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Outline
• Introduction - probabilistic systems and coalgebras

• Bisimilarity - the strong end of the spectrum

• Application - expressiveness hierarchy
(older result)

• Trace semantics - the weak end of the spectrum
(new !)
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Systems
are formal objects, transition systems (e.g. LTS), that serve
as models of real (software, hardware,...) systems
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Probabilistic systems
arise by enriching transition systems with (discrete)
probabilities as labels on the transitions.
Examples:
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Coalgebras
are an elegant generalization of transition systems with

states + transitions

• based on category theory

• provide a uniform way of treating transition systems

• provide general notions and results e.g. a generic notion of
bisimulation
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Examples

A TS is a pair 〈S, α : S → PS〉

!! coalgebra of the powerset functor P
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Examples

A TS is a pair 〈S, α : S → PS〉

!! coalgebra of the powerset functor P

An LTS is a pair 〈S, α : S → PSA〉

!!! coalgebra of the functor PA

Note: PA ∼= P(A× )
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More examples
Thanks to the probability distribution functor D

DS = {µ : S → [0, 1], µ[S] = 1}, µ[X] =
∑

s∈X µ(x)

Df : DS → DT, Df(µ)(t) = µ[f−1({t})]

the probabilistic systems are also coalgebras
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More examples
Thanks to the probability distribution functor D

DS = {µ : S → [0, 1], µ[S] = 1}, µ[X] =
∑

s∈X µ(x)

Df : DS → DT, Df(µ)(t) = µ[f−1({t})]

the probabilistic systems are also coalgebras ... of functors
built by the following syntax

F ::= | A | P | D | G +H | G ×H | GA | G ◦H
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reactive, generative

evolve from LTS - functor P (A× ) ∼= P
A

reactive systems:
functor (D + 1)A

generative systems:
functor (D + 1)(A× ) = D(A× ) + 1

note: in the probabilistic case

(D + 1)A 6∼= D(A× ) + 1
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Probabilistic system types
MC D

DLTS ( + 1)A

LTS P(A× ) ∼= PA

React (D + 1)A

Gen D(A× ) + 1

Str D + (A× ) + 1

Alt D + P(A× )

Var D(A× ) + P(A× )

SSeg P(A×D)

Seg PD(A× )

. . . . . .
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Bisimulation - LTS
Consider the LTS
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Bisimulation - generative
Consider the generative systems
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The states s0 and t0 are bisimilar, and so are s0 and t2,
since there is a bisimulation R relating them...
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Bisimulation - simple Segala
Consider the simple Segala systems
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Coalgebraic bisimulation
A bisimulation between

〈S, α : S → FS〉 and 〈T , β : S → FS〉

is R ⊆ S × T such that ∃ γ:
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Coalgebraic bisimulation
A bisimulation between

〈S, α : S → FS〉 and 〈T , β : S → FS〉

is R ⊆ S × T such that ∃ γ:

S

α

²²

R

γ

²²

π1oo π2 // T

β

²²
FS FR

Fπ1

oo
Fπ2

// FT

Transfer condition: 〈s, t〉 ∈ R =⇒

〈α(s), β(t)〉 ∈ Rel(F)(R)
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Coalgebraic bisimulation
A bisimulation between

〈S, α : S → FS〉 and 〈T , β : S → FS〉

is R ⊆ S × T such that ∃ γ:
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Theorem: Coalgebraic and concrete bisimilarity coincide !
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Expressiveness

simple Segala system → Segala system
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When do we consider one type of systems more
expressive than another?
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Comparison criterion

CoalgF → CoalgG

if there is a mapping 〈S, α : S → FS〉
T
7→ 〈S, α̃ : S → GS〉

that preserves and reflects bisimilarity
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Comparison criterion

CoalgF → CoalgG

if there is a mapping 〈S, α : S → FS〉
T
7→ 〈S, α̃ : S → GS〉

that preserves and reflects bisimilarity

s〈S,α〉 ∼ t〈T,β〉 ⇐⇒ sT 〈S,α〉 ∼ tT 〈T,β〉
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Comparison criterion

CoalgF → CoalgG

if there is a mapping 〈S, α : S → FS〉
T
7→ 〈S, α̃ : S → GS〉

that preserves and reflects bisimilarity

Theorem: An injective natural transformation F ⇒ G is
sufficient for CoalgF → CoalgG
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Comparison criterion

CoalgF → CoalgG

if there is a mapping 〈S, α : S → FS〉
T
7→ 〈S, α̃ : S → GS〉

that preserves and reflects bisimilarity

Theorem: An injective natural transformation F ⇒ G is
sufficient for CoalgF → CoalgG

proof via cocongruences - behavioral equivalence
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Example

Indeed SSeg → Seg since P(A×D) Pτ
⇒PD(A× ) is

injective for

(A×D)
τ
⇒D(A× )

given by τX(〈a, µ〉) = δa × µ, where

µ× µ′(〈x, x′〉) = µ(x) · µ′(x′)

and δa is Dirac distribution for a
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The hierarchy...
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* Falk Bartels, AS, Erik de Vink
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LT/BT spectrum
Bisimilarity is not the only semantics...
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LT/BT spectrum
Are these non-deterministic systems equal ?
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LT/BT spectrum
Are these non-deterministic systems equal ?
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x and y are:

• different wrt. bisimilarity, but

• equivalent wrt. trace semantics
tr(x) = tr(y) = {ab, ac}
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Traces - LTS
For LTS with explicit termination (NA)

trace = the set of all possible
linear behaviors
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Traces - LTS
For LTS with explicit termination (NA)

trace = the set of all possible
linear behaviors

Example:

•x
EDGF
a

@A
// a // •y

GFED
b

BC
oo

²²
X

tr(y) = b∗, tr(x) = a+ · tr(y) = a+ · b∗
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Traces - generative
For generative probabilistic systems with ex. termination

trace =
sub-probability distribution over
possible linear behaviors
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Traces - generative
For generative probabilistic systems with ex. termination

trace =
sub-probability distribution over
possible linear behaviors

Example:
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b[ 1
3
]

²²

a[ 1
3
]
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1
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&&LL
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•y
GFED
a[ 1

2
]

BC
oo

1
2

²²
•zBC@A

a[1]

GF // X

tr(x) : 〈〉 7→ 1
3

a 7→ 1
3
· 1

2

a2 7→ 1
3
· 1

2
· 1

2

· · ·
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Trace of a coalgebra ?

• Power&Turi ’99

• Jacobs ’04

• Hasuo& Jacobs ’05

• Hasuo, Jacobs, AS: Generic Trace Theory, CMCS’06
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Trace of a coalgebra ?

• Power&Turi ’99

• Jacobs ’04

• Hasuo& Jacobs ’05

• Hasuo, Jacobs, AS: Generic Trace Theory, CMCS’06

main idea: coinduction in a Kleisli category
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Coinduction

FX
F(beh) //_______ FZ

X

α

OO

beh
//_______ Z

∼=

OO

system final coalgebra
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Coinduction

FX
F(beh) //_______ FZ

X

α

OO

beh
//_______ Z

∼=

OO

system final coalgebra

• finality = ∃!(morphism for any F - coalgebra)

• beh gives the behavior of the system

• this yields final coalgebra semantics
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Coinduction

FX
F(beh) //_______ FZ

X

α

OO

beh
//_______ Z

∼=

OO

system final coalgebra

• f.c.s. in Sets = bisimilarity

• f.c.s. in a Kleisli category = trace semantics
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When does it work?
• Monad T s.t. K`(T ) is DCpo⊥-enriched

left-strict composition

• Functor F and a distributive law π : FT ⇒ T F :
lifting K`(F) of F

• K`(F) is locally monotone

• F preserves ω-colimits
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Main Theorem
If • • •• and a : FI

∼=
→ I denotes the initial Sets-algebra,

then

K`(F)I

ηI◦a ∼=

²²

K`(F)I

I I

ηFI◦a
−1 ∼=

OO

is initial is final in K`(T )
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Main Theorem
If • • •• and a : FI

∼=
→ I denotes the initial Sets-algebra,

then

K`(F)I

ηI◦a ∼=

²²

K`(F)I

I I

ηFI◦a
−1 ∼=

OO

is initial is final in K`(T )

proof: via limit-colimit coincidence Smyth&Plotkin ’82
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Corollary

Let • • •• and a : FI
∼=
→ I denote the initial Sets-algebra.

For α : X → K`(F)X in K`(T ) i.e. α : X → T FX in Sets

∃! trace map tr(α) : X → T I such that in K`(T ):

K`(F)X
K̀ (F)(tr(α)) //_______ K`(F)I

X

α

OO

tr(α)
//__________ I

∼=

OO
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It works for...
• lift, powerset, sub-distribution monad

• shapely functors - almost all polynomial

• Hence:

* for LTS with explicit termination P(1 + A× )

* for generative systems with explicit termination
D(1 + A× )

GEOCAL’06, Probabilistic Systems Workshop, AS – p.26/30



It works for...
• lift, powerset, sub-distribution monad

• shapely functors - almost all polynomial

• Hence:

* for LTS with explicit termination P(1 + A× )

* for generative systems with explicit termination
D(1 + A× )

GEOCAL’06, Probabilistic Systems Workshop, AS – p.26/30



It works for...
• lift, powerset, sub-distribution monad

• shapely functors - almost all polynomial

• Hence:

* for LTS with explicit termination P(1 + A× )

* for generative systems with explicit termination
D(1 + A× )

GEOCAL’06, Probabilistic Systems Workshop, AS – p.26/30



It works for...
• lift, powerset, sub-distribution monad

• shapely functors - almost all polynomial

• Hence:

* for LTS with explicit termination P(1 + A× )

* for generative systems with explicit termination
D(1 + A× )

GEOCAL’06, Probabilistic Systems Workshop, AS – p.26/30



It works for...
• lift, powerset, sub-distribution monad

• shapely functors - almost all polynomial

• Hence:

* for LTS with explicit termination P(1 + A× )

* for generative systems with explicit termination
D(1 + A× )

GEOCAL’06, Probabilistic Systems Workshop, AS – p.26/30



Finite traces - LTS with X

the finality diagram in K`(P)

K`(F)X
K̀ (F)(tr(α)) //_______ K`(F)A∗

X

α

OO

tr(α)
//__________ A∗

∼=

OO

amounts to

• 〈〉 ∈ tr(α)(x) ⇐⇒ X ∈ α(x)

• a · w ∈ tr(α)(x) ⇐⇒ (∃x′)〈a, x′〉 ∈ α(x), w ∈ tr(α)(x′)
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Finite traces - generative X

the finality diagram in K`(D)

K`(F)X
K̀ (F)(tr(α)) //_______ K`(F)A∗

X

α

OO

tr(α)
//__________ A∗

∼=

OO

amounts to tr(α)(x) :

• 〈〉 7→ α(x)(X)

• a · w 7→
∑

y∈X α(x)(a, y) · tr(α)(y)(w)
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Parallel composition
For u, v ∈ P(A∗) the (shuffle) parallel composition u ‖ v:

〈〉 ∈ u ‖ v def
⇐⇒ 〈〉 ∈ u and 〈〉 ∈ v

a · w ∈ u ‖ v def
⇐⇒ w ∈ ∂au ‖ v or w ∈ u ‖ ∂av

for ∂au = {w ∈ Σ
∗ | a · w ∈ u}

can be defined by coinduction
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Conclusions & future work
• Coalgebras allow for a unified treatment of (probabilistic)

transition systems

• Coinduction gives us semantic relations:

* bisimilarity for F-systems in Sets

* trace semantics for T F-systems in K`(T )

• Different monads e.g. PD - suitable monad/order structure yet to
be found (Varacca&Winskel)

• Other semantics that are between bisimilarity and trace in the
spectrum

• Parallel composition of ”probabilistic languages"
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