Nawrotzki's Algorithm, for the Countable Splitting Lemma, Constructively

CALCO, September 3, 2021

Ana Sokolova & Harald Woracek

- **Given:** Two measures μ , ν on X, Y, respectively
- **Goal:** Find a measure on $X \times Y$ with marginals μ, ν
- Answer: Easy, just take the product measure $\,\mu imes
 u$

- **Given:** Two measures μ , ν on X, Y, respectively
- **Goal:** Find a measure on $X \times Y$ with marginals μ, ν
- Answer: Easy, just take the product measure $\,\mu imes
 u$

What if we require additional properties?

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

topological, with Borel σ-algebra

D(X) - probability measures on X

Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

topological, with Borel σ-algebra

D(X) - probability measures on X

Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

 $\int_{X} f d\mu + \int_{V} g d\nu \leqslant \sup \left\{ \int_{Y} g d\mu \otimes \sup$

for bounded, measurable f,g

topological, with Borel σ-algebra

D(X) - probability measures on X

Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$

$$\begin{cases} (f \oplus g)d\lambda \mid \lambda \in \Lambda \\ (f \oplus g)(x, y) = f(x) + g(y) \end{cases}$$

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

topological, with Borel σ-algebra

D(X) - probability measures on X

Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

topological, with Borel σ-algebra

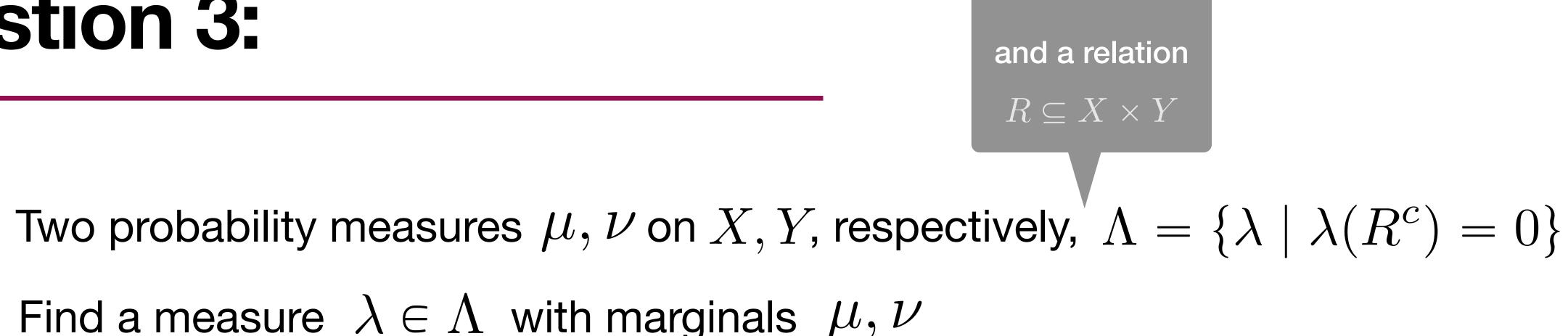
D(X) - probability measures on X

Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$

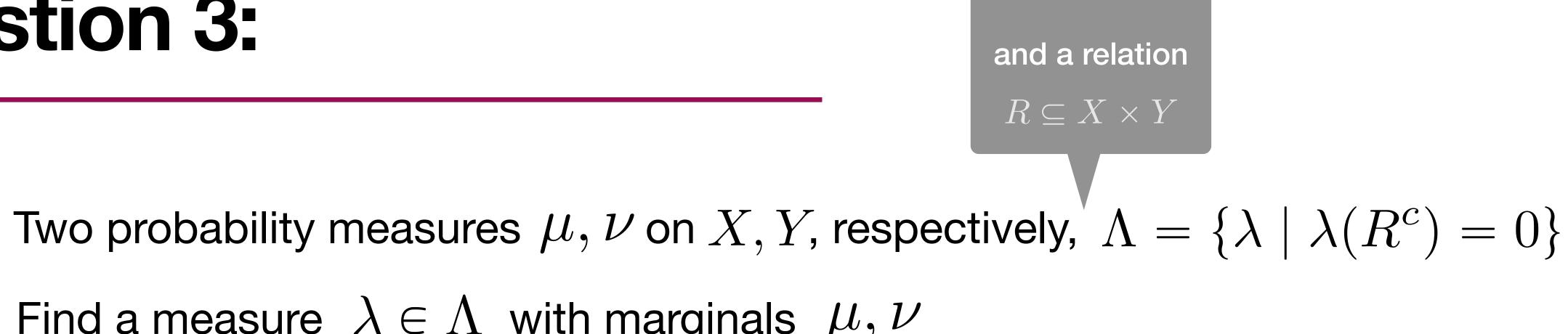
convex and closed, models the additional conditions

one particular special case...

Given: Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:



Given: Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:



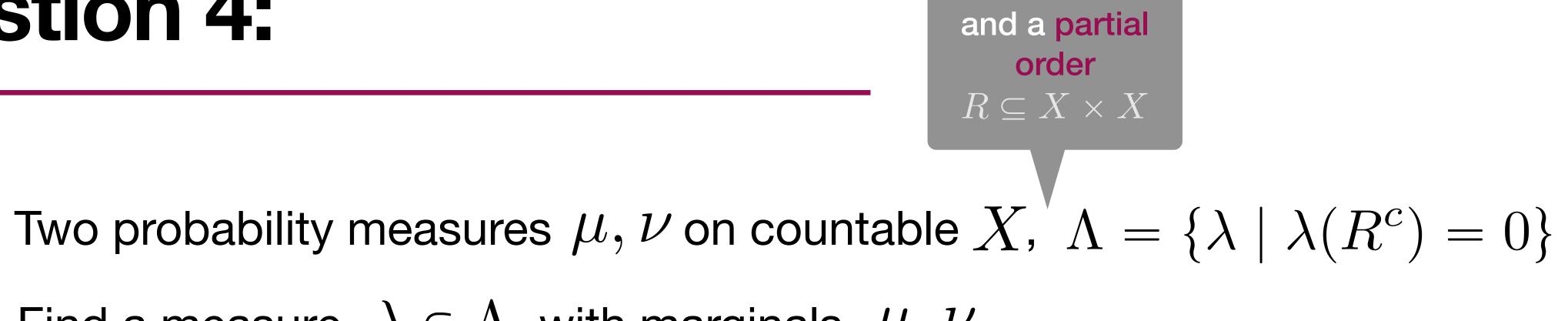
further, one particular special case...

Given: Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

and a partial order $R \subseteq X \times X$

Two probability measures μ, ν on countable X, $\Lambda = \{\lambda \mid \lambda(R^c) = 0\}$

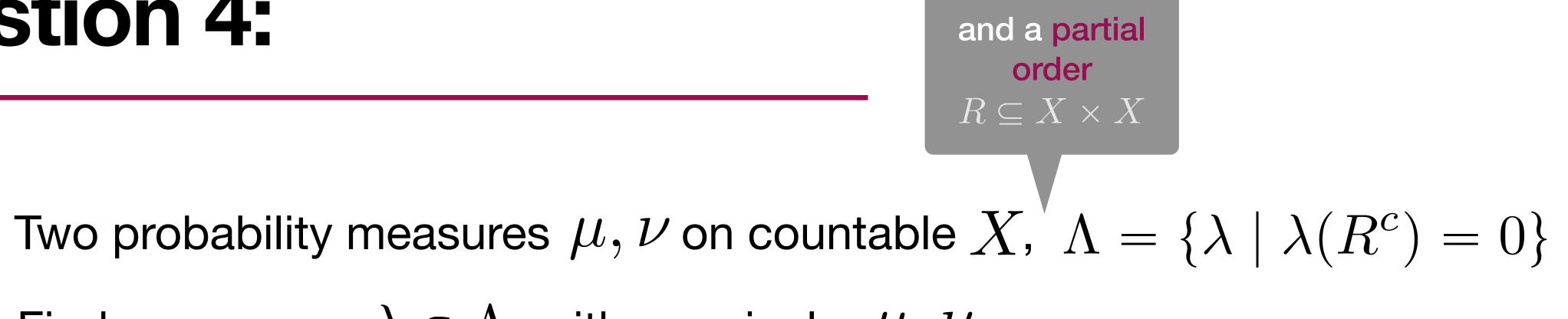
- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:



Kellerer '61, Nawrotzki '62 : It is possible iff $\mu \leq \nu$, i.e., they satisfy stochastic dominance.

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

Countable Splitting Lemma (Levy)



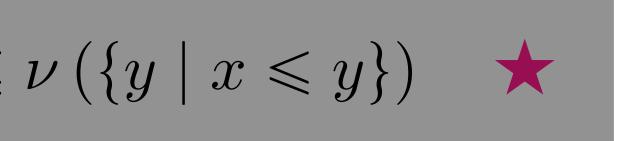
Kellerer '61, Nawrotzki '62 : It is possible iff $\mu \leq \nu$, i.e., they satisfy stochastic dominance.

Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under u is always better.

Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under ν is always

better.

$$\forall x \in X. \ \mu\left(\{y \mid x \leqslant y\}\right) \leqslant$$



Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under ν is always

better.

$$\forall x \in X. \ \mu\left(\{y \mid x \leqslant y\}\right) \leqslant$$

 $\mu(U) \leqslant \nu(U)$

 $\nu\left(\{y \mid x \leqslant y\}\right) \quad \bigstar$

Def: ν stochastically dominates μ if for every upward closed set $U \subseteq X (= \mathbb{N})$

Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under ν is always

better.

$$\forall x \in X. \ \mu\left(\{y \mid x \leqslant y\}\right) \leqslant$$

Def: ν stochastically dominates μ if for every upward closed set $U \subseteq X (= \mathbb{N})$ $\mu(U) \leqslant \nu(U)$ wrt a preorder R

 $\nu\left(\{y \mid x \leqslant y\}\right) \quad \bigstar$

Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under ν is always

better.

$$\forall x \in X. \ \mu\left(\{y \mid x \leq y\}\right) \leq \nu\left(\{y \mid x \leq y\}\right) \quad \bigstar$$

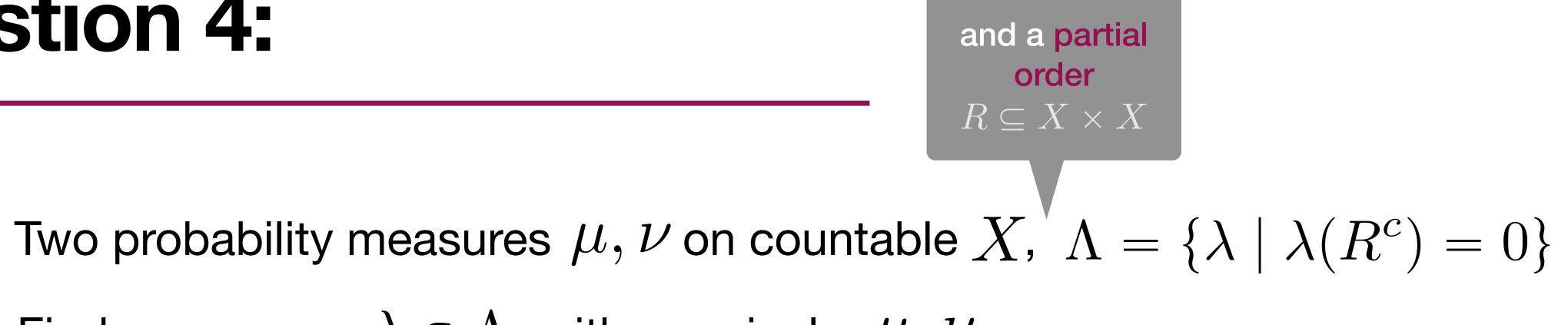
 $\mu(U) \leqslant \nu(U)$

This amounts to \star for the set of natural numbers and any well-order on it, and to from Strassen's theorem, in this special case.

- **Def:** ν stochastically dominates μ if for every upward closed set $U \subseteq X (= \mathbb{N})$
 - a preorder R

- Given:
- Find a measure $\lambda \in \Lambda$ with marginals μ, ν Goal:

Countable Splitting Lemma (Levy)



Kellerer '61, Nawrotzki '62 : It is possible iff $\mu \leq \nu$, i.e., they satisfy stochastic dominance.

Kellerer's proof

- 1. Proves the finite case
- 2. Considers cutoffs μ_n, ν_n
- 3. Produces λ_n on $\{1, \ldots, n\} \times \{1, \ldots, n\}$ with marginals μ_n, ν_n
- 4. Takes the (pointwise) limit ... but it does not necessarily exist.

Way out: Choose a subsequence $(n_l)_{l=0}^{\infty}$ such that the limit

$$\lambda(i,j) = \lim_{l \to \infty} \lambda_{n_l}(i,j)$$
 exists

- s for all i, j

Nawrotzki's proof

Also produces approximations, but differently - not with cutoffs Produces λ_n with the monotonicity property: $i = j \Rightarrow \lambda_{n+1}(i,j) \leq \lambda_n(i,j)$ $i \neq j \Rightarrow \lambda_{n+1}(i,j) \ge \lambda_n(i,j)$

These approximations do not have "correct" marginals (in general).

Defines
$$\lambda(i,j) = \lim_{n \to \infty} \lambda_n(i,j)$$
 exists

Proves that this limit has the correct marginals.

non increasing on the diagonal non decreasing off the diagonal

sts by monotonicity

Nonconstructiveness

Kellerer: Each approximation λ_n is computable.

Nonconstructiveness due to limit by compactness argument.

Nawrotski: Nonconstructiveness is in the definition of the approximations λ_n

Only λ_1 is computable, the others not.

Heine-Borel: On a compact subset of real numbers, every sequence has a converging subsequence... but how to find it ?

requires computing a sum of an infinite series and evaluating suprema of infinite sets

Nonconstructiveness

Strassen's proof is super-nonconstructive — compactness comes in on every corner !

Banach-Alaoglu, Riesz-Markov representation, Krein-Milman

follows Nawrotzki, uses ideas of cutoffs

4/5 Nawrotzki + 1/5 Kellerer

Each approximation is computable.

Still does not have "correct" marginals.

Has computable error estimate, for fixed position i, j

follows Nawrotzki, uses ideas of cutoffs

4/5 Nawrotzki + 1/5 Kellerer

Each approximation is computable.

Still does not have "correct" marginals.

Has computable error estimate, for fixed position i, j

The sequence of approximation converges to the solution in ℓ^{\perp} -norm

follows Nawrotzki, uses ideas of cutoffs

4/5 Nawrotzki + 1/5 Kellerer

Each approximation is computable.

Still does not have "correct" marginals.

Has computable error estimate, for fixed position i, j

The sequence of approximation converges to the solution in ℓ^{\perp} -norm

But we have no computable bound for the error $\|\lambda_n - \lambda\|_1$

follows Nawrotzki, uses ideas of cutoffs

4/5 Nawrotzki + 1/5 Kellerer

Each approximation is computable.

Still does not have "correct" marginals.

Has computable error estimate, for fixed position i, j

The sequence of approximation converges to the solution in ℓ^{\perp} -norm

But we have no computable bound for the error $\|\lambda_n - \lambda\|_1$

