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pf ‘ gqpx, yq “ fpxq ` gpyq

ª

X
fdµ `

ª

Y
gd⌫ § sup

"ª

XˆY
pf ‘ gqd� | � P ⇤

*

for bounded, measurable f,g
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Countable Splitting Lemma (Levy)
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Example:  A politician can pick up strategies for the elections. One strategy 


stochastically dominates another strategy     iff the outcome under     is always


better.   


Stochastic dominance ?

µ ⌫

⌫

@x P X. µ pty | x § yuq § ⌫ pty | x § yuq

This amounts to     for the set of natural numbers and any well-order on it, 


and to         from Strassen’s theorem, in this special case. 
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Way out: Choose a subsequence              such that the limit


                                                    exists for all     


1. Proves the finite case


2. Considers cutoffs 


3. Produces       on                                    with marginals  


4. Takes the (pointwise) limit … but it does not necessarily exist.

Kellerer’s proof

µn, ⌫n

�n t1, . . . , nu ˆ t1, . . . , nu µn, ⌫n

pnlq8
l“0

�pi, jq “ lim
lÑ8

�nlpi, jq i, j



Also produces approximations, but differently - not with cutoffs


Produces        with the monotonicity property:


Nawrotzki’s proof

�n

These approximations do not have “correct” marginals (in general).


Defines 


Proves that this limit has the correct marginals. 

�pi, jq “ lim
nÑ8

�npi, jq

i “ j ñ �n`1pi, jq § �npi, jq
non increasing on the diagonal 
non decreasing off the diagonal

exists by monotonicity

i ‰ j ñ �n`1pi, jq • �npi, jq



Nawrotski:  Nonconstructiveness is in the definition of the approximations


                   Only      is computable, the others not. �1

Kellerer: Each approximation       is computable. 


               Nonconstructiveness due to limit by compactness argument.

Nonconstructiveness

requires computing a sum of an 
infinite series and evaluating 

suprema of infinite sets

�n

�n

Heine-Borel: On a compact subset of real numbers, every 
sequence has a converging subsequence…  

but how to find it ?



Strassen’s proof is super-nonconstructive — compactness comes in on every corner !

Banach-Alaoglu, Riesz-Markov representation, Krein-Milman

Nonconstructiveness
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Thank You ! 

The sequence of approximation converges  to the solution in         -norm

But we have no computable bound for the error }�n ´ �}1

`1


