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Abstract

We arrange various types of probabilistic transition systems studied in the literature
in an expressiveness hierarchy. The expressiveness criterion is the existence of an
embedding of systems of the one class into those of the other. An embedding here
is a system transformation which preserves and reflects bisimilarity. To facilitate
the task, we define the classes of systems and the corresponding notion of bisim-
ilarity coalgebraically and use the new technical result that an embedding arises
from a natural transformation with injective components between the two coalge-
bra functors under consideration. Moreover, we argue that coalgebraic bisimilarity,
on which we base our results, coincides with the concrete notions proposed in the
literature for the different system classes, exemplified by a detailed proof for the
case of general Segala-type systems.
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1 Introduction

Probabilistic systems of different kinds have been studied as semantic objects
since the early nineties. Some of them arise from nondeterministic systems
by adding probabilistic information to all choices; sometimes both types of
uncertainty are mixed. The main motivation for considering probabilities is
the need for quantitative information, as opposed to qualitative information,
when reasoning about non-functional aspects of systems such as throughput,
resource utilization, etc. A vast amount of research has been conducted in the
area of performance analysis, in which the notion of compositionality typically
does not play a major role. In the area of semantics of programming languages
and program verification however, compositionality is a central theme. Vari-
ous different models with different trade-offs between odds and evens regarding
performance analysis and compositionality have thus been proposed in the lit-
erature (see, e.g., [Hil94,Her98,Ber99]). A notion of probabilistic bisimulation
that preserves performance metrics is a key ingredient for this relationship to
be a long and lasting one, and also for this many proposals have been made.
In our view, the uniform coalgebraic treatment helps to clarify the picture and
to organize the setting.

In earlier work comparison is made between a number of probabilistic pro-
cess equivalences (see, e.g., [GSS95]) and categorical formulations of Larsen-
Skou bisimulation and stochastic bisimulation are given [DEP02,VR99]. In
recent work [BSV02] we focused on the relationship between these and var-
ious related notions and made a taxonomy of the most prominent types of
probabilistic bisimulation. There the coalgebraic framework proved useful al-
ready for a unified presentation of the diverse types of systems. In the present
paper we propose a purely coalgebraic perspective on this matter and provide
a general result for the comparison of system types.

To this end we say that one class of systems is at most as expressive as
another if we can map every system of the first type into one of the second
such that bisimilarity is preserved and reflected. For this we require that the
transformed system has the same carrier as the original and that two states
are bisimilar in the original system if and only if they are in the translation.

The system transformations we consider here all arise in a straightforward
way from natural transformations τ between the two coalgebra functors under
consideration. The transformations thus obtained always preserve bisimilarity.
As for reflection of bisimilarity we give as a new technical result a sufficient
condition on the coalgebra functors involved and the natural transformation τ .
Interestingly, in our opinion, the result builds on cocongruences as proposed
e.g. by Kurz [Kur00]. This notion is similar to that of a bisimulation, but
based on cospans instead of spans—a change of direction which comes in
handy in the proof. We exploit the fact that both notions characterize the
same behavioural equivalence in case the coalgebra functor preserves weak
pullbacks.
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The expressiveness hierarchy we build with these tools provides a better
understanding of the relationships between the various probabilistic system
types. The coalgebraic approach facilitated its construction significantly. As
far as we know this form of application of the theory of coalgebras is not
reported before in the literature.

The outline of the paper is as follows: Section 2 introduces some definitions
and notation. Section 3 is the coalgebraic core leading from bisimulation and
cocongruences to the result on reflection of bisimulation. In section 4 we first
define the different classes of probabilistic systems coalgebraically and argue
that coalgebraic bisimilarity coincides with the known concrete definitions,
exemplified for the particular case of general Segala-type systems. Finally we
apply the result from the previous section to build the expressiveness hierarchy.
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2 Preliminaries

In the sequel we will use the following notational conventions: (i) products
X × Y , pairings 〈f, g〉:Z → X × Y for functions f :Z → X and g:Z → Y ,
(ii) coproducts X+Y , case analysis [f, g]:X+Y → Z for functions f :X → Z
and g:Y → Z, (iii) function images f(X ′) = { f(x) ∈ Y | x ∈ X ′ } for
f :X → Y and X ′ ⊆ X.

For any set X a probability distribution µ for X is a mapping µ:X → [0, 1]
such that (i) spt(µ) is finite or countably infinite and (ii) µ[X] = 1, where the
set spt(µ) := {x | µ(x) 6= 0 } is the support of µ and for a subset U ⊆ X we
write µ[U ] :=

∑

{µ(x) | x ∈ U }. The collection of all probability distributions
for X is denoted by Dω(X).

Let µ:X → [0, 1] be a probability distribution and f :X → Y a mapping.
The map µ ◦ f −1:Y → [0, 1] is given by (µ ◦ f −1)(y) = µ[f −1({y})]. It
follows that Dω can be considered as a Set-functor mapping f :X → Y to
Dω(f):Dω(X) → Dω(Y ) given by Dω(f)(µ) = µ ◦ f −1. The functor Dω

moreover preserves weak pullbacks (see [Mos99,VR99]).

Let G = (V,E) be a directed graph with two distinguished vertices src

and snk with only outgoing and only incoming edges, respectively, and c :E →
[0, 1] a capacity function. The graph G is referred to as a network. A flow f
for the network G is a function f :E → [0, 1] such that (i) for all vertices v
different from src, snk it holds that

∑

{ f(u, v) | (u, v) ∈ E } =
∑

{ f(v, u) |
(v, u) ∈ E }, (ii) f(e) ≤ c(e) for all e ∈ E. The value of the flow f is given
by

∑

{ f(src, v) | (src, v) ∈ E }. A cut C for the network G is a subset
C ⊆ V such that src ∈ C, snk /∈ C. The value of the cut is given by
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∑

{ c(u, v) | u ∈ C, v /∈ C, (u, v) ∈ E }. The following is the well-known
graph-theoretical Max-flow Min-cut Theorem.

Theorem 2.1 Any network has a maximal flow and a minimal cut. More-
over, their values coincide.

3 Transformation of coalgebras

We are going to model probabilistic transition systems formally as coalgebras
of a suitable type functor B on Set, the category of sets and total functions.
In this section we will recall the necessary definitions and prove a technical
result about transformations of coalgebras. For a more detailed introduction
into the theory of coalgebras we refer the interested reader to, e.g., the articles
of Jacobs and Rutten [JR96,Rut00].

Definition 3.1 Let B be a Set-functor. A B-coalgebra is a pair 〈X,α〉 where
X is a set and α : X → BX is a transition function. A homomorphism

between two B-coalgebras 〈X,α〉 and 〈Y, β〉 is a function h : X → Y satisfying
Bh ◦ α = β ◦ h. The B-coalgebras together with their homomorphisms form
a category, which we denote by CoalgB.

One is often interested in the states of a coalgebra, i.e. the elements of the
carrier set X, only up to some sort of behavioural equivalence. This is most
commonly defined through bisimilarity. We adopt a categorical definition
based on the notion of a span.

Definition 3.2(i) A span between two sets X and Y is a triple 〈R, r1, r2〉
consisting of a set R and two functions r1 : R → X and r2 : R → Y . We
say that the pair 〈x, y〉 ∈ X × Y is related by this span, notation xRy,
in case there exists an element z ∈ R with x = r1(z) and y = r2(z) (or
equivalently, 〈x, y〉 ∈ 〈r1, r2〉(R) ⊆ X × Y ).

(ii) Let 〈X,α〉 and 〈Y, β〉 be two B-coalgebras. A bisimulation between 〈X,α〉
and 〈Y, β〉 is a span 〈R, r1, r2〉 between the carriers X and Y , such that there
exists a coalgebra structure γ : R→ BR making r1 and r2 coalgebra homo-
morphisms between the respective coalgebras, i.e. making the two squares
in the following diagram commute:

X

α

²²

R
r1oo r2 //

∃γ

²²
Â
Â
Â Y

β

²²

BX BRBr1
oo

Br2
//BY

Occasionally we refer to 〈R, γ〉 as a mediating coalgebra. We say that two
states x ∈ X and y ∈ Y are bisimilar and write x ∼ y if they are related
by some bisimulation between 〈X,α〉 and 〈Y, β〉.

To compare the expressiveness of coalgebras for different functors, say F and
G, we will study transformations of F -coalgebras into G-coalgebras. Such a

4



Bartels, Sokolova, de Vink

transformation can easily be obtained from a natural transformation between
the two functors under consideration.

Definition 3.3 [cf. [Rut00, Theorem 15.1]] A natural transformation τ : F ⇒
G gives rise to a functor Tτ : CoalgF → CoalgG defined for an F -coalgebra
〈X,α〉 and an F -homomorphism h as

Tτ 〈X,α〉 := 〈X, τX ◦ α〉 and Tτh := h.

To see that the above definition really defines a functor we need to check
that a homomorphism h between two F -coalgebras 〈X,α〉 and 〈Y, β〉 is also a
homomorphism between the G-coalgebras Tτ 〈X,α〉 and Tτ 〈Y, β〉. This follows
easily from the naturality of τ :

X
h //

α
²²

assumption h

Y
β
²²

FX Fh //

τX ²²
naturality τ

FY
τY²²

GX
Gh

//GY

Since Tτ preserves homomorphisms, it also preserves bisimulations. This yields
that if two states x and y in the F -coalgebras 〈X,α〉 and 〈Y, β〉, respectively,
are bisimilar, then they are also bisimilar in the G-coalgebras Tτ 〈X,α〉 and
Tτ 〈Y, β〉.

Moreover, in order to argue that G-coalgebras are at least as expressive as
F -coalgebras, we are interested in transformations Tτ for which the converse
holds as well, i.e. where x and y are bisimilar in the G-coalgebras Tτ 〈X,α〉
and Tτ 〈Y, β〉 only if they are bisimilar in the original F -coalgebras 〈X,α〉 and
〈Y, β〉 already. In this case we say that Tτ reflects bisimilarity.

To this end it appears reasonable to ask that the components of τ should
be injective: Assume that for some set X the component τX was not injective,
i.e. it identifies two distinct elements φ, ψ ∈ FX. All we have to do to show
that Tτ does not reflect bisimilarity is to come up with a F -coalgebra structure
α on X with two states x, y ∈ X such that α(x) = φ and α(y) = ψ but x 6∼ y,
since τX(φ) = τX(ψ) in this situation implies x ∼ y in Tτ 〈X,α〉. This should
not be difficult to arrange usually (an exception being the degenerate case of
a functor that does not allow non-bisimilar behaviour at all, like F = Id).

In the following we show that componentwise injectivity of τ is already
sufficient for Tτ to reflect bisimilarity, at least in case F preserves weak pull-
backs. This latter condition comes in because it allows us to resort to an
alternative definition of bisimilarity which turns out to be better suited for
our purposes. It is based on the notion of a cospan.

Definition 3.4(i) A cospan between the sets X and Y is a triple 〈U, u1, u2〉
consisting of a set U and two functions u1 : X → U and u2 : Y → U . The
pair 〈x, y〉 ∈ X × Y is identified by 〈U, u1, u2〉 in case u1(x) = u2(y).

(ii) A cocongruence between two B-coalgebras 〈X,α〉 and 〈Y, β〉 is a cospan
〈U, u1, u2〉 between X and Y such that there exists a B-coalgebra structure
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γ : U → BU making u1 and u2 coalgebra homomorphisms, which means
that the two squares in the following diagram commute:

X

α

²²

u1 //U

∃γ

²²
Â
Â
Â Y

u2oo

β

²²

BX Bu1

//BU BYBu2

oo

We took the name cocongruence from a similar notion used by Kurz [Kur00,
Def. 1.2.1]. One also finds the term compatible corelation in this context
[Wol00].

We can use pullbacks and pushouts to switch between spans and cospans
and – under further assumptions – also between bisimulations and cocongru-
ences, as the following simple and known observations state.

Lemma 3.5(i) If the pair 〈x, y〉 ∈ X × Y is related by a span 〈R, r1, r2〉
between X and Y , then both elements are identified by its pushout 〈P, p1, p2〉.

R
r1
ÄÄ~~

~~ r2
ÂÂ

??
??

Q
q1
ÄÄ~

~ q2
ÂÂ

?
?

ÂÁ
X
p1 ÃÃA
A Y

p2~~~
~

X
u1 ÃÃA

AA
A Y

u2~~~~
~~

P

ÁÂ

U

(ii) If x ∈ X and y ∈ Y are identified by a cospan 〈U, u1, u2〉 between X and Y ,
then x and y are related by its pullback 〈Q, q1, q2〉.

Lemma 3.6 Let 〈X,α〉 and 〈Y, β〉 be B-coalgebras.

(i) If 〈R, r1, r2〉 is a bisimulation between 〈X,α〉 and 〈Y, β〉 then its pushout is
a cocongruence between the same coalgebras.

(ii) If B preserves weak pullbacks and 〈U, u1, u2〉 is a cocongruence between
〈X,α〉 and 〈Y, β〉 then its pullback is a bisimulation.

In the proof of our result on reflection of bisimilarity we furthermore use the
following well-known fact about the category Set.

Lemma 3.7 The category Set has the following diagonal fill-in property for
surjective and injective functions: Assume that the outer square in the set-
ting depicted below commutes, where e is surjective and m is injective. Then
there exists a unique diagonal arrow d making both of the resulting triangles
commute.

A
e // //

f

²²

B
g

²²

∃!d

{{v
v

v
v

v

C ÄÂ m
//D

The crucial property we need for our statement is isolated in this lemma.

Lemma 3.8 Let τ :F ⇒ G be a natural transformation all components of
which are injective. When 〈U, u1, u2〉 is a cocongruence between the G-coalgebras
Tτ 〈X,α〉 and Tτ 〈Y, β〉 such that u1 and u2 are jointly surjective (i.e. [u1, u2]:X+
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Y → U is surjective) then it is also a cocongruence between the F-coalgebras
〈X,α〉 and 〈Y, β〉.

Proof. Let γ:U → GU be the transition structure witnessing the cocongru-
ence property of 〈U, u1, u2〉.

X
α

²²

u1 //U

γ

²²

Y
u2oo

β
²²

FXÄ _
τX ²²

FY_Ä
τY²²

GX Gu1

//GU GYGu2

oo

Using (a) the commutativity of the two squares above and (b) the naturality
of τ , we get

γ ◦ [u1, u2] = [γ ◦ u1, γ ◦ u2]
(a)
= [Gu1 ◦ τX ◦ α, Gu2 ◦ τY ◦ β]
(b)
= [τU ◦ Fu1 ◦ α, τU ◦ Fu2 ◦ β]

= τU ◦ [Fu1 ◦ α, Fu2 ◦ β].

This means that the outer square of the diagram below commutes. By as-
sumption, [u1, u2] is surjective and τU is injective, so Lemma 3.7 provides a
diagonal fill-in, say γ̃ : U → FU .

X + Y
[u1,u2] // //

[Fu1 ◦α,Fu2 ◦β]

²²

U

γ

²²

γ̃

xxq q q q q q

FU ÄÂ τU
//GU

This shows that γ factors as τU ◦ γ̃, and we can refine our initial picture into
the one below. It follows from the commutativity of the upper left triangle in
the diagram above that the two upper squares in the diagram below indeed
commute. So γ̃ witnesses that – as wanted – 〈U, u1, u2〉 is a cocongruence
between the original F -coalgebras 〈X,α〉 and 〈Y, β〉.

X
α

²²

u1 //U
γ̃

²²

Y
u2oo

β
²²

FX
Fu1 //Ä _

τX ²²

FUÄ _
τU ²²

FY
Fu2oo Ä _

τY ²²

GX Gu1

//GU GYGu2

oo

2

From this we easily get the result on reflection of bisimulation.

Theorem 3.9 Let τ :F ⇒ G be a natural transformation between the Set-
functors F and G. If F preserves weak pullbacks and all components of τ are
injective, then the functor Tτ from Definition 3.3 reflects bisimilarity.

Proof. Let 〈X,α〉 and 〈Y, β〉 be F -coalgebras and let x ∈ X and y ∈ Y be
bisimilar in the G-coalgebras Tτ 〈X,α〉 and Tτ 〈Y, β〉. This means that there is
a bisimulation 〈R, r1, r2〉 between them relating x and y. Let 〈Q, q1, q2〉 be the
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pushout of 〈R, r1, r2〉. By item (i) of Lemma 3.6 〈Q, q1, q2〉 is a cocongruence
between the G-coalgebras Tτ 〈X,α〉 and Tτ 〈Y, β〉 and by item (i) of Lemma 3.5
it identifies x and y. Since the two legs of a pushout are always jointly surjec-
tive, we can apply Lemma 3.8 to find that 〈Q, q1, q2〉 is also a cocongruence
between the original F -coalgebras 〈X,α〉 and 〈Y, β〉. Let 〈P, p1, p2〉 be the
pullback of 〈Q, q1, q2〉. We assumed F to preserve weak pullbacks, so we can
apply part (ii) of Lemma 3.6 to get that 〈P, p1, p2〉 is a bisimulation between
the F -coalgebras 〈X,α〉 and 〈Y, β〉. By item (ii) of Lemma 3.5 this span relates
x and y, which means that the states are bisimilar in the original F -coalgebras
as was to be shown. 2

Our argument shows that componentwise injectivity of the natural trans-
formation τ guarantees that the translation Tτ of coalgebras reflects a notion
of behavioural equivalence defined in terms of cocongruences. This implies
reflection of bisimilarity for the important classes of coalgebras for which the
two notions coincide, as it is the case when the coalgebra functor preserves
weak pullbacks. The following counter-example demonstrates that such an
additional assumption is indeed necessary. It is built on a classical example of
a functor not preserving weak pullbacks, which is treated in detail for instance
by Gumm and Schröder [GS00].

It involves the functor FX := {〈x, y, z〉 ∈ X3 | |{x, y, z}| ≤ 2}, which
does not preserve weak pullbacks, the functor GX := X3, and the obvious
inclusion natural transformation τ : F ⇒ G, all components of which are
clearly injective. Consider the F -coalgebra 〈X,α〉 with X := {s, t}, α(s) :=
〈s, s, t〉, and α(t) := 〈s, t, t〉. One easily checks that s and t are not bisimilar in
〈X,α〉, but they are bisimilar in Tτ 〈X,α〉. To see the former, assume there was
a bisimulation 〈R, r1, r2〉 and z ∈ R such that r1(z) = s and r2(z) = t and let
the mediating coalgebra structure γ : R→ FR map z to the triple 〈z1, z2, z3〉.
The homomorphism condition implies 〈r1(z1), r1(z2), r1(z3)〉 = 〈s, s, t〉 and
〈r2(z1), r2(z2), r2(z3)〉 = 〈s, t, t〉. From this we conclude that all zi are different,
which is a contradiction because 〈z1, z2, z3〉 was assumed to be in FR.

The counter-example suggests that the assumption on the coalgebra func-
tor in Theorem 3.9 is not to be seen as a limitation of the result. It is rather
reflecting a limitation of the standard notion of a bisimulation to express be-
havioural equivalence: it fails in this case to relate s and t, although they
cannot be distinguished by external observations.

Coming back to an earlier remark, we mention that componentwise in-
jectivity of the natural transformations τ is not a necessary condition for the
reflection of bisimilarity. As a counterexample consider the case where we take
τ to be the support spt : Dω ⇒ P of probability distributions, as defined in
the preliminaries. The components of this natural transformation are clearly
not injective, since the probabilities are forgotten. Still the corresponding Tτ
reflects bisimilarity — for the simple reason that all states in a Dω-coalgebra
are bisimilar, which makes the example somewhat degenerate. For such a
counterexample, the natural transformation τ : F ⇒ G may only forget in-
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formation which is not relevant for bisimilarity. As of yet we are not aware
of such a situation involving a functor F which allows non-bisimilar states in
F -coalgebras.

4 Probabilistic system types

We will exploit Theorem 3.9 of the previous section to achieve the primary goal
of this paper, viz. establishing a hierarchy of probabilistic system types. We
first introduce a number of system types from the literature on probabilistic
modelling, and subsequently prove various embedding properties.

Probabilistic systems

We introduce all systems under consideration as coalgebras of a suitable func-
tor B. The functors are built using the following syntax

B ::= C | Id | P | Dω | B + B | B × B | B C | BB

where C denotes a constant functor on Set, P is the powerset functor, and the
composition of two functors F and G is denoted by FG. Recall that CoalgB

denotes the category of coalgebras of the functor B. We fix a set A to serve
as a set of actions throughout this section.

A considerable amount of research has been done on each of the thirteen
types of systems we are going to consider. They are used as mathemati-
cal models of real systems so that formal verification methods based e.g. on
temporal logic or process algebra can be applied. Most of the types arose in-
dependently in the literature in order to model better one or another property
of a system. One motivating issue is the need to model both non-deterministic
and probabilistic choice. Another issue is compositional modelling for which
operators like hiding (restrictions by the environment) and parallel composi-
tion play a major role. Therefore some more complex models were proposed
that support definition of these operators. For example, generative systems
were replaced by bundle probabilistic systems because the former type did
not allow for a reasonable definition of a natural asynchronous parallel com-
position operator. In a preceding paper [BSV02] we gave a wider overview
of these models. Here, we just note that the different classes are not defined
as coalgebras of a suitable functor in the literature. Moreover, in few cases
our functorial definition varies from the original one in that we abstract from
certain features that are not essential, in our understanding, to the nature of
the model under consideration. To our knowledge this is the first time that
all these system types are placed and compared in one framework.

We now proceed toward the definitions of all the system types, starting
with the most simple ones that do not even include probabilities.

A deterministic automaton is a B-coalgebra for B = (Id + 1)A. We use
DA for CoalgB in this case. Hence for 〈X,α〉 ∈ DA, α(x) can be considered a
partial function from A to X. A non-deterministic automaton is a coalgebra
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of the functor P(A × Id), the category of these coalgebras is denoted by
NA. The simplest kind of probabilistic systems that we consider are discrete
time, finitely branching Markov chains. A Markov chain is interpreted as a
coalgebra of the functor Dω and the category of such coalgebras we denote
by MC.

Next we define the reactive, generative and stratified probabilistic systems
as introduced in [GSS95]. Those can be considered as basic types of proba-
bilistic transition systems. A reactive system can transit from a given state
with a given action to any other state according to the probability distribu-
tion that governs this transition. There is no probability added to the choice
between different actions. The functor that defines this class of systems is
(Dω + 1)A and the category of all such systems is denoted by React.

The functor defining the class of generative probabilistic systems, Gen, is
Dω(A × Id) + 1. We can view a generative system as obtained from a non-
deterministic automaton by adding probabilities to already existing transitions
such that the sum of the outgoing transition probabilities (if any) is 1 for
every state. The generative systems are fully probabilistic in the sense that
it is enough to erase the action labels on the transitions in order to obtain a
Markov chain from a generative system.

At this point we can mention a distinction between probabilistic systems,
the one between input type and output type of systems. An input system is
one defined by a functor of the kind BA while an output system has a functor
of the form BP(A×B). As the names already suggest, a reactive system is a
probabilistic input system, reacting to the input by the environment, while a
generative system is a typical output system, producing output depending on
the probability distribution.

A stratified system is defined to be a coalgebra of the functor Dω + (A ×
Id)+1. The class of all such systems is denoted by Str. In a stratified system
either a purely probabilistic transition is enabled from a state to any other state,
or a single action transition is enabled, or no transition at all (deadlock state).

•
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3
]

²O
²O

²²
²O
²O
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ÄÄ
Ä?
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Ä?
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reactive system generative system stratified system

One of the earliest models of probabilistic systems is due to Vardi [Var85].
We denote the class of Vardi probabilistic systems by Var. It is defined by
the functor Dω(A × Id) + P(A × Id). The states in a Vardi system 〈X,α〉
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can be divided into two disjoint sets, a set of non-deterministic states x ∈ X
such that α(x) ∈ P(A×X) and a set of probabilistic states x ∈ X for which
α(x) ∈ Dω(A×X).

Another type of probabilistic systems that makes a distinction between
non-deterministic and probabilistic states are the alternating probabilistic sys-
tems introduced by Hansson [Han94]. They are defined by the functor B =
Dω+P(A×Id). So, in the alternating model each state can either do a purely
probabilistic or a non-deterministic transition. In this case we denote CoalgB

by Alt.
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alternating system Vardi system

The more complex systems that follow do not include a distinction between
non-deterministic and probabilistic states, instead both non-deterministic and
probabilistic choices are enabled due to the structure of the transition function.
Such systems are the simple and the general Segala systems [SL94,Seg95] and
the bundle [DHK98] and Pnueli-Zuck [PZ93] systems. The simple Segala
model is of input type and the other models are of output type.

A general Segala system is defined by the functor PDω(A × Id), and the
class of all such systems we denote by Seg. A Segala system 〈X,α〉 is simple
if for any state x ∈ X and all µ ∈ α(x) there exists an action a ∈ A such
that spt(µ) ⊆ {a} × X. This allows for a change in the functor defining the
transition structure for simple systems. A simple Segala system is defined by
the functor P(A×Dω), and the class of all such systems is denoted by SSeg.
The two Segala types of systems are important for bridging the gap between
input and output systems.

•
a

ÄÄ~~
~~

~~a
²²

b

ÂÂ
@@

@@
@@

1

4
²²
²O
²O3

4

ÄÄ
Ä?

Ä?
Ä?

1
²²
²O
²O

1

3
²²
²O
²O 2

3

ÂÂ
Â_

Â_
Â_

• • • • •

•

ÄÄ~~
~~

~~

ÂÂ
@@

@@
@@

a[ 1
4
]

ÄÄ
Ä?

Ä?
Ä?
b[ 3

4
]

²²
²O
²O

a[ 1
3
]
²²
²O
²O a[ 2

3
]

ÂÂ
Â_

Â_
Â_

• • • •

simple Segala system Segala system

The bundle probabilistic systems, introduced in [DHK98], are orthogonal to
the general Segala systems. They are defined by the functor DωP(A×Id)+1.
In this type of systems there is a probabilistic choice over non-deterministic
bundles. Allowing also non-deterministic choice between distributions we
get to the Pnueli-Zuck probabilistic systems of [PZ93] defined by the func-
tor PDωP(A×Id). We denote by Bun and PZ the categories of bundle and
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Pnueli-Zuck systems, respectively.
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bundle system Pnueli-Zuck system

The class of Pnueli-Zuck systems is the most complex one appearing in the
literature. Finally we introduce one even more complex class that can act as a
top element in the hierarchy of probabilistic system types. The class of most
general probabilistic systems is defined by the functor PDωP(A × Id + Id)
and we denote it by MG.

Concrete vs. categorical bisimulation

For most of the probabilistic system types introduced above there exists in
the literature a concrete definition of bisimulation. A cornerstone of the coal-
gebraic approach to bisimulation is the correspondence of bisimilarity of de-
terministic and non-deterministic transition systems given in concrete terms
of transfer properties or given in categorical terms of a mediating coalge-
bra [RT93]. In [VR99] it is shown that the concrete notion of bisimulation for
Markov-chains coincides with the coalgebraic notion. The proof technique ex-
tends to most other contexts involving the Dω-functor, viz. Str, Alt, React,
SSeg, Seg, and Gen as well. The bundle probabilistic transition systems
of [DHK98] do not come equipped with a concrete notion of bisimulation.
Equivalence of bundle probabilistic transition systems is defined in term of
the underlying generative probabilistic transitions systems, for which con-
crete bisimulation coincides with the generative bisimulation. The approach
of [Var85] and [PZ93] involves temporal logics. We did not unravel the explicit
relationship of logically indistinguishable systems vs. bisimilar ones [LS91].

As an example we sketch the correspondence of concrete bisimulation and
coalgebraic bisimulation for general Segala-type systems given by the functor
PDω(A× Id) (cf. [SL94,Seg95]).

As a preparatory definition we say that a relation R ⊆ X × Y is z-closed
if R(x1, y1) ∧ R(x2, y1) ∧ R(x2, y2) ⇒ R(x1, y2). A component C of R is an
irreducible non-empty subset of R such that for any fixed x0 ∈ X the set
{ 〈x0, y〉 | y ∈ Y :R(x0, y) } is either disjoint from or contained in C and
likewise for any fixed y0 ∈ Y . (The irreducibility refers to the property that a
component has no proper subcomponent. See [VR99] for more detail.)

Definition 4.1 Let 〈X,α〉, 〈Y, β〉 be two general Segala probabilistic transi-
tion systems. Two states x0 ∈ X, y0 ∈ Y are called Segala-bisimilar if there

12



Bartels, Sokolova, de Vink

exists a relation R ⊆ X × Y with R(x0, y0) such that if R(x, y) then

∀µ ∈ α(x)∃ν ∈ β(y):R(µ, ν) ∧ ∀ν ∈ β(y)∃µ ∈ α(x):R(µ, ν)

where R(µ, ν) iff µ[{〈a, x′〉 | x′ ∈ π1[C]}] = ν[{〈a, y′〉 | y′ ∈ π2[C]}] for all
actions a and components C of R.

It is immediate that if x0 and y0 are Segala-bisimilar via a relation R , then
x0 and y0 are Segala-bisimilar via a z-closed relation R̃.

We have the following result.

Theorem 4.2 Two states x0, y0 of two general Segala-systems 〈X,α〉, 〈Y, β〉
are bisimilar in the sense of Definition 3.2 iff they are bisimilar in the sense
of Definition 4.1.

Proof. First, suppose 〈R, γ〉 is a mediating coalgebra with x0Ry0. Let R̃ ⊆
X × Y be the z-closure of the set { 〈x, y〉 | xRy }.

Assume xRy. Pick z ∈ R such that r1(z) = x, r2(z) = y. Let µ ∈ α(x).
Note α ◦ r1 = P(Dω(A×r1)) ◦ γ. Choose ρ ∈ γ(z) such that µ = ρ ◦ (A×r1)

−1

or, equivalently, µ = Dω(A× r1)(ρ). Put ν = ρ ◦ (A× r2)
−1. Let a ∈ A and

C be a component of R̃ with faces E,F , i.e. π1[C] = E, π2[C] = F . We
then have µ[{ 〈a, x′〉 | x′ ∈ E }] = (ρ ◦ (A × r1)

−1)({ 〈a, x′〉 | x′ ∈ E }) =
ρ[{ 〈a, z′〉 | r1(z

′) ∈ E }] = ρ[{ 〈a, z′〉 | z′ ∈ C }] = . . . = ν[{ 〈a, y′〉 | y′ ∈ F }]
(where, for z ∈ R̃ \ R, ρ(a, z) = 0 by definition). So, for any µ ∈ α(x) there
exists ν ∈ β(y) such that µ[{ 〈a, x′〉 | x′ ∈ E }] = ν[{ 〈a, y′〉 | y′ ∈ F }] for all
a and C. Symmetrically we have that for any ν ∈ β(y) there exists µ ∈ α(x)
such that µ[{ 〈a, x′〉 | x′ ∈ E }] = ν[{ 〈a, y′〉 | y′ ∈ F }] for all a and C.

Now assume xR̃y. This implies that there exist x1, y1, . . . , xn, yn such that
x1Ry1, y1R

−1x2, . . ., yn−1R
−1xn, xnRyn with x1 = x and yn = y. By the above

it then follows (by induction on n) that ∀µ ∈ α(x1)∃ν ∈ β(yn): µ[{ 〈a, x
′〉 |

x′ ∈ π1[C] }] = ν[{ 〈a, y′〉 | y′ ∈ π2[C] }] for all actions a and components C.
Hence, x = x1, y = yn are bisimilar according to Definition 4.1.

Second, supposeR ⊆ X×Y is a Segala-bisimulation relation withR(x0, y0).
Without loss of generality we can assume that R is z-closed. Let x ∈ X, y ∈ Y
such that R(x, y), µ ∈ α(x), ν ∈ β(y) such that µ[{ 〈a, x′〉 | x′ ∈ π1[C] }] =
ν[{ 〈a, y′〉 | y′ ∈ π2[C] }] for all a, C.

Consider the following network with distinguished elements src and snk:
{ (src, 〈a, x′〉) | x′ ∈ X } ∪ { (〈a, x′〉, 〈a, y′〉) | R(x′, y′) } ∪ { (〈a, y′〉, snk) | y′ ∈
Y }. Decorate the source edges and sink edges with capacities c(src, 〈a, x′〉) =
µ(〈a, x′〉), c(〈a, y′〉, snk) = ν(〈a, y′〉), respectively. Let the capacities for the
remaining edges be 1. For any component C the nodes { (〈a, x′〉, 〈a, y′〉) |
C(x′, y′) } span a complete bi-partite subgraph. Moreover,

∑

{ c(src, 〈a, x′〉) |
x′ ∈ π1[C] } =

∑

{µ(〈a, x′〉) | x′ ∈ π1[C] } = µ[{ 〈a, x′〉 | x′ ∈ π1[C] }] =
ν[{ 〈a, y′〉 | y′ ∈ π2[C] }] =

∑

{ ν(〈a, y′〉) | y′ ∈ π2[C] } =
∑

{ c(〈a, y′〉, snk) |
y′ ∈ π2[C] }.

We observe that for each component either the E-face or the F -face is
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included in the cut. By Segala-bisimilarity we have that the E-face and
the F -face of a component contribute equally to a cut. It follows that the
value of the minimal cut is the value of the cut between the source and the
rest of the graph. By construction the value of this cut equals 1. By the
Max-flow Min-cut Theorem 2.1 it follows that there is a flow of value 1,
i.e. there exist weights wgt(〈a, x′〉, 〈a, y′〉) such that for fixed x′ and y′, re-
spectively, µ(〈a, x′〉) =

∑

{wgt(〈a, x′〉, 〈a, y′〉) | C(x′, y′) } and ν(〈a, y′〉) =
∑

{wgt(〈a, x′〉, 〈a, y′〉) | C(x′, y′) }. Now, define the probability distribution
ρµ,ν :R → [0, 1] by ρµ,ν(〈a, (x

′, y′)〉) = wgt(〈a, x′〉, 〈a, y′〉) and put γ(x, y) =
{ ρµ,ν | µ ∈ α(x), ν ∈ β(y), R(µ, ν) }. We claim that

P(Dω(A× π1))(γ(x, y)) = α(x) and P(Dω(A× π2))(γ(x, y)) = β(y).

We only check the case for α(x): Note P(Dω(A × π1))(γ(x, y)) = {Dω(A ×
π1)(ρ) | ρ ∈ γ(x, y) }= { ρ◦(A×π1)

−1 | ρ = ρµ,ν , µ ∈ α(x), ν ∈ β(y), R(µ, ν) }.
“⊆” Pick µ ∈ α(x), ν ∈ β(y) with R(µ, ν). We then have, for any pair 〈a, x′〉,
(ρ ◦ (A × π1)

−1)(〈a, x′〉) = ρ[{ 〈a, (x′, y′)〉 | R(x′, y′) }] = µ(〈a, x′〉). Hence
ρ ◦ (A× π1)

−1 = µ and, in particular ρ ◦ (A× π1)
−1 ∈ α(x).

“⊇” Pick µ ∈ α(x). SinceR(x, y) we can choose ν ∈ β(y) such thatR(µ, ν).
Then ρµ,ν ∈ γ(x, y) by definition of γ, and, following a similar argument as
above, ρµ,ν ◦ (A× π1)

−1 = µ, and, in particular, µ ∈ P(Dω(A× π1))(γ(x, y)).

We conclude that P(Dω(A×π1))(γ(x, y)) = α(x) for any (x, y) ∈ R. Hence
P(Dω(A× π1)) ◦ γ = α ◦ π1. By symmetry, P(Dω(A× π2)) ◦ γ = β ◦ π2. So,
〈R, γ〉 is a mediating Seg-coalgebra for 〈X,α〉, and 〈Y, β〉. By assumption x0
and y0 are connected by R. 2

The Max-flow Min-cut Theorem as applied above (following [Jon89,VR99])
is an elegant tool for the construction of the mediating morphism γ. Note
that, because of the special form of the network at hand, a maximal flow can
actually be constructed in a simpler way than in the proof of this theorem.
In a related situation, viz. in proving full abstraction, Worell circumvents the
application of the graph-theoretical theorem by exploiting the notion of a so-
called F -simulation (cf. [Wor00]). We leave as an open question whether a
similar step could be helpful here as well.

A hierarchy of probabilistic system types

In this part we compare the introduced probabilistic system types, using the
results of Section 3.

Let F and G be functors on Set. If there exists a translation from CoalgF

to CoalgG that both preserves and reflects bisimilarity then we say that the
class CoalgF is coalgebraically embedded in the class CoalgG. This relation is
clearly reflexive and transitive.

The next theorem lists some coalgebraic embeddings between the previ-
ously introduced probabilistic system types. For readability we recall the
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Var

React

SSeg

Bun

Gen

Seg

DA

NA

MC

Str

Alt

PZ

MG

Fig. 1. Hierarchy of probabilistic system types

defining functors and the notation used for each class in the following table.

MC Dω Alt Dω + P(A× Id)

DA (Id + 1)A Seg PDω(A× Id)

NA P(A× Id) SSeg P(A×Dω)

React (Dω + 1)A Bun DωP(A× Id) + 1

Gen Dω(A× Id) + 1 PZ PDωP(A× Id)

Str Dω + (A× Id) + 1 MG PDωP(A× Id + Id)

Var Dω(A× Id) + P(A× Id)

Theorem 4.3 The coalgebraic embeddings presented in Figure 1 hold among
the probabilistic system types, where an arrow A→ B expresses that the class
A is coalgebraically embeddable in the class B.

Proof. By Theorem 3.9, if F ,G are functors on Set such that F preserves
weak pullbacks and there is a componentwise injective natural transformation
from F to G, then CoalgF is coalgebraically embeddable in CoalgG. We note
that:

(i) the functors C, Id, P and Dω on Set preserve weak pullbacks,

(ii) if the Set-functors F and G preserve weak pullbacks, then so do F +G,
F × G, F C and FG.

It follows that all functors involved have the desired property. Hence in
all of the cases it is enough to construct a componentwise injective natural
transformation. We start by defining some elementary natural transformations
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and collecting some simple properties. Let F ,G,H be functors on Set.

• 1
η
⇒P , where ηX(∗) = ∅.

• The left and right coproduct injections il and ir are natural transformations

F
il⇒F + G, G

ir⇒F + G with injective components.

• For every set X, the injective functions σX : X → PX where σX(x) = {x}
form a natural transformation Id

σ
⇒P , the singleton natural transforma-

tion.

• For every set X, the injective functions δX : X → DωX where δX(x) =

µ1x, µ
1
x(x) = 1 form the Dirac natural transformation Id

δ
⇒Dω.

• For any set X, the injective functions φX : (X + 1)A → P(A×X) defined
by φX(f) = Graph(f) = {(a, f(a)) | f(a) ∈ X} for f : A→ X + 1, form a

natural transformation (Id+ 1)A
φ
⇒P(A× Id)

• From F
τ1⇒H and G

τ2⇒H we get a natural transformation F + G
[τ1,τ2]
⇒ H.

• If F1
τ1⇒G1 and F2

τ2⇒G2 are componentwise injective, then so is the natural

transformation F1 + F2
τ1+τ2⇒ G1 + G2.

• If F
τ
⇒G is componentwise injective, then so is FH

τH
⇒GH, where (τH)X =

τHX .

• From F
τ
⇒G we get a natural transformation HF

Hτ
⇒HG with (Hτ)X =

H(τX). If the functor H preserves injectivity and all components of τ are
injective, then so are the components of Hτ . For the first condition, since
every Set-functor preserves injectives with nonempty domain, we just need
to check that H maps functions from the empty set to injective functions.
This is the case for P , Dω, and the other functors we use below, as one
easily verifies.

Now we prove all the coalgebraic embeddings, by building the needed natural
transformations from the elementary ones mentioned above.

MC→ Str: Dω
il⇒Dω + (A× Id) + 1

DA→ NA: (Id+ 1)A
φ
⇒P(A× Id)

DA→ React: (Id+ 1)A
Fδ
⇒ (Dω + 1)A, for F = (Id+ 1)A.

React→ SSeg: (Dω + 1)A
φDω
⇒ P(A×Dω)

NA→ SSeg: P(A× Id)
Fδ
⇒P(A×Dω), for F = P(A× Id).

NA→ Var: P(A× Id)
ir⇒Dω(A× Id) + P(A× Id)

Gen→ Var: Dω(A×Id)+1
id+ηF
⇒ Dω(A×Id)+P(A×Id), for F = A×Id.

Gen→ Bun: Dω(A× Id) + 1
DωσF+id⇒ DωP(A× Id) + 1, for F = A× Id.

Var→ Seg: Dω(A × Id) + P(A × Id) + 1
[σDω ,Pδ,η]F
⇒ PDω(A × Id) for F =

A × Id and the transformation [σDω,Pδ, η]F is componentwise injective
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up to identification of the two degenerated steps i.e. identification of µ1〈a,x〉
and {〈a, x〉}. Note that in the picture we draw a dashed arrow for this
coalgebraic embedding. As a remark, the transitive solid arrowGen→ Seg

still holds.

SSeg→ Seg: P(A×Dω)
Pτ
⇒PDω(A× Id) where (A×Dω)

τ
⇒Dω(A× Id) is

given by τX(〈a, µ〉) = µ1a × µ, where µ × µ′(〈x, x′〉) = µ(x) · µ′(x′). All
components of τ are injective.

Str→ Alt: Dω + (A × Id) + 1
id+[σ,η]F
⇒ Dω + P(A × Id), for F = A × Id.

Componentwise injectivity holds.

Seg→ PZ: PDω(A× Id)
PDωσF⇒ PDωP(A× Id), for F = A× Id.

Bun→ PZ: DωP(A × Id) + 1
[σ,η]F
⇒ PDωP(A × Id), for F = DωP(A × Id),

and [σ, η]F is componentwise injective.

PZ→MG: PDωP(A× Id)
PDωPil⇒ PDωP(A× Id+ Id)

Alt→MG: Dω + P(A × Id)
σH◦[Dω(σF◦ir),δG◦Pil]

⇒ PDωP(A × Id + Id). Here
injections go from Id to A × Id + Id and F = A × Id + Id, G = PF ,
H = DωG = DωPF . Again, there is no overlap between the images in the
two cases.

2

We note here that we are not yet able to prove absence of arrows in the
hierarchy presented. Some more arrows than those presented in Figure 1 may
exist. For instance in case of a finite label set A, we get React → Gen by
the transformation τ : (Dω + 1)A ⇒ Dω(A× Id) + 1 defined in the following
way. Fix a distribution µ ∈ DωA such that spt(µ) = A. For any set X and
any φ : A → Dω + 1 , define τX(φ) = ∗ if and only if φ(a) = ∗ for all a ∈ A
and otherwise, τX(φ) = ν ∈ Dω(A× Id) where for a ∈ A, x ∈ X

ν(a, x) =

{

0 if φ(a)(x) = ∗,
φ(a)(x)·µ(a)

µ[{b∈A|φ(b)6=∗}]
otherwise.

The transformation τ is natural and its components are injective.
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