On Semantic Relations:

From probabilistic systems to coalgebras and back

Ana Sokolova

SOS group, Radboud University Nijmegen

Introduction - probabilistic systems and coalgebras

- Introduction probabilistic systems and coalgebras
- Bisimilarity the strong end of the spectrum

- Introduction probabilistic systems and coalgebras
- Bisimilarity the strong end of the spectrum
- Application expressiveness hierarchy (older result)

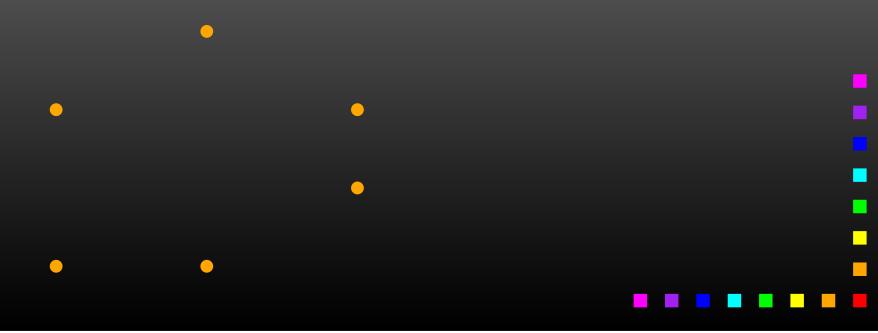
- Introduction probabilistic systems and coalgebras
- Bisimilarity the strong end of the spectrum
- Application expressiveness hierarchy (older result)
- Trace semantics the weak end of the spectrum (new !)

Systems

are formal objects, transition systems (e.g. LTS), that serve as models of real (software, hardware,...) systems

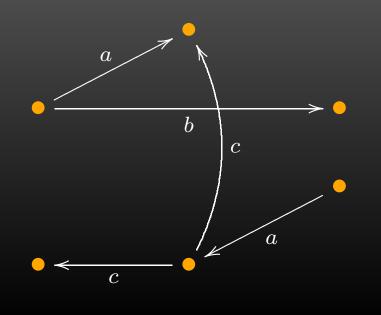
Systems

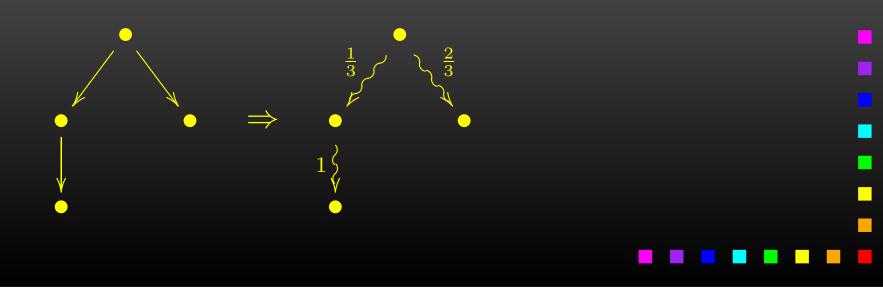
are formal objects, transition systems (e.g. LTS), that serve as models of real (software, hardware,...) systems

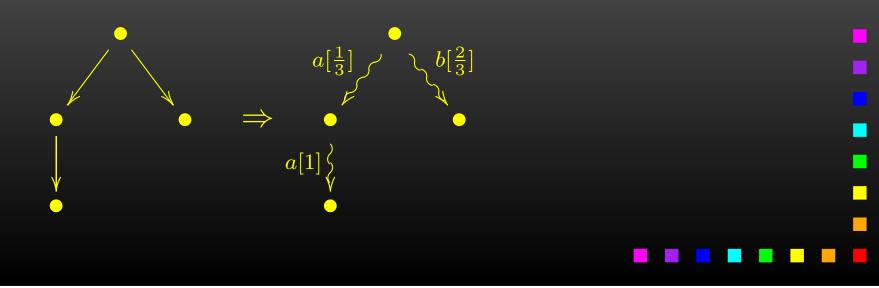


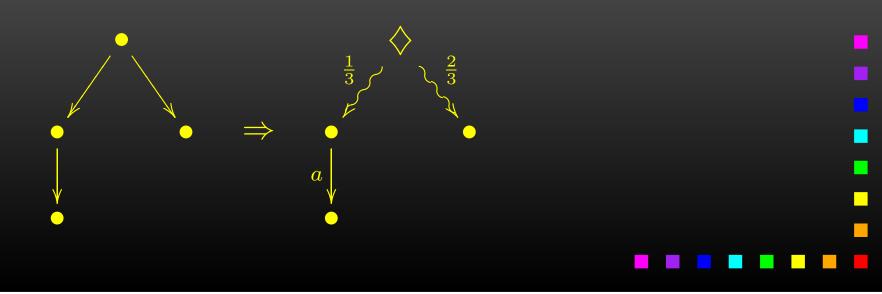
Systems

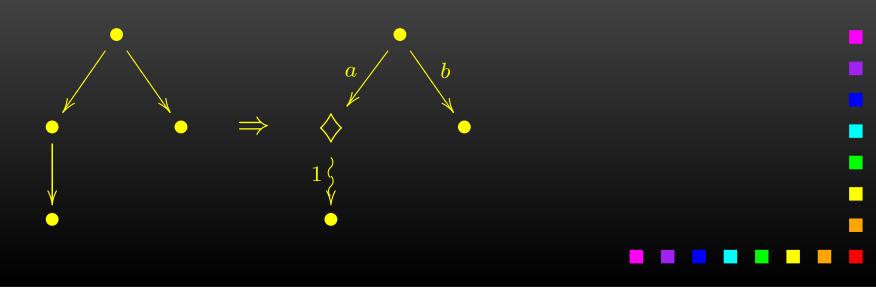
are formal objects, transition systems (e.g. LTS), that serve as models of real (software, hardware,...) systems

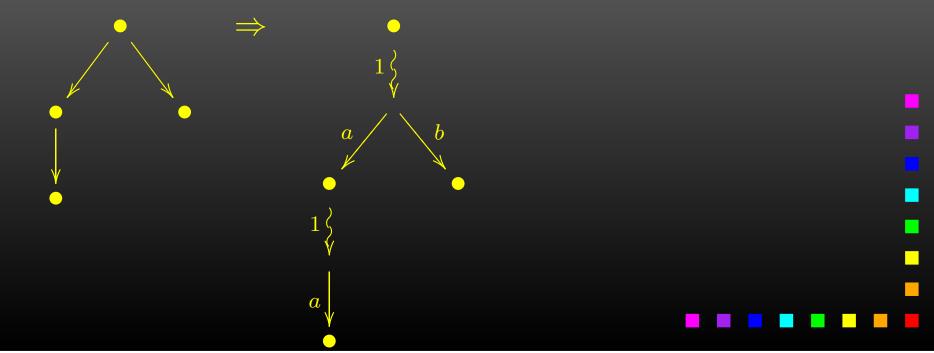


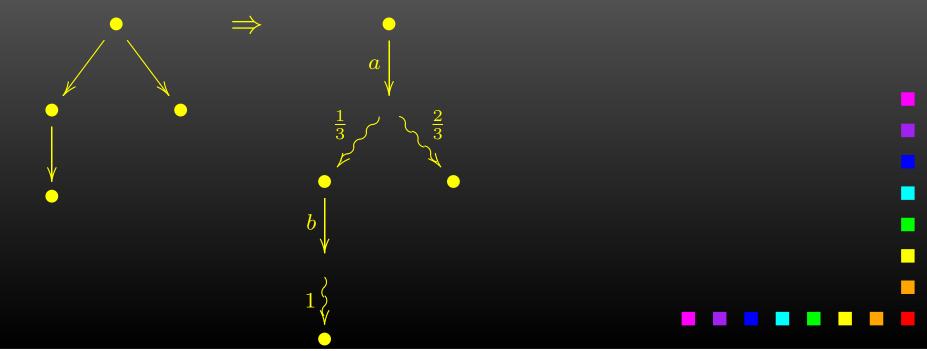












Coalgebras

are an elegant generalization of transition systems with states + transitions

Coalgebras

are an elegant generalization of transition systems with states + transitions

as pairs

 $\langle S, \alpha : S \to \mathcal{F}S \rangle$, for \mathcal{F} a functor

Coalgebras

are an elegant generalization of transition systems with states + transitions

as pairs

$$\langle S, \alpha : S \to \mathcal{F}S \rangle$$
, for \mathcal{F} a functor

- based on category theory
- provide a uniform way of treating transition systems
- provide general notions and results e.g. a generic notion of bisimulation

GEOCAL'06, Probabilistic Systems Workshop, AS - p.5/30

Examples

A TS is a pair $\langle S, \alpha : S \to \mathcal{P}S \rangle$!! coalgebra of the powerset functor \mathcal{P}

GEOCAL'06, Probabilistic Systems Workshop, AS – p.6/30

Examples

A TS is a pair $\langle S, \alpha : S \to \mathcal{P}S \rangle$!! coalgebra of the powerset functor \mathcal{P}

An LTS is a pair $\langle S, \alpha : S \to \mathcal{P}S^A \rangle$!!! coalgebra of the functor \mathcal{P}^A

Note: $\mathcal{P}^A \cong \mathcal{P}(A \times _)$

More examples

Thanks to the probability distribution functor \mathcal{D}

 $\mathcal{D}S = \{\mu : S \to [0, 1], \mu[S] = 1\}, \quad \mu[X] = \sum_{s \in X} \mu(x)$

 $\mathcal{D}f: \mathcal{D}S \to \mathcal{D}T, \ \mathcal{D}f(\mu)(t) = \mu[f^{-1}(\{t\})]$

the probabilistic systems are also coalgebras

More examples

Thanks to the probability distribution functor \mathcal{D}

 $\mathcal{D}S = \{\mu : S \to [0, 1], \mu[S] = 1\}, \quad \mu[X] = \sum_{s \in X} \mu(x)$

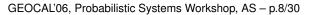
 $\mathcal{D}f: \mathcal{D}S \to \mathcal{D}T, \ \mathcal{D}f(\mu)(t) = \mu[f^{-1}(\{t\})]$

the probabilistic systems are also coalgebras ... of functors built by the following syntax

 $\mathcal{F} ::= _ | A | \mathcal{P} | \mathcal{D} | \mathcal{G} + \mathcal{H} | \mathcal{G} \times \mathcal{H} | \mathcal{G}^A | \mathcal{G} \circ \mathcal{H}$

GEOCAL'06, Probabilistic Systems Workshop, AS – p.7/30

evolve from LTS - functor
$$\mathcal{P}(A \times _) \cong \mathcal{P}^A$$



evolve from LTS - functor
$$\mathcal{P}(A \times _) \cong \mathcal{P}^A$$

reactive systems:
functor $(\mathcal{D} + 1)^A$

GEOCAL'06, Probabilistic Systems Workshop, AS - p.8/30

evolve from LTS - functor $\mathcal{P}(A \times _) \cong \mathcal{P}^{A}$ reactive systems: functor $(\mathcal{D} + 1)^{A}$ generative systems: functor $(\mathcal{D} + 1)(A \times _) = \mathcal{D}(A \times _) + 1$

GEOCAL'06, Probabilistic Systems Workshop, AS - p.8/30

evolve from LTS - functor $\mathcal{P}(A \times _) \cong \mathcal{P}^A$ reactive systems: functor $(\mathcal{D}+1)^A$

generative systems: functor $(\mathcal{D}+1)(A \times _) = \mathcal{D}(A \times _) + 1$

note: in the probabilistic case $(\mathcal{D}+1)^A \not\cong \mathcal{D}(A \times _) + 1$

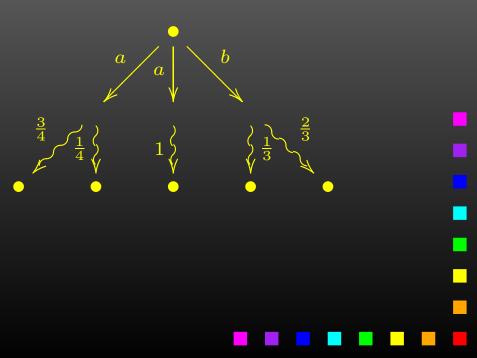
MC	\mathcal{D}
DLTS	$(-+1)^A$
LTS	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$
$\mathbf{R}\mathbf{e}\mathbf{a}\mathbf{c}\mathbf{t}$	$(\mathcal{D}+1)^A$
Gen	$\mathcal{D}(A \times _) + 1$
\mathbf{Str}	$\mathcal{D} + (A \times _) + 1$
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$
Var	$ \mathcal{D}(A \times _) + \mathcal{P}(A \times _) $
\mathbf{SSeg}	$\mathcal{P}(A imes\mathcal{D})$
\mathbf{Seg}	$\mathcal{PD}(A \times _)$

MC	\mathcal{D}	
DLTS	$(-+1)^A$	
LTS	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	
React	$(\mathcal{D}+1)^A$	$a[\frac{1}{3}] \qquad b[1]$
Gen	$\mathcal{D}(A \times _) + 1$	$a[\frac{2}{3}] \qquad \qquad$
Str	$\mathcal{D} + (A \times _) + 1$	
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	b[1] $a[1]$
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	
SSeg	$\mathcal{P}(A imes \mathcal{D})$	
Seg	$\mathcal{PD}(A \times _)$	
•••	•••	

MC	\mathcal{D}	
DLTS	$(-+1)^A$	
	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	
React	$(\mathcal{D}+1)^A$	$a[\frac{1}{2}] \qquad b[\frac{1}{4}]$
Gen	$\mathcal{D}(A \times _) + 1$	$a[\frac{1}{4}] \qquad \qquad$
Str	$\mathcal{D} + (A \times _) + 1$	
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	c[1] $c[1]$
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	
SSeg	$\mathcal{P}(A imes \mathcal{D})$	
Seg	$\mathcal{PD}(A \times _)$	
•••	• • •	

MC	\mathcal{D}	
DLTS	$(-+1)^A$	
LTS	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	
React	$(\mathcal{D}+1)^A$	\diamond
Gen	$\mathcal{D}(A \times _) + 1$	$\frac{1}{4}$ $\frac{3}{4}$
Str	$\mathcal{D} + (A \times _) + 1$	
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	a b $\frac{1}{2} \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	
SSeg	$\mathcal{P}(A imes\mathcal{D})$	
Seg	$\mathcal{PD}(A \times _)$	
	• • •	

MC	\mathcal{D}	
DLTS	$(-+1)^A$	
	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	
React	$(\mathcal{D}+1)^A$	
Gen	$\mathcal{D}(A \times _) + 1$	
Str	$\mathcal{D} + (A \times _) + 1$	<u>3</u> 4 (
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	4 1 1 1
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	•
SSeg	$\mathcal{P}(A imes \mathcal{D})$	
\mathbf{Seg}	$\mathcal{PD}(A \times _)$	
	•••	



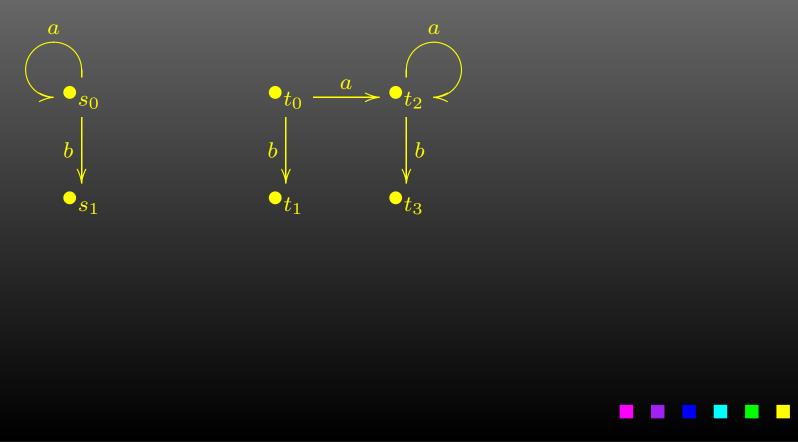
MC	\mathcal{D}	
DLTS	$(-+1)^A$	
LTS	$\mathcal{P}(A \times _) \cong \mathcal{P}^A$	
React	$(\mathcal{D}+1)^A$	
Gen	$\mathcal{D}(A \times _) + 1$	
Str	$\mathcal{D} + (A \times _) + 1$	$a[\frac{1}{4}] \sim \lambda_{12}$
Alt	$\mathcal{D} + \mathcal{P}(A \times _)$	$ \begin{array}{c} $
Var	$\mathcal{D}(A \times _) + \mathcal{P}(A \times _)$	• •
SSeg	$\mathcal{P}(A imes \mathcal{D})$	
Seg	$\mathcal{PD}(A \times _)$	
	• • •	

 $a[\frac{2}{3}]$

 $a[\frac{1}{3}]$

Bisimulation - LTS

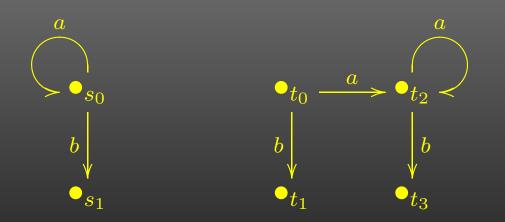
Consider the LTS



GEOCAL'06, Probabilistic Systems Workshop, AS - p.10/30

Bisimulation - LTS

Consider the LTS

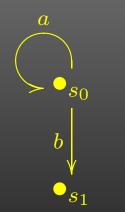


The states s_0 and t_0 are bisimilar since there is a bisimulation R relating them...

GEOCAL'06, Probabilistic Systems Workshop, AS - p.10/30

Bisimulation - LTS

Consider the LTS



Transfer condition:

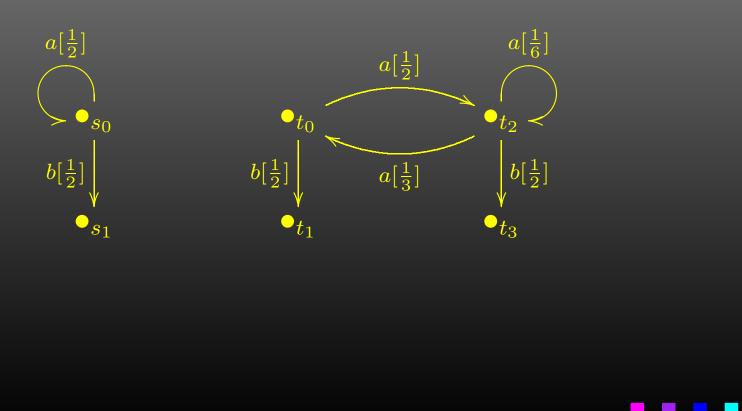
 $\begin{array}{ccc} \bullet_{t_1} & \bullet_{t_3} \\ \langle s, t \rangle \in R & \Longrightarrow \\ & s \xrightarrow{a} s' \Rightarrow (\exists t') \ t \xrightarrow{a} t', \ \langle s', t' \rangle \in R, \\ & t \xrightarrow{a} t' \Rightarrow (\exists s') \ s \xrightarrow{a} s', \ \langle s', t' \rangle \in R \end{array}$

 \boldsymbol{a}

GEOCAL'06, Probabilistic Systems Workshop, AS – p.10/30

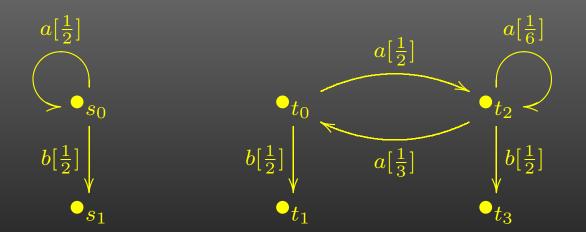
Bisimulation - generative

Consider the generative systems



Bisimulation - generative

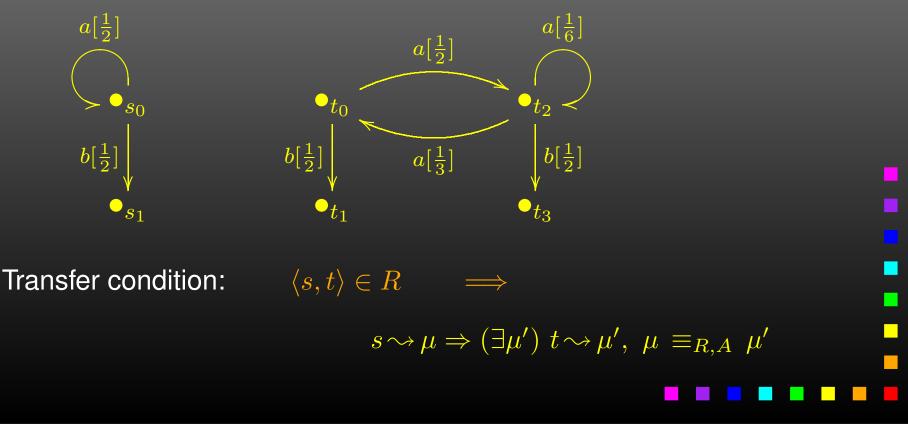
Consider the generative systems



The states s_0 and t_0 are bisimilar, and so are s_0 and t_2 , since there is a bisimulation R relating them...

Bisimulation - generative

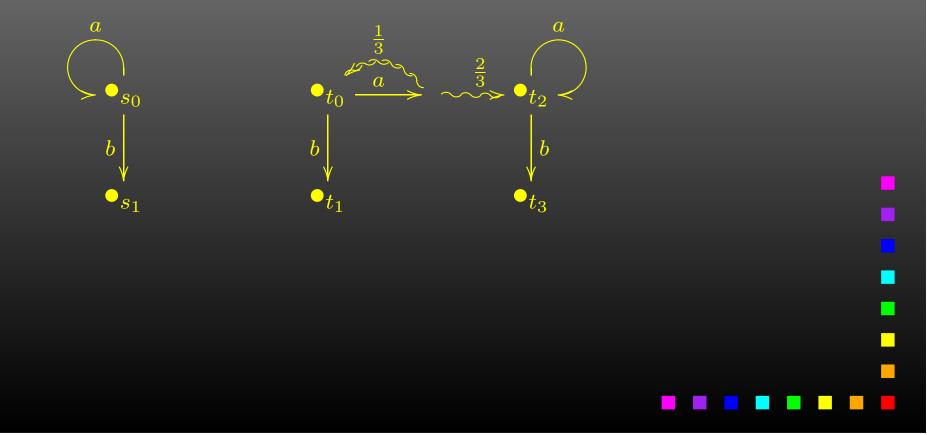
Consider the generative systems



GEOCAL'06, Probabilistic Systems Workshop, AS – p.11/30

Bisimulation - simple Segala

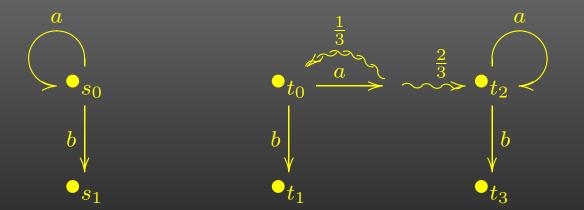
Consider the simple Segala systems



GEOCAL'06, Probabilistic Systems Workshop, AS – p.12/30

Bisimulation - simple Segala

Consider the simple Segala systems



The states s_0 and t_0 are bisimilar, since there is a bisimulation R relating them...

Bisimulation - simple Segala

Consider the simple Segala systems

on: $\langle s,t
angle \in R$

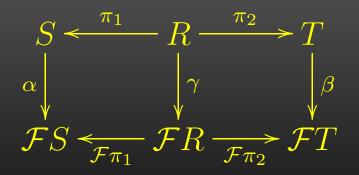
Transfer condition:

$$s \xrightarrow{a} \mu \Rightarrow (\exists \mu') \ t \xrightarrow{a} \mu', \ \mu \equiv_R \mu'$$

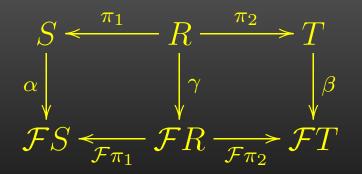
 \boldsymbol{a}

A bisimulation between $\langle S, \alpha : S \to \mathcal{F}S \rangle$ and $\langle T, \beta : S \to \mathcal{F}S \rangle$ is $R \subseteq S \times T$ such that $\exists \gamma$:

A bisimulation between $\langle S, \alpha : S \to \mathcal{F}S \rangle$ and $\langle T, \beta : S \to \mathcal{F}S \rangle$ is $R \subseteq S \times T$ such that $\exists \gamma$:



A bisimulation between $\langle S, \alpha : S \to \mathcal{F}S \rangle$ and $\langle T, \beta : S \to \mathcal{F}S \rangle$ is $R \subseteq S \times T$ such that $\exists \gamma$:

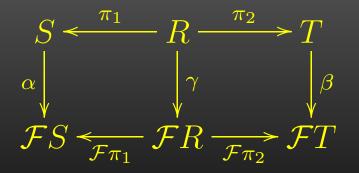


Transfer condition: $\langle s, t \rangle \in R$

 $\langle s,t \rangle \in R \implies$ $\langle \alpha(s), \beta(t) \rangle \in \operatorname{Rel}(\mathcal{F})(R)$

A bisimulation between

 $\langle S, \alpha : S \to \mathcal{F}S \rangle$ and $\langle T, \beta : S \to \mathcal{F}S \rangle$ is $R \subseteq S \times T$ such that $\exists \gamma$:

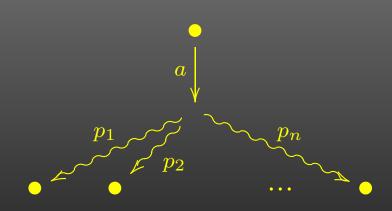


Theorem: Coalgebraic and concrete bisimilarity coincide !

GEOCAL'06, Probabilistic Systems Workshop, AS - p.13/30

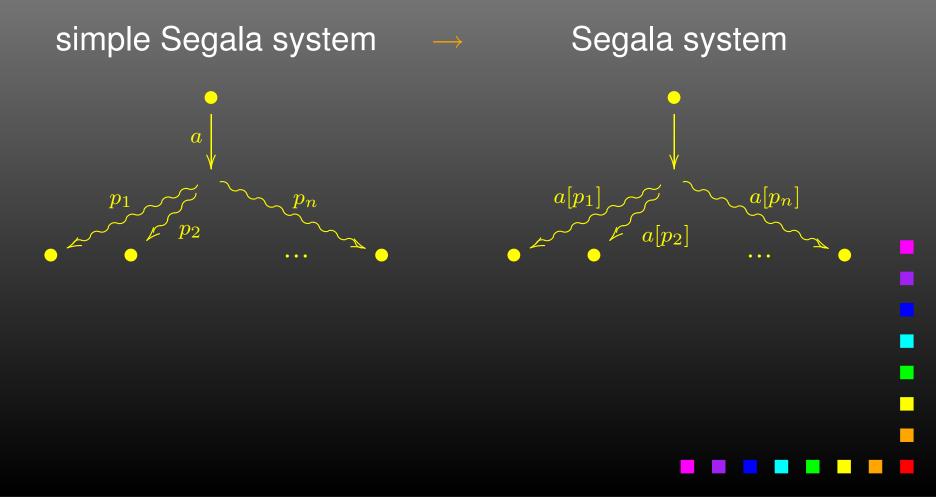
Expressiveness

simple Segala system \rightarrow Segala system



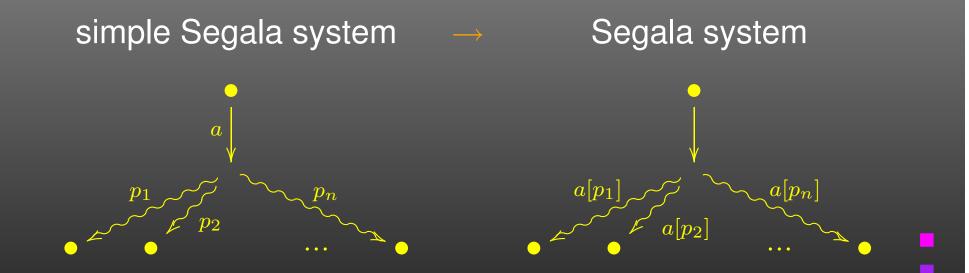
GEOCAL'06, Probabilistic Systems Workshop, AS - p.14/30

Expressiveness



GEOCAL'06, Probabilistic Systems Workshop, AS - p.14/30

Expressiveness



When do we consider one type of systems more expressive than another?

GEOCAL'06, Probabilistic Systems Workshop, AS - p.14/30

 $\mathsf{Coalg}_{\mathcal{F}} \to \mathsf{Coalg}_{\mathcal{G}}$

if there is a mapping $\langle S, \alpha : S \to \mathcal{F}S \rangle \xrightarrow{T} \langle S, \tilde{\alpha} : S \to \mathcal{G}S \rangle$ that preserves and reflects bisimilarity

 $\mathsf{Coalg}_\mathcal{F} \to \mathsf{Coalg}_\mathcal{G}$

if there is a mapping $\langle S, \alpha : S \to \mathcal{F}S \rangle \xrightarrow{T} \langle S, \tilde{\alpha} : S \to \mathcal{G}S \rangle$ that preserves and reflects bisimilarity

 $s_{\langle S,\alpha\rangle} \sim t_{\langle T,\beta\rangle} \iff s_{\mathcal{T}\langle S,\alpha\rangle} \sim t_{\mathcal{T}\langle T,\beta\rangle}$

GEOCAL'06, Probabilistic Systems Workshop, AS – p.15/30

 $\mathsf{Coalg}_\mathcal{F} \to \mathsf{Coalg}_\mathcal{G}$

if there is a mapping $\langle S, \alpha : S \to \mathcal{F}S \rangle \xrightarrow{T} \langle S, \tilde{\alpha} : S \to \mathcal{G}S \rangle$ that preserves and reflects bisimilarity

Theorem: An injective natural transformation $\mathcal{F} \Rightarrow \mathcal{G}$ is sufficient for $Coalg_{\mathcal{F}} \rightarrow Coalg_{\mathcal{G}}$

GEOCAL'06, Probabilistic Systems Workshop, AS – p.15/30

 $\mathsf{Coalg}_\mathcal{F} \to \mathsf{Coalg}_\mathcal{G}$

if there is a mapping $\langle S, \alpha : S \to \mathcal{F}S \rangle \xrightarrow{T} \langle S, \tilde{\alpha} : S \to \mathcal{G}S \rangle$ that preserves and reflects bisimilarity

Theorem: An injective natural transformation $\mathcal{F} \Rightarrow \mathcal{G}$ is sufficient for $Coalg_{\mathcal{F}} \rightarrow Coalg_{\mathcal{G}}$

proof via cocongruences - behavioral equivalence

GEOCAL'06, Probabilistic Systems Workshop, AS - p.15/30

Indeed **SSeg** \rightarrow **Seg** since $\mathcal{P}(A \times \mathcal{D}) \stackrel{\mathcal{P}_{\mathcal{T}}}{\Rightarrow} \mathcal{P}\mathcal{D}(A \times _)$ is injective for

Indeed **SSeg** \rightarrow **Seg** since $\mathcal{P}(A \times \mathcal{D}) \stackrel{\mathcal{P}_{\mathcal{T}}}{\Rightarrow} \mathcal{P}\mathcal{D}(A \times _)$ is injective for

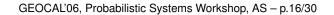
 $(A \times \mathcal{D}) \stackrel{\tau}{\Rightarrow} \mathcal{D}(A \times _)$

given by

Indeed SSeg \rightarrow Seg since $\mathcal{P}(A \times \mathcal{D}) \stackrel{\mathcal{P}_{\mathcal{T}}}{\Rightarrow} \mathcal{P}\mathcal{D}(A \times _)$ is injective for

 $(A \times \mathcal{D}) \stackrel{\tau}{\Rightarrow} \mathcal{D}(A \times _)$

given by $\tau_X(\langle a, \mu \rangle) = \delta_a \times \mu$, where



Indeed SSeg \rightarrow Seg since $\mathcal{P}(A \times \mathcal{D}) \stackrel{\mathcal{P}_{\mathcal{T}}}{\Rightarrow} \mathcal{P}\mathcal{D}(A \times _)$ is injective for

 $(A \times \mathcal{D}) \stackrel{\tau}{\Rightarrow} \mathcal{D}(A \times _)$

given by $\tau_X(\langle a, \mu \rangle) = \delta_a \times \mu$, where

$$\mu \times \mu'(\langle x, x' \rangle) = \mu(x) \cdot \mu'(x')$$

Indeed $\operatorname{SSeg} \to \operatorname{Seg}$ since $\mathcal{P}(A \times \mathcal{D}) \stackrel{\mathcal{P}_{\mathcal{T}}}{\Rightarrow} \mathcal{P}\mathcal{D}(A \times _)$ is injective for

 $(A \times \mathcal{D}) \stackrel{\tau}{\Rightarrow} \mathcal{D}(A \times _)$

given by $\tau_X(\langle a, \mu \rangle) = \delta_a \times \mu$, where

 $\mu \times \mu'(\langle x, x' \rangle) = \mu(x) \cdot \mu'(x')$

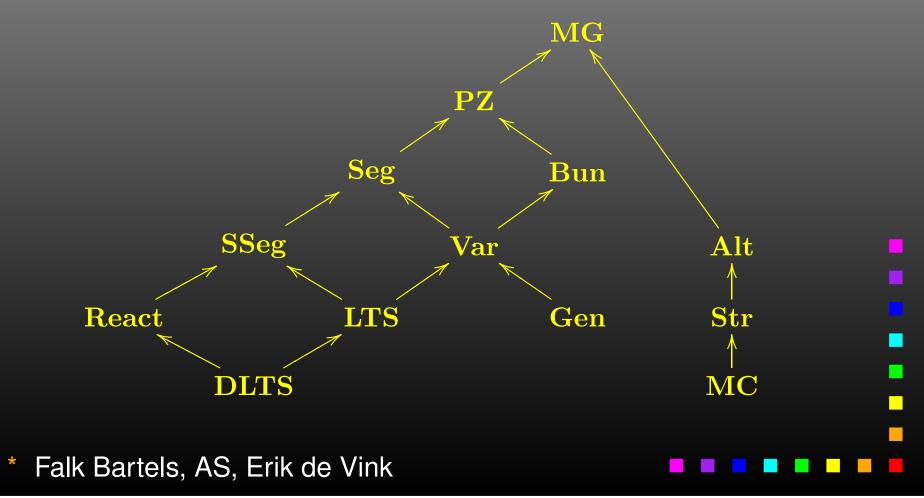
and δ_a is Dirac distribution for a

The hierarchy...



GEOCAL'06, Probabilistic Systems Workshop, AS - p.17/30

The hierarchy...



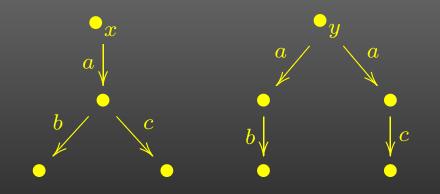
GEOCAL'06, Probabilistic Systems Workshop, AS - p.17/30

Bisimilarity is not the only semantics...

Are these non-deterministic systems equal?



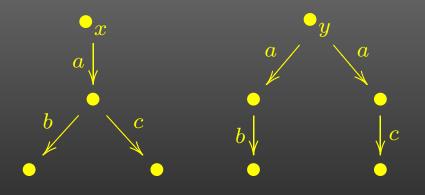
Are these non-deterministic systems equal ?



x and y are:

different wrt. bisimilarity

Are these non-deterministic systems equal ?



x and y are:

- different wrt. bisimilarity, but
- equivalent wrt. trace semantics $tr(x) = tr(y) = \{ab, ac\}$

Traces - LTS

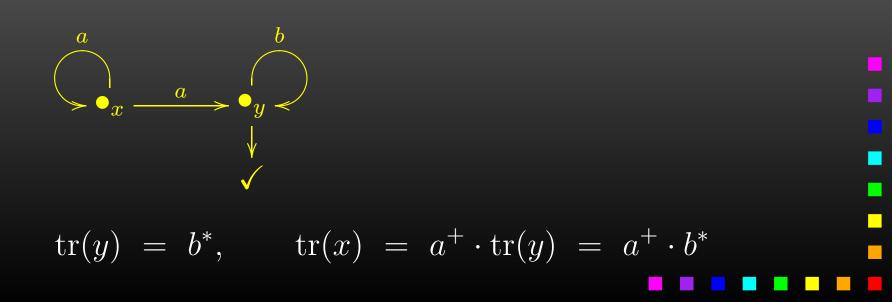
For LTS with explicit termination (NA) trace = the set of all possible linear behaviors

GEOCAL'06, Probabilistic Systems Workshop, AS - p.19/30

Traces - LTS

For LTS with explicit termination (NA) $trace = \frac{the \ set \ of \ all \ possible}{linear \ behaviors}$

Example:



Traces - generative

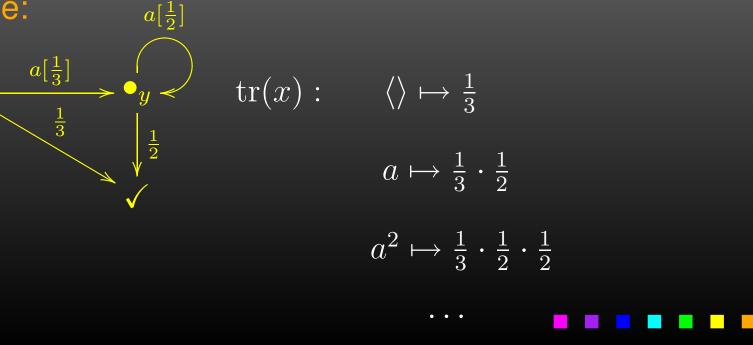
For generative probabilistic systems with ex. termination trace = sub-probability distribution over possible linear behaviors

Traces - generative

 $b\left[\frac{1}{3}\right]$

a[1]

For generative probabilistic systems with ex. termination trace = $\begin{array}{l} \text{sub-probability distribution over} \\ \text{possible linear behaviors} \\ \text{Example:} \qquad a[\frac{1}{2}] \end{array}$



Trace of a coalgebra ?

GEOCAL'06, Probabilistic Systems Workshop, AS - p.21/30

Trace of a coalgebra ?

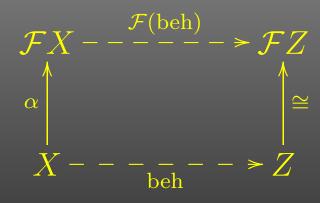
- Power&Turi '99
- Jacobs '04
- Hasuo& Jacobs '05
- Hasuo, Jacobs, AS: Generic Trace Theory, CMCS'06

Trace of a coalgebra ?

- Power&Turi '99
- Jacobs '04
- Hasuo& Jacobs '05
- Hasuo, Jacobs, AS: Generic Trace Theory, CMCS'06

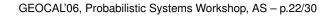
main idea: coinduction in a Kleisli category

Coinduction

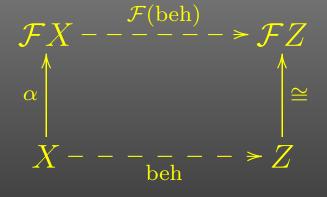


system

final coalgebra



Coinduction

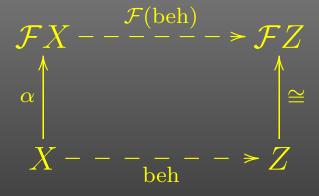


system

final coalgebra

- finality = $\exists !$ (morphism for any \mathcal{F} coalgebra)
- beh gives the behavior of the system
- this yields final coalgebra semantics

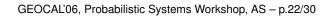
Coinduction



system

final coalgebra

- f.c.s. in **Sets** = bisimilarity
- f.c.s. in a Kleisli category = trace semantics



 Monad T s.t. Kl(T) is DCpo₁-enriched left-strict composition

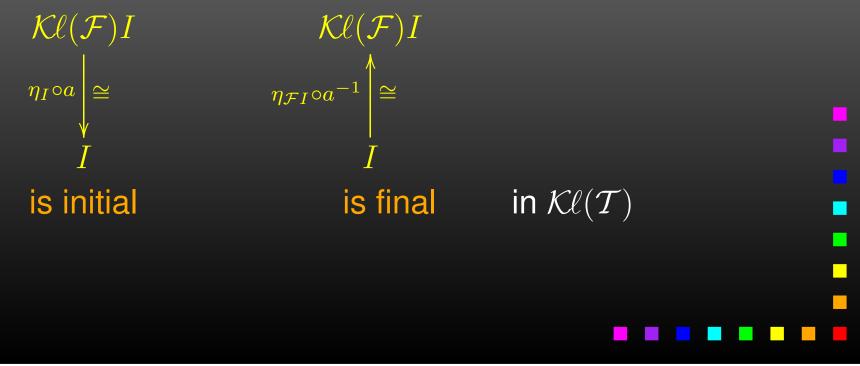
- Monad T s.t. Kl(T) is DCpo₁-enriched left-strict composition
- Functor \mathcal{F} and a distributive law $\pi \colon \mathcal{FT} \Rightarrow \mathcal{TF}$: lifting $\mathcal{K}\ell(\mathcal{F})$ of \mathcal{F}

- Monad T s.t. $\mathcal{K}\ell(T)$ is $DCpo_{\perp}$ -enriched left-strict composition
- Functor \mathcal{F} and a distributive law $\pi \colon \mathcal{FT} \Rightarrow \mathcal{TF}$: lifting $\mathcal{K}\ell(\mathcal{F})$ of \mathcal{F}
- $\mathcal{K}\ell(\mathcal{F})$ is locally monotone

- Monad T s.t. Kl(T) is DCpo₁-enriched left-strict composition
- Functor \mathcal{F} and a distributive law $\pi \colon \mathcal{FT} \Rightarrow \mathcal{TF}$: lifting $\mathcal{K}\ell(\mathcal{F})$ of \mathcal{F}
- $\mathcal{K}\ell(\mathcal{F})$ is locally monotone
- \mathcal{F} preserves ω -colimits

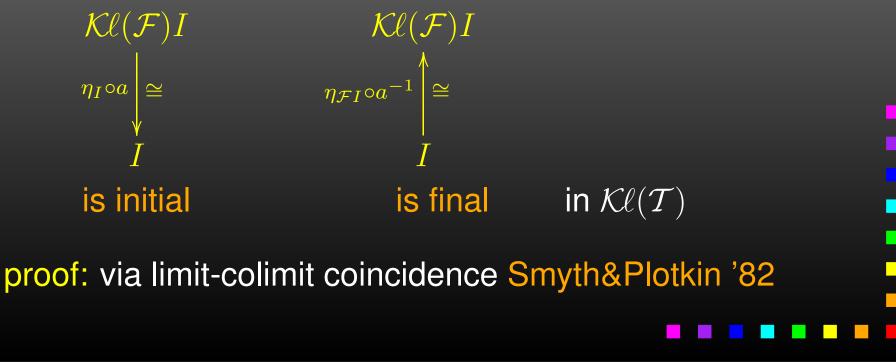
Main Theorem

If $\circ \circ \circ \circ$ and $a : \mathcal{F}I \xrightarrow{\simeq} I$ denotes the initial Sets-algebra, then



Main Theorem

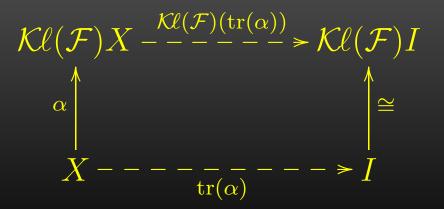
If $\circ \circ \circ \circ$ and $a : \mathcal{F}I \xrightarrow{\simeq} I$ denotes the initial Sets-algebra, then



Corollary

Let • • • • and $a : \mathcal{F}I \xrightarrow{\cong} I$ denote the initial Sets-algebra. For $\alpha : X \to \mathcal{K}\ell(\mathcal{F})X$ in $\mathcal{K}\ell(\mathcal{T})$ i.e. $\alpha : X \to \mathcal{T}\mathcal{F}X$ in Sets

 $\exists ! \text{ trace map } \operatorname{tr}(\alpha) : X \to \mathcal{T}I \text{ such that in } \mathcal{K}\ell(\mathcal{T}):$



lift, powerset, sub-distribution monad

- Iift, powerset, sub-distribution monad
- shapely functors almost all polynomial

- Iift, powerset, sub-distribution monad
- shapely functors almost all polynomial
- Hence:

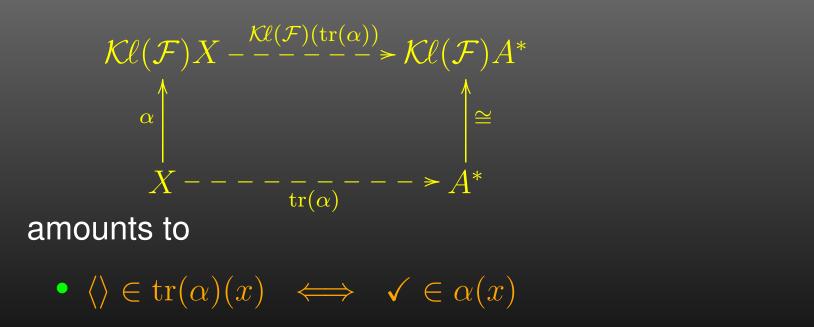
- Iift, powerset, sub-distribution monad
- shapely functors almost all polynomial
- Hence:
 - * for LTS with explicit termination $\mathcal{P}(1 + A \times _)$

- lift, powerset, sub-distribution monad
- shapely functors almost all polynomial
- Hence:
 - * for LTS with explicit termination $\mathcal{P}(1 + A \times _)$

* for generative systems with explicit termination $\mathcal{D}(1 + A \times _)$

Finite traces - LTS with √

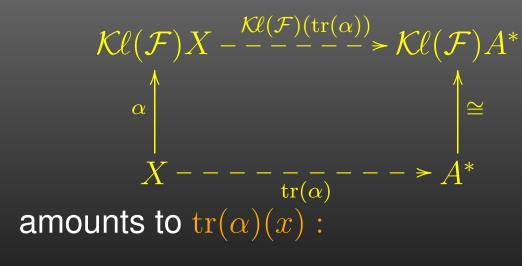
the finality diagram in $\mathcal{K}\ell(\mathcal{P})$



• $a \cdot w \in \operatorname{tr}(\alpha)(x) \iff (\exists x') \langle a, x' \rangle \in \alpha(x), \ w \in \operatorname{tr}(\alpha)(x')$

Finite traces - generative \checkmark

the finality diagram in $\mathcal{K}\ell(\mathcal{D})$



• $\langle \rangle \mapsto \alpha(x)(\checkmark)$

• $a \cdot w \mapsto \sum_{y \in X} \alpha(x)(a, y) \cdot \operatorname{tr}(\alpha)(y)(w)$

Parallel composition

For $u, v \in \mathcal{P}(A^*)$ the (shuffle) parallel composition $u \parallel v$:

 $\langle \rangle \in u \parallel v \qquad \stackrel{\text{def}}{\iff} \qquad \langle \rangle \in u \quad \text{and} \quad \langle \rangle \in v \\ a \cdot w \in u \parallel v \qquad \stackrel{\text{def}}{\iff} \qquad w \in \partial_a u \parallel v \quad \text{or} \quad w \in u \parallel \partial_a v$

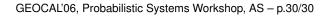
for $\partial_a u = \{ w \in \Sigma^* \mid a \cdot w \in u \}$

can be defined by coinduction

 Coalgebras allow for a unified treatment of (probabilistic) transition systems

- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:

- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:
 - * bisimilarity for \mathcal{F} -systems in Sets



- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:
 - * bisimilarity for \mathcal{F} -systems in Sets
 - * trace semantics for \mathcal{TF} -systems in $\mathcal{K}\ell(T)$

- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:
 - * bisimilarity for \mathcal{F} -systems in \mathbf{Sets}
 - * trace semantics for \mathcal{TF} -systems in $\mathcal{K}\ell(T)$
- Different monads e.g. *PD* suitable monad/order structure yet to be found (Varacca&Winskel)

- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:
 - * bisimilarity for \mathcal{F} -systems in \mathbf{Sets}
 - * trace semantics for \mathcal{TF} -systems in $\mathcal{K}\ell(T)$
- Different monads e.g. *PD* suitable monad/order structure yet to be found (Varacca&Winskel)
- Other semantics that are between bisimilarity and trace in the spectrum

- Coalgebras allow for a unified treatment of (probabilistic) transition systems
- Coinduction gives us semantic relations:
 - * bisimilarity for $\mathcal F$ -systems in \mathbf{Sets}
 - * trace semantics for \mathcal{TF} -systems in $\mathcal{K}\ell(T)$
- Different monads e.g. *PD* suitable monad/order structure yet to be found (Varacca&Winskel)
- Other semantics that are between bisimilarity and trace in the spectrum
- Parallel composition of "probabilistic languages"