ V. ’e œ Emp. rem(e) <h rem(x) ∆ ins(x) ”<h rem(e) and

’x œ V. ’e œ Emp. ins(x) <h rem(e) ∆ rem(x) œ h · rem(e)”<hrem(x).

Proof. By direct unfolding of the definitions. J

Note that if a history h is linearizable wrt a pool, then all of the three stated properties
hold, as a consequence of linearizability and the definition of SP .

5 Local Linearizability vs. Other Relaxed Consistency Conditions

We compare local linearizability with other classical consistency conditions to better under-
stand its guarantees and implications.

1 The same notion has been used in [7] under the name closure under projection.

A. Haas et al. 06:9

Sequential Consistency (SC). A history h is sequentially consistent [22, 26] wrt a se-
quential specification S, if there exists a sequential history s œ S and a completion hc œ
Complete(h) such that (1) s is a permutation of hc, and (2) s preserves each thread’s pro-
gram order, i.e., if m <T

h n, for some thread T , then m <s n. We refer to s as a sequential
witness of h. A data structure D is sequentially consistent wrt S if every history h of D is
sequentially consistent wrt S.

Sequential consistency is a useful consistency condition for shared memory but it is not
really suitable for data structures as it allows for behavior that excludes any coordination
between threads [34]: an implementation of a data structure in which every thread uses a
dedicated copy of a sequential data structure without any synchronization is sequentially
consistent. A sequentially consistent queue might always return empty in one (consumer)
thread as the point in time of the operation can be moved, e.g., see Figure 3. In a producer-
consumer scenario such a queue might end up with some threads not doing any work.

I Theorem 15 (Pool, Queue & Stack, SC). For pool, queue, and stack, local linearizability
is incomparable to sequential consistency. J

Figures 2 and 3 give example histories that show the statement of Theorem 15. In contrast
to local linearizability, sequential consistency is not compositional [22].

(Quantitative) Quiescent Consistency (QC & QQC). Like linearizability and sequential
consistency, quiescent consistency [11, 22] also requires the existence of a sequential history,
a quiescent witness, that satisfies the sequential specification. All three consistency con-
ditions impose an order on the method calls of a concurrent history that a witness has to
preserve. Quiescent consistency uses the concept of quiescent states to relax the requirement
of preserving the precedence order imposed by linearizability. A quiescent state is a point
in a history at which there are no pending invocation events (all invoked method calls have
already responded). In a quiescent witness, a method call m has to appear before a method
call n if and only if there is a quiescent state between m and n. Method calls between
two consecutive quiescent states can be ordered arbitrarily. Quantitative quiescent consist-
ency [24] refines quiescent consistency by bounding the number of reorderings of operations
between two quiescent states based on the concurrent behavior between these two states.

The next result about quiescent consistency for pool is needed to establish the connection
between quiescent consistency and local linearizability.
I Proposition 5. A pool history h satisfying 1.-3. of Prop. 4 is quiescently consistent. J
From Prop. 4 and 5 follows that local linearizability implies quiescent consistency for pool.

I Theorem 16 (Pool, Queue & Stack, QC). For pool, local linearizability is (strictly) stronger
than quiescent consistency. For queue and stack, local linearizability is incomparable to
quiescent consistency. J

Local linearizability also does not imply the stronger condition of quantitative quies-
cent consistency. Like local linearizability, quiescent consistency and quantitative quiescent
consistency are compositional [22, 24]. For details, please see [15].

Consistency Conditions for Distributed Shared Memory. There is extensive research on
consistency conditions for distributed shared memory [3, 4, 8, 14, 18, 19, 26, 27, 28]. In [15],
we compare local linearizability against coherence, PRAM consistency, processor consistency,
causal consistency, and local consistency. All these conditions split a history into subhistories
and require consistency of the subhistories. For our comparison, we first define a sequential

CONCUR 2016

06:10 Local Linearizability for Concurrent Container-Type Data Structures

T1

T2

ins(1)

ins(2) head(2) head(1) head(2) head(1)

Figure 4 Problematic shared-memory history.

specification SM for a single memory location. We assume that each memory location is
preinitialized with a value vinit œ V . A read-operation returns the value of the last write-
operation that was performed on the memory location or vinit if there was no write-operation.
We denote write-operations by ins and read-operations by head. Formally, we define SM

as SM = {head(vinit)}ı · {ins(v)head(v)i | i Ø 0, v œ V }ı. Note that read-operations are
data observations and the same value can be read multiple times. For brevity, we only
consider histories that involve a single memory location. In the following, we summarize our
comparison. For details, please see [15].

While local linearizability is well-suited for concurrent data structures, this is not neces-
sarily true for the mentioned shared-memory consistency conditions. On the other hand,
local linearizability appears to be problematic for shared memory. Consider the locally lin-
earizable history in Figure 4. There, the read values oscillate between di�erent values that
were written by di�erent threads. Therefore, local linearizability does not imply any of the
shared-memory consistency conditions. In [15], we further show that local linearizability is
incomparable to all considered shared-memory conditions.

6 Locally Linearizable Implementations

In this section, we focus on locally linearizable data structure implementations that are gen-
eric as follows: Choose a linearizable implementation of a data structure � wrt a sequential
specification S�, and we turn it into a (distributed) data structure called LLD � that is
locally linearizable wrt S�. An LLD implementation takes several copies of � (that we call
backends) and assigns to each thread T a backend �T . Then, when thread T inserts an
element into LLD �, the element is inserted into �T , and when an arbitrary thread removes
an element from LLD �, the element is removed from some �T eagerly, i.e., if no element is
found in the attempted backend �T the search for an element continues through all other
backends. If no element is found in one round through the backends, then we return empty.
I Proposition 6 (LLD correctness). Let � be a data structure implementation that is linear-
izable wrt a sequential specification S�. Then LLD � is locally linearizable wrt S�.

Proof. Let h be a history of LLD �. The crucial observation is that each thread-induced
history hT is a backend history of �T and hence linearizable wrt S�. J

Any number of copies (backends) is allowed in this generic implementation of LLD �.
If we take just one copy, we end up with a linearizable implementation. Also, any way of
choosing a backend for removals is fine. However, both the number of backends and the
backend selection strategy upon removals a�ect the performance significantly. In our LLD
� implementations we use one backend per thread, resulting in no contention on insertions,
and always attempt a local remove first. If this does not return an element, then we continue
a search through all other backends starting from a randomly chosen backend.

LLD � is an implementation closely related to Distributed Queues (DQs) [16]. A DQ
is a (linearizable) pool that is organized as a single segment of length ¸ holding ¸ backends.
DQs come in di�erent flavours depending on how insert and remove methods are distributed

A. Haas et al. 06:11

across the segment when accessing backends. No DQ variant in [16] follows the LLD ap-
proach described above. Moreover, while DQ algorithms are implemented for a fixed number
of backends, LLD � implementations manage a segment of variable size, one backend per
(active) thread. Note that the strategy of selecting backends in the LLD � implement-
ations is similar to other work in work stealing [30]. However, in contrast to this work
our data structures neither duplicate nor lose elements. LLD (stack) implementations have
been successfully applied for managing free lists in the fast and scalable memory allocator
scalloc [5]. The guarantees provided by local linearizability are not needed for the correct-
ness of scalloc, i.e., the free lists could also use a weak pool (pool without a linearizable
emptiness check). However, the LLD stack implementations provide good caching behavior
when threads operate on their local stacks whereas a weak pool would potentially negatively
impact performance.

We have implemented LLD variants of strict and relaxed queue and stack implementa-
tions. None of our implementations involves observation methods, but the LLD algorithm
can easily be extended to support observation methods. For details, please see [15]. Finally,
let us note that we have also experimented with other locally linearizable implementations
that lacked the genericity of the LLD implementations, and whose performance evaluation
did not show promising results (see [15]). As shown in Sec. 4, a locally linearizable pool
is not a linearizable pool, i.e., it lacks a linearizable emptiness check. Indeed, LLD imple-
mentations do not provide a linearizable emptiness check, despite of eager removes. We
provide LL+D �, a variant of LLD �, that provides a linearizable emptiness check under
mild conditions on the starting implementation � (see [15] for details).

Experimental Evaluation. All experiments ran on a uniform memory architecture (UMA)
machine with four 10-core 2GHz Intel Xeon E7-4850 processors supporting two hardware
threads (hyperthreads) per core, 128GB of main memory, and Linux kernel version 3.8.0.
We also ran the experiments without hyper-threading resulting in no noticeable di�erence.
The CPU governor has been disabled. All measurements were obtained from the artifact-
evaluated Scal benchmarking framework [10, 17, 9], where you can also find the code of
all involved data structures. Scal uses preallocated memory (without freeing it) to avoid
memory management artifacts. For all measurements we report the arithmetic mean and
the 95% confidence interval (sample size=10, corrected sample standard deviation).

In our experiments, we consider the linearizable queues Michael-Scott queue (MS) [29]
and LCRQ [31] (improved version [32]), the linearizable stacks Treiber stack (Treiber) [36]
and TS stack [12], the k-out-of-order relaxed k-FIFO queue [25] and k-Stack [20] and linear-
izable well-performing pools based on distributed queues using random balancing [16] (1-RA
DQ for queue, and 1-RA DS for stack). For each of these implementations (but the pools)
we provide LLD variants (LLD LCRQ, LLD TS stack, LLD k-FIFO, and LLD k-Stack) and,
when possible, LL+D variants (LL+D MS queue and LL+D Treiber stack). Making the
pools locally linearizable is not promising as they are already distributed. Whenever LL+D
is achievable for a data structure implementation � we present only results for LL+D � as,
in our workloads, LLD � and LL+D � implementations perform with no visible di�erence.

We evaluate the data structures on a Scal producer-consumer benchmark where each
producer and consumer is configured to execute 106 operations. To control contention, we
add a busy wait of 5µs between operations. This is important as too high contention res-
ults in measuring hardware or operating system (e.g., scheduling) artifacts. The number of
threads ranges between 2 and 80 (number of hardware threads) half of which are producers
and half consumers. To relate performance and scalability we report the number of data

CONCUR 2016

06:12 Local Linearizability for Concurrent Container-Type Data Structures

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill

io
n

op
er

at
io

ns
pe

r
se

c
(m

or
e

is
be

tt
er

)

number of threads

MS
LCRQ

k-FIFO
LL+D MS

LLD LCRQ
LLD k-FIFO

1-RA DQ

“queue-like” data structures

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill

io
n

op
er

at
io

ns
pe

r
se

c
(m

or
e

is
be

tt
er

)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber
LLD TS Stack

LLD k-Stack
1-RA DS

“stack-like” data structures

Figure 5 Performance and scalability of producer-consumer microbenchmarks with an increasing
number of threads on a 40-core (2 hyperthreads per core) machine

structure operations per second. Data structures that require parameters to be set are con-
figured to allow maximum parallelism for the producer-consumer workload with 80 threads.
This results in k = 80 for all k-FIFO and k-Stack variants (40 producers and 40 consumers
in parallel on a single segment), p = 80 for 1-RA-DQ and 1-RA-DS (40 producers and
40 consumers in parallel on di�erent backends). The TS Stack algorithm also needs to be
configured with a delay parameter. We use optimal delay (7µs) for the TS Stack and zero
delay for the LLD TS Stack, as delays degrade the performance of the LLD implementation.

Figure 5 shows the results of the producer-consumer benchmarks. Similar to experi-
ments performed elsewhere [12, 20, 25, 31] the well-known algorithms MS and Treiber do
not scale for 10 or more threads. The state-of-the-art linearizable queue and stack algorithms
LCRQ and TS-interval Stack either perform competitively with their k-out-of-order relaxed
counter parts k-FIFO and k-Stack or even outperform and outscale them. For any imple-
mentation �, LLD � and LL+D � (when available) perform and scale significantly better
than � does, even slightly better than the state-of-the-art pool that we compare to. The best
improvement show LLD variants of MS queue and Treiber stack. The speedup of the locally
linearizable implementation to the fastest linearizable queue (LCRQ) and stack (TS Stack)
implementation at 80 threads is 2.77 and 2.64, respectively. The performance degradation
for LCRQ between 30 and 70 threads aligns with the performance of fetch-and-inc—the
CPU instruction that atomically retrieves and modifies the contents of a memory location—

A. Haas et al. 06:13

on the benchmarking machine, which is di�erent on the original benchmarking machine [31].
LCRQ uses fetch-and-inc as its key atomic instruction.

7 Conclusion & Future Work

Local linearizability splits a history into a set of thread-induced histories and requires con-
sistency of all such. This yields an intuitive consistency condition for concurrent objects
that enables new data structure implementations with superior performance and scalability.
Local linearizability has desirable properties like compositionality and well-behavedness for
container-type data structures. As future work, it is interesting to investigate the guarantees
that local linearizability provides to client programs along the line of [13].

Acknowledgments

This work has been supported by the National Research Network RiSE on Rigorous Systems
Engineering (Austrian Science Fund (FWF): S11402-N23, S11403-N23, S11404-N23, S11411-
N23), a Google PhD Fellowship, an Erwin Schrödinger Fellowship (Austrian Science Fund
(FWF): J3696-N26), EPSRC grants EP/H005633/1 and EP/K008528/1, the Vienna Science
and Technology Fund (WWTF) trough grant PROSEED, the European Research Council
(ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under
grant Z211-N23 (Wittgenstein Award).

References
1 URL: https://developer.apple.com/library/ios/documentation/General/

Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.
html.

2 Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed Consistency for
Improved Concurrency. In OPODIS, pages 395–410, 2010.

3 M. Ahamad, R.A. Bazzi, R. John, P. Kohli, and G. Neiger. The Power of Processor
Consistency. In SPAA, pages 251–260, 1993.

4 M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W. Hutto. Causal memory: definitions,
implementation, and programming. Distributed Computing, 9(1):37–49, 1995.

5 M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova. Fast, multicore-scalable, low-
fragmentation memory allocation through large virtual memory and global data structures.
In OOPSLA, pages 451–469, 2015.

6 D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The SprayList: A Scalable Relaxed Priority
Queue. In PPoPP, pages 11–20, 2015.

7 A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. On Reducing Linearizability to State
Reachability. In ICALP, pages 95–107, 2015.

8 S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated Data Types: Specific-
ation, Verification, Optimality. In POPL, pages 271–284, 2014.

9 POPL 2015 Artifact Evaluation Committee. POPL 2015 Artifact Evaluation. Accessed on
01/14/2015. URL: http://popl15-aec.cs.umass.edu/home/.

10 Computational Systems Group, University of Salzburg. Scal: High-Performance Multicore-
Scalable Computing. URL: http://scal.cs.uni-salzburg.at.

11 J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and H. Wehrheim. Quiescent
Consistency: Defining and Verifying Relaxed Linearizability. In FM, pages 200–214, 2014.

12 M. Dodds, A. Haas, and C.M. Kirsch. A Scalable, Correct Time-Stamped Stack. In POPL,
pages 233–246, 2015.

CONCUR 2016

https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
http://popl15-aec.cs.umass.edu/home/
http://scal.cs.uni-salzburg.at

06:14 Local Linearizability for Concurrent Container-Type Data Structures

13 I. Filipovic, P.W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

14 J.R. Goodman. Cache consistency and sequential consistency. University of Wisconsin-
Madison, Computer Sciences Department, 1991.

15 A. Haas, T.A. Henzinger, A. Holzer, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
A. Sokolova, and H. Veith. Local Linearizability. CoRR, abs/1502.07118, 2016.

16 A. Haas, T.A. Henzinger, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin, and A. Sokolova.
Distributed Queues in Shared Memory: Multicore Performance and Scalability through
Quantitative Relaxation. In CF, 2013.

17 A. Haas, T. Hütter, C.M. Kirsch, M. Lippautz, M. Preishuber, and A. Sokolova. Scal: A
Benchmarking Suite for Concurrent Data Structures. In NETYS, pages 1–14, 2015.

18 A. Heddaya and H. Sinha. Coherence, Non-coherence and Local Consistency in Distributed
Shared Memory for Parallel Computing. Technical report, Computer Science Department,
Boston University, 1992.

19 J.L. Hennessy and D.A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

20 T.A. Henzinger, C.M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation
of concurrent data structures. In POPL, pages 317–328, 2013.

21 T.A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-Oriented Linearizability Proofs. In
CONCUR, pages 242–256, 2013.

22 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

23 M. Herlihy and J.M. Wing. Linearizability: A Correctness Condition for Concurrent Ob-
jects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

24 R. Jagadeesan and J. Riely. Between Linearizability and Quiescent Consistency - Quantit-
ative Quiescent Consistency. In ICALP, pages 220–231, 2014.

25 C.M. Kirsch, M. Lippautz, and H. Payer. Fast and Scalable, Lock-free k-FIFO Queues. In
PaCT, pages 208–223, 2013.

26 L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess Programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

27 R.J. Lipton and J.S. Sandberg. PRAM: A Scalable Shared Memory. Technical Report Nr.
180, Princeton University, Department of Computer Science, 1988.

28 R.J. Lipton and J.S. Sandberg. Oblivious memory computer networking, September 28
1993. CA Patent 1,322,609.

29 M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC, pages 267–275, 1996.

30 M.M. Michael, M.T. Vechev, and V.A. Saraswat. Idempotent Work Stealing. In PPoPP,
pages 45–54, 2009.

31 A. Morrison and Y. Afek. Fast Concurrent Queues for x86 Processors. In PPoPP, pages
103–112, 2013.

32 Multicore Computing Group, Tel Aviv University. Fast Concurrent Queues for x86 Pro-
cessors. Accessed on 01/28/2015. URL: http://mcg.cs.tau.ac.il/projects/lcrq/.

33 H. Rihani, P. Sanders, and R. Dementiev. MultiQueues: Simpler, Faster, and Better
Relaxed Concurrent Priority Queues. CoRR, 2014. arXiv:1411.1209.

34 A. Sezgin. Sequential Consistency and Concurrent Data Structures. CoRR, abs/1506.04910,
2015.

35 N. Shavit. Data Structures in the Multicore Age. CACM, 54(3):76–84, March 2011.
36 R.K. Treiber. Systems Programming: Coping with Parallelism. Technical Report RJ-5118,

IBM Research Center, 1986.

http://mcg.cs.tau.ac.il/projects/lcrq/
http://arxiv.org/abs/1411.1209

	Introduction
	Semantics of Concurrent Objects
	Local Linearizability
	Local Linearizability vs. Linearizability
	Local Linearizability vs. Other Relaxed Consistency Conditions
	Locally Linearizable Implementations
	Conclusion & Future Work

