Trace Semantics via Determinization

Bart Jacobs, Alexandra Silva, and Ana Sokolova Radboud University Nijmegen and University of Salzburg

COIN, Radboud University Nijmegen, 6.12.2012

Trace semantics for more coalgebras!

Kleisli trace semantics [HJ5'07]

Traces via the "generalized powerset construction" --- determinization [588R'10]

traces as "coalgebraic language equivalence"

Kleisli trace semantics [HJ5'07]

Traces via the "generalized powerset construction" --- determinization [588R'10]

Kleisli trace semantics [HJ5'07]

Traces via the "generalized powerset construction" --- determinization [588R'10]

TF-coalgebras

Kleisli trace semantics [HJ5'07]

Traces via the "generalized powerset construction" --- determinization [588R'10]

TF-coalgebras

Kleisli trace semantics [HJ5'07]

T - monad, Kleisli category

Traces via the "generalized powerset construction" --- determinization [588R'10]

T - monad, Eilenberg-Moore category

TF-coalgebras

Kleisli trace semantics [HJ5'07]

```
T - monad, Kleisli category

Needed: FT => TF + .....
```

Traces via the "generalized powerset construction" --- determinization [5BBR'10]

T - monad, Eilenberg-Moore category

TF-coalgebras

Kleisli trace semantics [HJ5'07]

```
T - monad, Kleisli category

Needed: FT => TF + .....
```

Traces via the "generalized powerset construction" --- determinization [588R'10]

```
T - monad, Eilenberg-Moore category
```

Needed: TG => GT + final G

Trace semantics for (more) coalgebras

Kleisli trace semantics [HJ5'07]

Traces via the "generalized powerset construction" [5BBR'10]

reactive
GT-coalgebras

generative

Trace semantics for (more) coalgebras

generative

TF-coalgebras

Kleisli trace semantics [HJ5'07]

Examples:
$$\mathfrak{P}(1 + A \times (-))$$
 NFA

$$\mathcal{D}(1 + A \times (-))$$
 PTS

Traces via the "generalized powerset construction" [5BBR'10]

reactive

Trace semantics for (more) coalgebras

generative

TF-coalgebras

Kleisli trace semantics [HJ5'07]

Examples: $\mathfrak{P}(1 + A \times (-))$ NFA

 $\mathcal{D}(1+A\times(-))$ PTS

Traces via the "generalized powerset construction" [5BBR'10]

reactive

GT-coalgebras

Examples: $2 \times \mathcal{P}^A$ NFA

 $S \times \mathcal{M}_S^A$ WTS

Semantics via finality (coinduction)

of coalgebras over Kleisli or EM categories

Semantics via finality (coinduction)

of coalgebras over Kleisli or EM categories

Final coalgebra semantics:

$$\begin{array}{ccc} X - - \stackrel{\mathrm{beh}}{-} & > Z \\ c \downarrow & & \downarrow \cong \\ HX - \stackrel{H}{-} & > HZ \end{array}$$

Semantics via finality (coinduction)

of coalgebras over Kleisli or EM categories

Final coalgebra semantics:

$$X - -\frac{\text{beh}}{-} \to Z$$

$$c \downarrow \qquad \qquad \downarrow \cong$$

$$HX - -\frac{H \text{ beh}}{-} \to HZ$$

```
bisimilarity in Sets (for wpp functors) trace semantics in \mathcal{K}\ell(T) (for TF-coalgebras) coalgebraic language eq. in \mathcal{E}\mathcal{M}(T) (for GT-coalgebras)
```

Semantics via finality (coinduction)

of coalgebras over Kleisli or EM categories

Final coalgebra semantics:

$$X - -\frac{\text{beh}}{-} \to Z$$

$$c \downarrow \qquad \qquad \downarrow \cong$$

$$HX - -\frac{H \text{ beh}}{-} \to HZ$$

bisimilarity in Sets (for wpp functors) trace semantics in $\mathcal{K}\ell(T)$ (for TF-coalgebras) coalgebraic language eq. in $\mathcal{E}\mathcal{M}(T)$ (for GT-coalgebras)

final coalgebras are hard to get

Semantics via finality (coinduction)

of coalgebras over Kleisli or EM categories

Final coalgebra semantics:

$$X - -\frac{\text{beh}}{-} \to Z$$

$$c \downarrow \qquad \qquad \downarrow \cong$$

$$HX - -\frac{H \text{ beh}}{-} \to HZ$$

bisimilarity in Sets (for wpp functors) trace semantics in $\mathcal{K}\ell(T)$ (for TF-coalgebras) coalgebraic language eq. in $\mathcal{E}\mathcal{M}(T)$ (for GT-coalgebras)

final coalgebras are hard to get

final coalgebras are easy

The categories via the comparison/extension functor

The categories via the comparison/extension functor

$$E(X) = \begin{pmatrix} T^2 X \\ \downarrow \mu \\ TX \end{pmatrix} \quad E(f) = \mu \circ T(f)$$

The categories via the comparison/extension functor

$$E(X) = \begin{pmatrix} T^2 X \\ \downarrow \mu \\ TX \end{pmatrix} \qquad E(f) = \mu \circ T(f)$$

Kleisli extension

 $f \colon X \to Y \text{ in } \mathcal{K}\ell(T)$

 $f \colon X \to TY \text{ in } \mathbb{C}$

The categories via the comparison/extension functor

$$E(X) = \begin{pmatrix} T^2 X \\ \downarrow \mu \\ TX \end{pmatrix} \qquad E(f) = \mu \circ T(f)$$

Kleisli extension

 $f \colon X \to Y \text{ in } \mathcal{K}\ell(T)$

 $f \colon X \to TY \text{ in } \mathbb{C}$

It's all about liftings!

It's all about liftings

The big picture

It's all about liftings

The big picture

Eventually we will lift E

It's all about liftings

The big picture

Eventually we will lift E

But before that, some intuition...

 $\mathcal{P}(1+A\times(-))$ NFA

$$x_1$$
 x_2
 x_3
 b
 x_4

$$2 \times (-)^A$$
 DFA

TF

$$\mathcal{P}(1 + A \times (-))$$
 NFA

$$x_1$$
 x_2
 x_3
 b
 x_4

$$2 \times (-)^A$$
 DFA

$$\begin{array}{c}
x_1 \\
a \downarrow \\
\{x_2, x_3\}^b \rightarrow x_3 \bigcirc b \\
\downarrow \\
\downarrow \\
*
\end{array}$$

Ana Sokolova University of Salzburg

COIN 6.12.2012

$$\mathfrak{D}(1+A\times(-))$$
 PTS

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 y
 $y_c, \frac{1}{2}$
 x_4
 x_5
 1
 y
 y
 y
 x

$[0,1] \times (-)^A$ DFA

$$\begin{array}{c}
x_1 \\
 & \downarrow a \\
 & \frac{1}{2}x_2 + \frac{1}{4}x_3 \\
 & \frac{1}{6}x_4 \\
 & \frac{1}{6} \downarrow \\
 & *
\end{array}$$

$$\begin{array}{c}
x_1 \\
 & \frac{1}{4}x_3 \\
 & \frac{1}{8}x_5 \\
 & \downarrow \frac{1}{8} \\
 & *
\end{array}$$

TF

$$\mathcal{D}(1 + A \times (-))$$
 PTS

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 y
 $y, c, \frac{1}{2}$
 x_4
 x_5
 1
 y
 y
 y
 x

$[0,1] \times (-)^A$ DFA

$$\begin{array}{c}
x_1 \\
 & \downarrow a \\
 & \frac{1}{2}x_2 + \frac{1}{4}x_3 \\
 & \frac{1}{6}x_4 \\
 & \frac{1}{6}\psi \\
 & *
\end{array}$$

$$\begin{array}{c}
x_1 \\
 & \frac{1}{4}x_3 \\
 & \frac{1}{8}x_5 \\
 & \psi^{\frac{1}{8}} \\
 & *
\end{array}$$

TF

$$\mathcal{D}(1 + A \times (-))$$
 PTS

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$
 y
 y
 $c, \frac{1}{2}$
 x_4
 x_5
 1
 y
 y
 x
 y
 x

G on T(-)

$$[0,1] \times (-)^A$$
 DFA

$$X \xrightarrow{beh} [0,1]^{A^*}$$

$$c \downarrow \cong \qquad \qquad \cong$$

$$GX \xrightarrow{Gbeh} G([0,1]^{A^*})$$

Gbeh

Laws and liftings

$$\begin{array}{c} \mathcal{K}\ell\text{-law }\lambda\colon FT\Rightarrow TF\\ \\ \mathcal{K}\ell(T)\stackrel{\hat{F}}{\longrightarrow}\mathcal{K}\ell(T)\\ \\ \overset{\forall}{\mathbb{C}}\stackrel{F}{\longrightarrow}\mathbb{C} \end{array}$$

Laws and liftings

$$\begin{array}{c} \mathcal{K}\ell\text{-law }\lambda\colon FT\Rightarrow TF\\ \hline \\ \mathcal{K}\ell(T)\stackrel{\hat{F}}{\longrightarrow}\mathcal{K}\ell(T)\\ \begin{matrix} \psi & & \psi \\ \mathbb{C} & & \mathcal{C} \end{matrix}$$

$$\begin{array}{c|c}
\mathbb{E}\mathcal{M}\text{-law }\rho\colon TG\Rightarrow GT \\
\mathbb{E}\mathcal{M}(T) & \xrightarrow{\hat{G}} & \mathbb{E}\mathcal{M}(T) \\
\downarrow^{\psi} & \xrightarrow{G} & \psi \\
\mathbb{C} & \xrightarrow{G} & \mathbb{C}
\end{array}$$

Laws and liftings

$$\frac{\mathcal{K}\ell\text{-law }\lambda\colon FT\Rightarrow TF}{\mathcal{K}\ell(T)\stackrel{\hat{F}}{\longrightarrow}\mathcal{K}\ell(T)}$$

$$\psi \qquad \qquad \psi \qquad \qquad \psi$$

$$\mathbb{C}\stackrel{F}{\longrightarrow}\mathbb{C}$$

$$\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT$$

$$\mathcal{EM}(T) \xrightarrow{\hat{G}} \mathcal{EM}(T)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}$$

$$\mathcal{F}_{\mathcal{EM}}\left(X \xrightarrow{c} GTX\right) = \begin{pmatrix} T^2X \\ \downarrow \mu \\ TX \end{pmatrix} \xrightarrow{G\mu \circ \rho_{TX} \circ T(c)} \hat{G} \begin{pmatrix} T^2X \\ \downarrow \mu \\ TX \end{pmatrix} \qquad \mathcal{F}_{\mathcal{EM}}(f) = T(f)$$

Determinization" (in the GPC)

Laws and liftings

$$\frac{\mathcal{K}\ell\text{-law }\lambda\colon FT\Rightarrow TF}{\mathcal{K}\ell(T)\stackrel{\hat{F}}{\longrightarrow}\mathcal{K}\ell(T)}$$

$$\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT$$

$$\mathcal{EM}(T) \xrightarrow{\hat{G}} \mathcal{EM}(T)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}$$

$$\mathcal{F}_{\mathcal{EM}}\left(X \xrightarrow{c} GTX\right) = \begin{pmatrix} T^2X \\ \downarrow \mu \\ TX \end{pmatrix} \xrightarrow{G\mu \circ \rho_{TX} \circ T(c)} \hat{G} \begin{pmatrix} T^2X \\ \downarrow \mu \\ TX \end{pmatrix} \qquad \mathcal{F}_{\mathcal{EM}}(f) = T(f)$$

$$\mathcal{F}_{\mathcal{EM}}(f) = T(f)$$

 $\mathbf{CoAlg}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \mathbf{CoAlg}(\hat{G})$ $\rightarrow \mathcal{EM}(T)$ free functor

'Determinization" (in the GPC)

The final coalgebra also lifts

COIN 6.12.2012

GT-coalgebras (GPC)

Assume $TG \Rightarrow GT$ and final $Z \stackrel{\sim}{\Rightarrow} GZ$ exists

- \circ Given a coalgebra $X \xrightarrow{c} GTX$
- The Determinize $\mathcal{F}_{\mathcal{EM}}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$

$$\hat{G}(TX) \xrightarrow{\hat{G}(beh)} \hat{G}Z$$

$$f_{\mathcal{E}M}(c) \Big| \qquad \Big| \cong$$

$$TX \xrightarrow{beh} Z$$

GT-coalgebras (GPC)

Assume $TG \Rightarrow GT$ and final $Z \stackrel{\sim}{\Rightarrow} GZ$ exists

- \circ Given a coalgebra $X \xrightarrow{c} GTX$
- The Determinize $\mathcal{F}_{\mathcal{EM}}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$

 $\hat{G}(TX) \xrightarrow{\hat{G}(beh)} \hat{G}Z$ Get semantics by $X \xrightarrow{\eta} TX \xrightarrow{beh} Z$

GT-coalgebras (GPC)

Assume $TG \Rightarrow GT$ and final $Z \stackrel{\sim}{\Rightarrow} GZ$ exists

- \circ Given a coalgebra $X \xrightarrow{c} GTX$
- The Determinize $\mathcal{F}_{\mathcal{EM}}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$

Determinization

Works for deterministic automata

$$G = T(B) \times (-)^A$$

strong

Trace semantics

$$\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT$$

$$\mathcal{EM}(T) \xrightarrow{\hat{G}} \mathcal{EM}(T)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}$$

$$\mathbf{CoAlg}(TF) \xrightarrow{?} \mathbf{CoAlg}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \mathbf{CoAlg}(\hat{G})$$

$$\begin{array}{c} \mathcal{K}\ell\text{-law}(\lambda\colon FT\Rightarrow TF)\\ \\ \mathcal{K}\ell(T) \stackrel{\hat{F}}{\longrightarrow} \mathcal{K}\ell(T)\\ \\ \mathcal{C} \stackrel{F}{\longrightarrow} \mathcal{C} \end{array}$$

$$\begin{array}{c|c}
\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT \\
\mathcal{EM}(T) \stackrel{\hat{G}}{\longrightarrow} \mathcal{EM}(T) \\
\downarrow^{\psi} \qquad \qquad \qquad \downarrow^{\psi} \\
\mathbb{C} \stackrel{G}{\longrightarrow} \mathbb{C}
\end{array}$$

$$\operatorname{\mathbf{CoAlg}}(TF) \xrightarrow{?} \operatorname{\mathbf{CoAlg}}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \operatorname{\mathbf{CoAlg}}(\hat{G})$$

Extension natural tr.

$$e: TF \Rightarrow GT$$

connecting the laws

$$\begin{array}{c} & \mathcal{K}\ell\text{-law}(\lambda\colon FT\Rightarrow TF) \\ & \mathcal{K}\ell(T) \stackrel{\hat{F}}{\longrightarrow} \mathcal{K}\ell(T) \\ & \stackrel{\forall}{\mathbb{C}} \stackrel{F}{\longrightarrow} \mathbb{C} \end{array}$$

$$\operatorname{\mathbf{CoAlg}}(TF) \xrightarrow{?} \operatorname{\mathbf{CoAlg}}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \operatorname{\mathbf{CoAlg}}(\hat{G})$$

Extension natural tr.

$$\mathfrak{e}\colon TF\Rightarrow GT$$
 connecting the laws

$$\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT$$

$$\mathcal{EM}(T) \xrightarrow{\hat{G}} \mathcal{EM}(T)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}$$

$$\mathbf{CoAlg}(TF) \xrightarrow{?} \mathbf{CoAlg}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \mathbf{CoA} \begin{array}{c} \hat{E}(c) = \mathfrak{e} \circ \mu \circ T(c) \\ \hat{E}(f) = E(f) \end{array}$$

Extension natural tr.

$$\mathfrak{e}\colon TF\Rightarrow GT$$
 connecting the laws

$$\mathcal{EM}\text{-law } \rho \colon TG \Rightarrow GT$$

$$\mathcal{EM}(T) \xrightarrow{\hat{G}} \mathcal{EM}(T)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}$$

$$\mathbf{CoAlg}(TF) \xrightarrow{?} \mathbf{CoAlg}(GT) \xrightarrow{\mathcal{F}_{\mathcal{EM}}} \mathbf{CoA} \xrightarrow{\hat{E}(c) = \mathfrak{e} \circ \mu \circ T(c)} \hat{E}(f) = E(f)$$

Extension natural tr.

$$\mathfrak{e}\colon TF\Rightarrow GT$$
 connecting the laws

$$\mathsf{Coalg}(\hat{F}) \xrightarrow{\hat{E}} \mathsf{Coalg}(\hat{G})$$

$$\mathcal{K}(T) \xrightarrow{E} \mathcal{E}\mathcal{M}(T)$$

Assume

$$FT\Rightarrow TF$$
 $TG\Rightarrow GT$ $\mathfrak{e}\colon TF\Rightarrow GT$ and final $Z\stackrel{\cong}{\Rightarrow} GZ$ exists

- \circ Given a coalgebra $X \xrightarrow{c} TFX$

$$\hat{E}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$$

$$X \xrightarrow{\eta} TX \xrightarrow{beh} Z$$

Assume

$$FT\Rightarrow TF$$
 $TG\Rightarrow GT$ $\mathfrak{e}\colon TF\Rightarrow GT$ and final $Z\stackrel{\cong}{\Rightarrow} GZ$ exists

- \circ Given a coalgebra $X \xrightarrow{c} TFX$

$$\hat{\mathbf{E}}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$$

$$\hat{G}(TX) \xrightarrow{\hat{G}(beh)} \hat{G}Z$$

$$\hat{E}(c) \Big| \qquad \qquad \hat{E}(c) \Big| \cong$$
 Get semantics by $X \xrightarrow{\eta} TX \xrightarrow{beh} Z$

Assume

$$FT\Rightarrow TF$$
 $TG\Rightarrow GT$ $\mathfrak{e}\colon TF\Rightarrow GT$ and final $Z\stackrel{\cong}{\Rightarrow} GZ$ exists

- $lackbox{Given a coalgebra} \quad X \stackrel{c}{\rightarrow} TFX$
- *Determinize

$$\hat{E}(c) = (TX, \mu) \rightarrow \hat{G}(TX, \mu)$$

Determinization

Determinization
$$\hat{G}(TX) \xrightarrow{\hat{G}(beh)} \hat{G}Z \\ \hat{E}(c) \downarrow \qquad \qquad \cong \\ \text{Get semantics by } X \xrightarrow{\eta} TX \xrightarrow{beh} Z$$

Works for all examples we have seen

Trace semantics

 $\mathcal{P}(A \times \mathcal{D})$ SSeg

 $\mathcal{P}(A \times (-))$ LTS

 $\mathcal{P}(A \times \mathcal{D})$ SSeg

 $\mathcal{P}(A \times (-))$ LTS

 $\mathcal{P}(A \times \mathcal{D})$ SSeg

 $\mathcal{P}(A \times (-))$ LTS

 $\mathcal{P}(A \times \mathcal{D})$ SSeg

 $\mathcal{P}(A \times (-))$ LTS

There is a distributive law that provides this non-determinization

LTS-semantics for SSeg

 \mathcal{P}_{ω} \mathcal{D}_{ω}

Relation to Kleisli traces

Assume F has an initial algebra $\iota : F(W) \stackrel{\sim}{\Rightarrow} W$ and $\mathfrak{F}(\iota^{-1}): W \to \widehat{F}(W)$ is final

 $lackbox{Given a coalgebra} \quad X \stackrel{c}{\rightarrow} TFX$

 $\hat{G}(TX) \longrightarrow \hat{G}(TW) - - - - > \hat{G}(Z)$ $X = \begin{array}{ccc} & \hat{E}(c) & & \cong & \hat{E}(\mathcal{F}(\iota^{-1})) & \cong & \\ X = & \to TX & & \xrightarrow{\hat{E}(\operatorname{tr}_{\mathcal{K}\ell}(c))} & \to TW - - - - - - - > Z \end{array}$ $\operatorname{tr}_{\mathcal{K}\ell}(c)$

holds when Kleisli traces exist

Extension semantics (trace)

Relation to Kleisli traces

Assume

has an initial algebra $\iota\colon F(W)\stackrel{\cong}{\to} W$ and $\mathcal{F}(\iota^{-1})\colon W\to \hat{F}(W)$ is final

 $lackbox{0}$ Given a coalgebra $X \stackrel{c}{\rightarrow} TFX$

 $\hat{G}(TX) \longrightarrow \hat{G}(TW) - - - - > \hat{G}(Z)$ $\hat{E}(c) \uparrow \qquad \cong \uparrow \hat{E}(\operatorname{tr}_{\mathcal{K}\ell}(c)) \qquad \cong \uparrow$ $TX \longrightarrow TX \longrightarrow TW - - - - - > Z$

holds when Kleisli traces exist

Extension semantics (trace)

Conclusions

Traces via determinization

Kleisli traces

Traces via GPC

- works for both TF and GT coalgebras
 - in Kleisli and EM
- the semantics relate (often coincide)
- all about coalgebras over algebras

Conclusions

Traces via determinization

Kleisli traces

Traces via GPC

works for both TF and GT coalgebras

in Kleisli and EM

- the semantics relate (often coincide)
- all about coalgebras over algebras

Thank you!