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Modelling discrete
probabilistic systems

Probability distribution functor on
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Modelling discrete
probabilistic systems

Probability distribution functor on

D {0: X — 008 X () = 1}
and its variants 3

Dy (X) = {p: X = [0,1]| 3 p@) <1}
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Discrete systems

@ enter coalgebra, which provides a unifying
framework

@ become available as examples for generic
coalgebra results

@ all concrete probabilistic bisimulations (based
on Larsen&Skou bisimulation) with
coalgebraic bisimulations
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coing
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Bisimilarity for simple
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An equivalence R on the states
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Bisimilarity for simple
Segala automata
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Expressivity comparison

Theorem If F preserves weak pullbacks and there
is an injective natural transformation from F to G,
then F-coalgebras — G-coalgebras

If there is an injective natural
from F to G, then it induces a trans
preserves and reflects behaviour equivalence

If F preserves weak pullbacks, then behaviour
equivalence and bisimilarity coincide

bisimilarity always
implies behaviour

if not, behaviour equivalence is better

IR e, 2qUivalence (pushouts VICS 26.3.2010
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Basic natural
transformations

n:1= P with nx(x) := 0,
o:_= P with ox(z) := {z}

0 : - = D with dx(x) := d, ( Dirac),
u:F=F+Gand ¢ :G=F+G,

d+v: F+G=F +G for
¢: F=F and ¢ : G = G (both with i.c.),

e Kk : AXP=PAx_) with kx(a,M):={{a,x)|xze M},
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P.,D are monads,
but PD is not

@ Monad for probability and.ee

(a vicious combination) Varacca'02,
Varacca&Winskel 06

used for traces of systems with probability and
nondeterminism Jacobs'08

@ Probabilistic anonymity Hasuo&Kawabe'07
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Probabilities are not
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Probabilities are not
that special...

M = Vs Dy =Vg
0) M = (N, +,0) M = (R2°,4,0)
. In Comi; S =10,1]
e FUI: -

a mohoid

@ give ¥+ 0) and a subset 5 C I/

X) ={p: X — M |supp(p) is finite, » ~¢(z) € 5}

re X
additional structure on M
adds structure to the functor
(monad...)
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Live beyond sets

the category of measure spaces
; and measurable maps ,
In Meas closed w.r.1.2,

- complements,
countable unions

~

0-algebra

3
\aglVS8 measurable maps

f: X oY with f7'(Sy) C Sx

measure spaces (X, Sy
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Markov and Giry

® Markov processes are coalgebras of the Giry monad
on

@ The Giry functor (monad) acts on objects and arrows
as

all subprobability measures

h

GX ={p:5x = [0,1] | o(0) = 0, 0(W; ;) = ¥ (M)}

AAAAA
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Markov and Giry

® Markov processes are coalgebras of the Giry monad
on

@ The Giry functor (monad) acts on objects and arrows

as
the smallest %
O-algebra making the
evaluation maps "
/ measurable
'\‘all subprobability measures/) S e [O, 1]
S\ e (9) = p(M)
GX ={p:Sx = [0,1] | o(@) = 0,0(WdG) = ¥ (M)} D
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Markov and Giry

® Markov processes are coalgebras of the Giry monad
on

@ The Giry functor (monad) acts on objects and arrows

as
the smallest
0-algebra making the
evaluation maps

measurable
all subprobability measures el G X [07 1]

—— evpr () = (M)

-

'-..\.
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Markov and Giry

® Markov processes are coalgebras of the Giry monad
on

@ The Giry functor (monad) acts on objects and arrows
as

the smallest

g(X’ SX) — (QX, SQX) 0-algebra making the

evaluation maps
measurable
all subprobability measures

— OB e
G(/) (SX = [0, 1]) — (SY ;1 Sx - [0, 1]) — /4
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Properties, other spaces

o may have weak pullbacks
@ Analytic spaces have semi-pullbacks

@ It has a final coalgebra
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Measure spaces are fine

@ bisimilarity is the problem

B

@ behaviour equivalence is the solution
Danos, Desharagis, Laviolette,Panangaden ‘04/°06

No need of Eelitha PPRREe
: characterization
analytic spaces

all works smoothly
CMCS 26.3.2010

Ana Sokolova Uni Salzburg
Monday, March 29, 2010




Logical characterization
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Discrete to continuous

discrete

forgetful

QQMeaSi jSetsQD withie®s g/

obvious natural transformation

We can translate 0:DU = UG
chains into processes: |

/7'

/—\

Coalgp v Coalgygp L Coalgg
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S

Sets Meas

D
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We can translate

: . (X S D(X) = DUD(X)) — (X _°, DUD(X) ?2% UgD(X))
chains Iinto processes:

X —UGD(X) in Sets
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Discrete to continuous
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preserves and
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behaviour

equivalence
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Final message

often just also some interesting results

nice examples

@ Both discrete and confinuous probabilistic
systems are coalgebras

@ Observation: behaviour equivalence (cospan) is more
suitable than bisimilarity (span)

® Measure spaces are enough, one can forget about
Polish or analytic ones (unless one loves them)
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