
The Power of Convex Algebras
Filippo Bonchi1, Alexandra Silva2, and Ana Sokolova3

1 ENS de Lyon, France — filippo.bonchi@ens-lyon.fr
2 UCL, UK — alexandra.silva@ucl.ac.uk
3 University of Salzburg, Austria — ana.sokolova@cs.uni-salzburg.at

Abstract
Probabilistic automata (PA) combine probability and nondeterminism. They can be given dif-
ferent semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution
bisimilarity. The latter is based on the view of PA as transformers of probability distributions,
also called belief states, and promotes distributions to first-class citizens.

We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-
state transformer from a PA. To do so, we make explicit the convex algebraic structure present
in PA and identify belief-state transformers as transition systems with state space that carries a
convex algebra. As a consequence of our abstract approach, we can give a sound proof technique
which we call bisimulation up-to convex hull.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Probabilistic automata (PA), closely related to Markov decision processes (MDPs), have
been used along the years in various areas of verification [40, 37, 38, 2], machine learning [24,
41], and semantics [66, 51]. Recent interest in research around semantics of probabilistic
programming languages has led to new insights in connections between category theory,
probability theory, and automata [58, 12, 27, 57, 44].

PA have been given various semantics, starting from strong bisimilarity [39], probabilistic
(convex) bisimilarity [49, 48], to bisimilarity on distributions [18, 13, 10, 21, 11, 25, 22, 26].
In this last view, probabilistic automata are understood as transformers of belief states,
labeled transition systems (LTSs) having as states probability distributions, see e.g. [13,
15, 35, 1, 14, 22, 19]. Checking such equivalence raises a lot of challenges since belief-
states are uncountable. Nevertheless, it is decidable [26, 20] with help of convexity. Despite
these developments, what remains open is the understanding of the genesis of belief-state
transformers and canonicity of distribution bisimilarity, as well as the role of convex algebras.

The theory of coalgebras [30, 46, 33] provides a tool-box for modelling and analysing
different types of state machines. In a nutshell, a coalgebra is an arrow c : S → FS for
some functor F : C → C on a category C. Intuitively S represents the space of states of
the machine, c its transition structure and the functor F its type. Most importantly, every
functor gives rise to a canonical notion of behavioural equivalence (≈), a coinductive proof
technique and, for finite states machines, a procedure to check ≈.

By tuning the parameters C and F , one can retrieve many existing types of machines
and their associated equivalences. For instance, by taking C = Sets, the category of sets
and functions, and FS = (PDS)L, the set of functions from L to subsets (P) of probability
distributions (D) over S, coalgebras c : S → FS are in one-to-one correspondence with PA
with labels in L. Moreover, the associated notion of behavioural equivalence turns out to
be the classical strong probabilistic bisimilarity of [39] (see [4, 53] for more details). Recent
work [43] shows that, by taking a slightly different functor, forcing the subsets to be convex,
one obtains probabilistic (convex) bisimilarity as in [49, 48].

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 The Power of Convex Algebras

In this paper, we take a coalgebraic outlook at the semantics of probabilistic automata
as belief-state transformers: we wish to translate a PA c : S → (PDS)L into a belief state
transformer c] : DS → (PDS)L. Note that the latter is a coalgebra for the functor FX =
(PX)L, i.e., a labeled transition system, since the state space is the set of probability
distributions DS. This is reminiscent of the standard determinisation for non-deterministic
automata (NDA) seen as coalgebras c : S → 2× (PS)A. The result of the determinisation is
a deterministic automaton c] : PS → 2× (PS)A (with state space PS), which is a coalgebra
for the functor FX = 2×XA. In the case of PA, one lifts the states space to DS, in the one
of NDA to PS. From an abstract perspective, both D and P are monads, hereafter denoted
byM, and both PA and NDA can be regarded as coalgebras of type c : S → FMS.

In [52], a generalised determinisation transforming coalgebras c : S → FMS into coal-
gebras c] : MS → FMS was presented. This construction requires the existence of a lifting
F of F to the category of algebras for the monad M. In the case of NDA, the functor
FX = 2×XA can be easily lifted to the category of join-semilattices (algebras for P) and,
the coalgebra c] : PS → 2× (PS)A resulting from this construction turns out to be exactly
the standard determinised automaton. Unfortunately, this is not the case with probabilistic
automata: because of the lack of a suitable distributive law of D over P [63], it is impossible
to suitably lift FX = (PX)L to the category of convex algebras (algebras for the monad D).

The way out of the impasse consists in defining a powerset-like functor on the category of
convex algebras. This is not a lifting but it enjoys enough properties that allow to lift every
PA into a labeled transition system on convex algebras. In turn, these can be transformed –
without changing the underlying behavioural equivalence – into standard LTSs on Sets by
simply forgetting the algebraic structure. We show that the result of the whole procedure
is exactly the expected belief-state transformer and that the induced notion of behavioural
equivalence coincides with a canonical one present in the literature [13, 25, 22, 26].

The analogy with NDA pays back in terms of proof techniques. In [6], Bonchi and Pous
introduced an efficient algorithm to check language equivalence of NDA based on coinduction
up-to [45]: in a determinised automaton c] : PS → 2× (PS)A, language equivalence can be
proved by means of bisimulations up-to the structure of join semilattice carried by the state
space PS. Algorithmically, this results in an impressive pruning of the search space.

Similarly, in a belief-state transformer c] : DS → (PDS)L, one can coinductively reason
up-to the convex algebraic structure carried by DS. The resulting proof technique, which
we call in this paper bisimulation up-to convex hull, allows finite relations to witness the
equivalence of infinitely many states. More precisely, by exploiting a recent result in convex
algebra by Sokolova and Woracek [55], we are able to show that the equivalence of any two
belief states can always be proven by means of a finite bisimulation up-to.

The paper starts with background on PA (Section 2), convex algebras (Section 3), and
coalgebra (Section 4). We provide the PA functor on convex algebras in Section 5. We give
the transformation from PA to belief-state transformers in Section 6 and prove the coin-
cidence of the abstract and concrete transformers and semantics. We present bisimulation
up-to convex hull and prove soundness in Section 7. Proofs of all results are in appendix.

2 Probabilistic Automata

Probabilistic automata are models of systems that involve both probability and nondetermin-
ism. We start with their definition by Segala and Lynch [49].

I Definition 1. A probabilistic automaton (PA) is a triple M = (S,L,→) where S is a set
of states, L is a set of actions or action labels, and → ⊆ S × L × D(S) is the transition

Bonchi, Silva, Sokolova XX:3

x3

·
1

AA

x0
a //

a
77

· 1 // x1
a //

a

��

·

1
2

VV

1
2

��

·
1
2

��

1
2

VV

· 1))
x2

a

gg

y3

·
1

@@

·
1

OO

y0

a

55

a

((

y1

a

OO

a

��
·

1
2

@@

1
2

��

·
1
2

��

1
2

UU

· 1))
y2

a

gg

y0_
a ��

�
a

((1
2y1 + 1

2y2_
a
��

� a

''

y3

1
4y1 + 3

4y2_
a
��

� a

''

1
2y3 + 1

2y2

1
8y1 + 7

8y2_
a

��

� a

''

1
4y3 + 3

4y2

. . . 1
8y3 + 7

8y2

······

······

······

······

Figure 1 On the left: a PA with set of actions L = {a} and set of states S =
{x1, x2, x3, x4, y1, y2, y3, y4}. We depict each transition s a→ ζ in two stages: a straight action-
labeled arrow from s to · and then several dotted arrows from · to states in S specifing the distri-
bution ζ. On the right: part of the corresponding belief-state transformer. The dots between two
arrows ζ a7→ ξ1 and ζ a7→ ξ2 denote that ζ can perform infinitely many transitions to states obtained
as convex combinations of ξ1 and ξ2. For instance y0

a7→ 1
4y1 + 1

4y2 + 1
2y3.

relation. As usual, s a→ ζ stands for (s, a, ζ) ∈ →. �

An example is shown on the left of Figure 1. Probabilistic automata can be given different se-
mantics, e.g., (strong probabilistic) bisimilarity [39], convex (probabilistic) bisimilarity [49],
and as transformers of belief states [10, 22, 14, 15, 13, 26] whose definitions we present next.
For the rest of the section, we fix a PA M = (S,L,→).

I Definition 2 (Strong Probabilistic Bisimilarity). A relation R ⊆ S × S is a (strong probab-
ilistic) bisimulation if (s, t) ∈ R implies, for all actions a ∈ L and all ξ ∈ D(S), that

s
a→ ξ ⇒ ∃ξ′ ∈ D(S). t a→ ξ′ ∧ ξ ≡R ξ′, and t

a→ ξ′ ⇒ ∃ξ ∈ D(S). s a→ ξ ∧ ξ ≡R ξ′.

Here, ≡R ⊆ D(S)× D(S) is the lifting of R to distributions, defined by ξ ≡R ξ′ if and
only if there exists a distribution ν ∈ D(S × S) such that
1.

∑
t∈S ν(s, t) = ξ(s) for any s ∈ S, 2.

∑
s∈S ν(s, t) = ξ′(t) for any t ∈ T , and

3. ν(s, t) 6= 0 implies (s, t) ∈ R.
Two states s and t are (strongly probabilistically) bisimilar, notation s ∼ t, if there exists a
(strong probabilistic) bisimulation R with (s, t) ∈ R. �

I Definition 3 (Convex Bisimilarity). A relation R ⊆ S × S is a convex (probabilistic)
bisimulation if (s, t) ∈ R implies, for all actions a ∈ L and all ξ ∈ D(S), that

s
a→ ξ ⇒ ∃ξ′ ∈ D(S). t a→c ξ

′ ∧ ξ ≡R ξ′, and t
a→ ξ′ ⇒ ∃ξ ∈ D(S). s a→c ξ ∧ ξ ≡R ξ′.

Here →c denotes the convex transition relation, defined as follows: s a→c ξ if and only
if ξ =

∑n
i=1 piξi for some ξi ∈ D(S) and pi ∈ [0, 1] satisfying

∑n
i=1 pi = 1 and s a→ ξi for

i = 1, . . . , n. Two states s and t are convex bisimilar, notation s ∼c t, if there exists a convex
bisimulation R with (s, t) ∈ R. �

Convex bisimilarity is (strong probabilistic) bisimilarity on the "convex closure" of the
given PA. More precisely, consider the PAMc = (S,L,→c) in which s a→c ξ whenever s ∈ S
and ξ is in the convex hull (see Section 3 for a definition) of the set {ζ ∈ D(S) | s a→ ζ}.
Then convex bisimilarity ofM is bisimilarity ofMc. Hence, if bisimilarity is the behavioural
equivalence of interest, we see that convex semantics arises from a different perspective on
the representation of a PA: instead of seeing the given transitions as independent, we look
at them as generators of infinitely many transitions in the convex closure.

XX:4 The Power of Convex Algebras

There is yet another way to understand PA, as belief-state transformers, present but
sometimes implicit in [10, 25, 22, 14, 15, 13, 26, 11] to name a few, with behavioural equi-
valences on distributions. We were particularly inspired by the original work of Deng et
al. [14, 15, 13] as well as [26]. Given a PA M = (S,L,→), consider the labeled trans-
ition system Mbs = (DS,L, 7→) with states distributions over the original states of M , and
transitions 7→ ⊆ DS × L×DS defined by

ξ
a7→ ζ iff ξ =

∑
pisi, si

a→c ξi, ζ =
∑

piξi.

We call Mbs the belief-state transformer of M . Figure 1, right, displays a part of the
belief-state transformer induced by the PA of Figure 1, left. According to this definition, a
distribution makes an action step only if all its support states can make the step.

This, and hence the corresponding notion of bisimulation, can vary. For example, in [26]
a distribution makes a transition a7→ if some of its support states can perform an a7→ step1.
There are several proposed notions of equivalences on distributions [25, 18, 19, 22, 14, 10, 26]
that mainly differ in the treatment of termination2. See [26] for an extensive survey of related
work.

I Definition 4 (Distribution Bisimilarity). An equivalence R ⊆ DS × DS is a distribution
bisimulation of M if and only if it is a bisimulation of the belief-state transformer Mbs.

Two distributions ξ and ζ are distribution bisimilar, notation ξ ∼d ζ, if there exists a
bisimulation R with (ξ, ζ) ∈ R. Two states s and t are distribution bisimilar, notation s ∼d t,
if δs ∼d δt, where δx denotes the Dirac distribution with δx(x) = 1. �

While the foundations of strong probabilistic bisimilarity are well-studied [53, 4, 65]
and convex probabilistic bisimilarity was also recently captured coalgebraically [43], the
foundations of the semantics of PA as transformers of belief states is not yet explained.
One of the goals of the present paper is to show that also that semantics (naturally on
distributions [26]) is an instance of generic behavioural equivalence. Note that a (somewhat
concrete) proof is given for the bisimilarity of [26] — the authors have proven that their
bisimilarity is coalgebraic bisimilarity of a certain coalgebra corresponding to the belief-
state transformer. What is missing there, and in all related work, is an explanation of the
relationship of the belief-state transformer to the the original PA. Clarifying the foundations
of the belief-state transformer and the distribution bisimilarity is our initial motivation.

3 Convex Algebras

By C we denote the signature of convex algebras

C = {(pi)ni=0 | n ∈ N, pi ∈ [0, 1],
n∑
i=0

pi = 1}.

The operation symbol (pi)ni=0 has arity (n + 1) and it will be interpreted by a convex
combination with coefficients pi for i = 0, . . . , n. For a real number p ∈ [0, 1] we set
p̄ = 1− p.

1 While the definition of [26] is practically powerful and interesting exactly for its special treatment of
termination, and it was a valuable source of motivation for our work, it is not the most canonical when
it comes to providing coalgebraic foundation.

2 There are also some notions of equivalences on distributions that amount to strong / convex bisimilar-
ity [25, 11] and are not interesting for our work.

Bonchi, Silva, Sokolova XX:5

I Definition 5. A convex algebra X is an algebra with signature C, i.e., a set X together with
an operation

∑n
i=0 pi(−)i for each operational symbol (pi)ni=0 ∈ C, such that the following

two axioms hold:
Projection:

∑n
i=0 pixi = xj if pj = 1.

Barycenter:
∑n
i=0 pi

(∑m
j=0 qi,jxj

)
=
∑m
j=0 (

∑n
i=0 piqi,j)xj .

A convex algebra homomorphism h from X to Y is a convex (synonymously, affine) map,
i.e., h : X → Y with the property h (

∑n
i=0 pixi) =

∑n
i=0 pih(xi). �

I Remark 6. Let X be a convex algebra. Then (for pn 6= 1)

n∑
i=0

pixi = pn

n−1∑
j=0

pj
pn
xj

+ pnxn (1)

Hence, an (n + 1)-ary convex combination can be written as a binary convex combination
using an n-ary convex combination. As a consequence, if X is a set that carries two convex
algebras X1 and X2 with operations

∑n
i=0 pi(−)i and

⊕n
i=0 pi(−)i, respectively (and binary

versions + and ⊕, respectively) such that px+ p̄y = px⊕ p̄y for all p, x, y, then X1 = X2.
One can also see (1) as a definition, see e.g. [59, Definition 1]. We make the connection

explicit with the next proposition, cf. [59, Lemma 1-Lemma 4]3.

I Proposition 7. Let X be a set with binary operations px+ p̄y for x, y ∈ X and p ∈ (0, 1).
For x, y, z ∈ X and p, q ∈ (0, 1), assume

Idempotence: px+ p̄x = x,
Parametric commutativity: px+ p̄y = p̄y + px,
Parametric associativity: p(qx+ q̄y) + p̄z = pqx+ pq

(
pq̄
pqy + p̄

pq z
)
,

and define n-ary convex operations by the projection axiom and the formula (1). Then X

becomes a convex algebra. J

Hence, it suffices to consider binary convex combinations only, whenever more convenient.

I Definition 8. Let X be a convex algebra, with carrier X and C ⊆ X. C is convex if it
is the carrier of a subalgebra of X, i.e., if px + p̄y ∈ C for all x, y ∈ C and p ∈ (0, 1). By
conv(S) we denote the convex hull of a set S ⊆ X, i.e., conv(S) is the smallest convex set
that contains S. �

Clearly, a set C ⊆ X for X being the carrier of a convex algebra X is convex if and
only if C = conv(C). Convexity plays an important role in the semantics of probabilistic
automata, for example in the definition of convex bisimulation, Definition 3.

4 Coalgebras

In this section, we briefly review some notions from (co)algebra which we will use in the rest
of the paper. This section is written for a reader familiar with basic category theory. We
have included an expanded version of this section in Appendix D that also includes basic
categorical definitions and more details than what we do here.

Coalgebras provide an abstract framework for state-based systems. Let C be a base
category. A coalgebra is a pair (S, c) of a state space S (object in C) and an arrow c : S → FS

in C where F : C→ C is a functor that specifies the type of transitions. We will sometimes

3 Stone’s cancellation Postulate V is not used in his Lemma 1-Lemma 4.

XX:6 The Power of Convex Algebras

S

c
��

h // T

d
��

FS
Fh // FT

just say the coalgebra c : S → FS, meaning the coalgebra (S, c). A coal-
gebra homomorphism from a coalgebra (S, c) to a coalgebra (T, d) is an
arrow h : S → T in C that makes the diagram on the right commute.
Coalgebras of a functor F and their coalgebra homomorphisms form a category that we
denote by CoalgC (F). Examples of functors on Sets which are of interest to us are:

1. The constant exponent functor (−)L for a set L, mapping a set X to the set XL of all
functions from L to X, and a function f : X → Y to fL : XL → Y L with fA(g) = f ◦ g.

2. The powerset functor P mapping a set X to its powerset PX = {S | S ⊆ X} and on
functions f : X → Y given by direct image: Pf : PX → PY , P(f)(U) = {f(u) | u ∈ U}.

3. The finitely supported probability distribution functor D is defined, for a set X and a
function f : X → Y , as

DX = {ϕ : X → [0, 1] |
∑
x∈X

ϕ(x) = 1, supp(ϕ) is finite} Df(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x).

The support set of a distribution ϕ ∈ DX is defined as supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}.
4. The functor C [43, 29, 62] maps a set X to the set of all nonempty convex subsets of

distributions over X, and a function f : X → Y to the function PDf .
We will often decompose P as Pne + 1 where Pne is the nonempty powerset functor and
(−) + 1 is the termination functor defined for every set X by X + 1 = X ∪ ∗ with ∗ /∈ X
and every function f : X → Y by f + 1(∗) = ∗ and f + 1(x) = x for x ∈ X.

Coalgebras over a concrete category are equipped with a generic behavioural equival-
ence, which we define next. Let (S, c) be an F -coalgebra on a concrete category C, with
U : C → Sets being the forgetful functor. An equivalence relation R ⊆ US × US is a
kernel bisimulation (synonymously, a cocongruence) [56, 36, 67] if it is the kernel of a ho-
momorphism, i.e., R = kerUh = {(s, t) ∈ US × US | Uh(s) = Uh(t)} for some coalgebra
homomorphism h : (S, c) → (T, d) to some F -coalgebra (T, d). Two states s, t of a coal-
gebra are behaviourally equivalent notation s ≈ t iff there is a kernel bisimulation R with
(s, t) ∈ R. A trivial but important property is that if there is a functor from one category
of coalgebras (over a concrete category) to another, then this functor preserves behavioural
equivalence: if two states are equivalent in a coalgebra of the first category, then they are
also equivalent in the image under the functor in the second category.

We are now in position to connect probabilistic automata to coalgebras.

I Proposition 9 ([4, 53]). A probabilistic automaton M = (S,L,→) can be identified with a
(PD)L-coalgebra cM : S → (PDS)L on Sets, where s a→ ξ in M iff ξ ∈ cM (s)(a) in (S, cM).
Bisimilarity in M equals behavioural equivalence in (S, cM), i.e., for two states s, t ∈ S we
have s ∼ t⇔ s ≈ t. J

It is also possible to provide convex bisimilarity semantics to probabilistic automata via
coalgebraic behavioural equivalence, as the next proposition shows.

I Proposition 10 ([43]). Let M = (S,L,→) be a probabilistic automaton, and let (S, c̄M) be
a (C + 1)L-coalgebra on Sets defined by c̄M (s)(a) = conv(cM (s)(a)) where cM is as before,
if cM (s)(a) = {ξ | s a→ ξ} 6= ∅; and c̄M (s)(a) = ∗ if cM (s)(a) = ∅. Convex bisimilarity in
M equals behavioural equivalence in (S, c̄M). J

The connection between (S, cM) and (S, c̄M) in Proposition 10 is the same as the con-
nection between M and Mc in Section 2. Abstractly, it can be explained using the following
well known generic property.

Bonchi, Silva, Sokolova XX:7

I Lemma 11 ([46, 4]). Let σ : F ⇒ G be a natural transformation from F : C → C to
G : C→ C. Then T : CoalgC (F)→ CoalgC (G) given by T (S c→ FS) = (S c→ FS

σS→ GS)
on objects and identity on morphisms is a functor. As a consequence, T preserves behavioural
equivalence. If σ is injective, then T also reflects behavioural equivalence. J

I Example 12. We have that conv: PD ⇒ C + 1 given by conv(∅) = ∗ and conv(X)
is the already-introduced convex hull for X ⊆ DS, X 6= ∅ is a natural transformation.
Therefore, convL : (PD)L ⇒ (C + 1)L is one as well, defined pointwise. As a consequence
from Lemma 11, we get a functor Tconv : CoalgSets ((PD)L) → CoalgSets ((C + 1)L) and
hence bisimilarity implies convex bisimilarity in probabilistic automata.

On the other hand, we have the injective natural transformation ι : C + 1 ⇒ PD given
by ι(X) = X and ι(∗) = ∅ and hence a natural transformation χ : (C + 1)L ⇒ (PD)L. As
a consequence, convex bisimilarity coincides with strong bisimilarity on the “convex-closed”
probabilistic automaton Mc, i.e., the coalgebra (S, c̄M) whose transitions are all convex
combinations of M -transitions.

4.1 Algebras for a Monad
The behaviour functor F often is, or involves, a monadM, providing certain computational
effects, such as partial, non-deterministic, or probabilistic computations.

More precisely, a monad is a functor M : C → C together with two natural trans-
formations: a unit η : idC ⇒ M and multiplication µ : M2 ⇒ M that satisfy the laws
µ ◦ ηM = id = µ ◦ Mη and µ ◦ µM = µ ◦ Mµ. An example that will be pivotal for our
exposition is the distribution monad.

The unit of D is given by a Dirac distribution η(x) = δx = (x 7→ 1) for x ∈ X and the
multiplication by µ(Φ)(x) =

∑
ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x) for Φ ∈ DDX.

With a monad M on a category C one associates the Eilenberg-Moore category
EM(M) of Eilenberg-Moore algebras. Objects of EM(M) are pairs A = (A, a) of an
object A ∈ C and an arrow a : MA→ A, satisfying a ◦ η = id and a ◦Ma = a ◦ µ.
A homomorphism from an algebra A = (A, a) to an algebra B = (B, b) is a map h : A→ B

in C between the underlying objects satisfying h ◦ a = b ◦Mh.
A category of Eilenberg-Moore algebras which is particularly relevant for our exposition

is described in the following proposition. See [60] and [50] for the original result, but
also [16, 17] or [28, Theorem 4] where a concrete and simple proof is given.

I Proposition 13 ([60, 16, 17, 28]). Eilenberg-Moore algebras of the finitely supported dis-
tribution monad D are exactly convex algebras as defined in Section 3. The arrows in the
Eilenberg-Moore category EM(D) are convex algebra homomorphisms. J

As a consequence, we will interchangeably use the abstract (Eilenberg-Moore algebra)
and the concrete definition (convex algebra), whatever is more convenient. For the latter,
we also just use binary convex operations, by Proposition 7, whenever more convenient.

4.2 The Generalised Determinisation
We now recall a construction from [52], which serves as source of inspiration for our work.

A functor F : EM(M) → EM(M) is said to be a lifting of a functor F : C → C if and
only if U ◦ F = F ◦ U . Here, U is the forgetful functor U : EM(M) → C mapping an
algebra to its carrier. It has a left adjoint F , mapping an object X ∈ C to the (free) algebra
(MX,µX). We have thatM = U ◦ F .

XX:8 The Power of Convex Algebras

Whenever F : C→ C has a lifting F : EM(M)→ EM(M), one has the following functors
between categories of coalgebras.

CoalgEM(M) (F)
U
**

CoalgC (FM)

F 33

CoalgC (F)

The functor F transforms every coalgebra c : S → FMS over the base category into a
coalgebra c] : FS → FFS. Note that this is a coalgebra on EM(M): the state space carries
an algebra, actually the freely generated one, and c] is a homomorphism of M-algebras.
Intuitively, this amounts to compositionality: like in GSOS specifications, the transitions of
a compound state are determined by the transitions of its components.

The functor U simply forgets about the algebraic structure: c] is mapped into

Uc] : MS = UFS → UFFS = FUFS = FMS.

An important property of U is that it preserves and reflects behavioural equivalence. On the
one hand, this fact usually allows to give concrete characterisation of ≈ for F -coalgebras. On
the other, it allows, by means of the so-called up-to techniques, to exploit theM-algebraic
structure of FS to check ≈ on Uc].

By taking F = 2× (−)L andM = P, one transforms c : S → 2× (PS)L into Uc] : PS →
2 × (PS)L. The former is a non-deterministic automaton (every c of this type is a pairing
〈o, t〉 of o : S → 2, defining the final states, and t : S → P(S)L, defining the transition
relation) and the latter is a deterministic automaton which has PS as states space. In [52],
see also [31], it is shown that, for a certain choice of the lifting F , this amounts exactly to
the standard determinisation from automata theory. This explains why this construction is
called the generalised determinisation.

In a sense, this is similar to the translation of probabilistic automata into belief-state
transformers that we have seen in Section 2. Indeed, probabilistic automata are coalgebras
c : S → (PDS)L and belief state transformers are coalgebra of type DS → (PDS)L. One
would like to take F = PL andM = D and reuse the above construction but, unfortunately,
PL does not have a suitable lifting to EM(D). This is a consequence of two well known facts:
the lack of a suitable distributive law ρ : DP ⇒ PD [64] 4 and the one-to-one correspondence
between distributive laws and liftings, see e.g. [31]. In the next section, we will nevertheless
provide a “powerset-like” functor on EM(D) that we will exploit then in Section 6 to properly
model PA as belief-state transformers.

5 Coalgebras on Convex Algebras

In this section we provide several functors on EM(D) that will be used in the modelling
of probabilistic automata as coalgebras over EM(D). This will make explicit the implicit
algebraic structure (convexity) in probabilistic automata and lead to distribution bisimilarity
as natural semantics for probabilistic automata in Section 6.

4 As shown in [64], there is no distributive law of the powerset monad over the distribution monad.
Note that a “trivial” lifting and a corresponding distributive law of the powerset functor over the
distribution monad exists, it is based on [11] and has been exploited in [31]. However, the corresponding
“determinisation” is trivial, in the sense that its distribution bisimilarity coincides with bisimilarity,
and it does not correspond to the belief-state transformer.

Bonchi, Silva, Sokolova XX:9

5.1 Convex Powerset on Convex Algebras
We now define a functor, the (nonempty) convex powerset functor, on EM(D). Let A
be a convex algebra. We define PcA to be Ac = (Ac, ac) where Ac = {C ⊆ A | C 6=
∅, C is convex} and ac is the convex algebra structure given by the following pointwise
binary convex combinations: pC + p̄D = {pc+ p̄d | c ∈ C, d ∈ D}.

It is important that we only allow nonempty convex subsets in the carrier Ac of PcA, as
otherwise the projection axiom fails.

I Lemma 14. PcA as defined above is a convex algebra. J

For convex subsets of a finite dimensional vector space, the pointwise operations are
known as the Minkowski addition and are a basic construction in convex geometry, see
e.g. [47]. The pointwise way of defining algebras over subsets (carriers of subalgebras) has
also been studied in universal algebra, see e.g. [8, 7, 9].

Next, we define Pc on arrows. For a convex homomorphism h : A→ B, Pch = Ph.

I Lemma 15. Pch is a convex algebra homomorphism from PcA to PcB if h : A → B is a
convex homomorphism. J

The following property is now a direct consequence of the definition of Pc, Lemma 14,
Lemma 15, and Proposition 13.

I Proposition 16. Pc is a functor on EM(D). J

I Remark 17. Pc is not a lifting of C to EM(D), but it holds that C = U ◦ Pc ◦ F as
illustrated below on the left. Pc is also not a lifting of Pne, the nonempty powerset functor,
but we have an embedding natural transformation e : U ◦ Pc ⇒ Pne ◦ U given by e(C) = C,
i.e., we are in the situation:

EM(D) Pc // EM(D)
U
��

EM(D) Pc //

U
��

EM(D)
U
��

⊇
Sets C //

F
OO

Sets Sets Pne // Sets

The right diagram in Remark 17 simply states that every convex subset is a subset, but
this fact and the natural transformation e are useful in the sequel. In particular, using e we
can show the next result.

I Proposition 18. Pc is a monad on EM(D), with η and µ as for the powerset monad. J

5.2 Termination on Convex Algebras
The functor Pc defined in the previous section allows only for nonempty convex subsets. We
still miss is a way to express termination.

The question of termination amounts to the question of extending a convex algebra
A with a single element ∗. This question turns out to be rather involved, beyond the
scope of this paper. The answer from [55] is: there are many ways to extend any convex
algebra A with a single element, but there is only one natural functorial way. Somehow now
mathematics is forcing us the choice of a specific computational behaviour for termination!

Given a convex algebra A, let A + 1 have the carrier A + {∗} for ∗ /∈ A and convex
operations given by

px⊕ p̄y =
{
px+ p̄y , x, y ∈ A,
∗ , x = ∗ or y = ∗.

(2)

XX:10 The Power of Convex Algebras

Here, the newly added ∗ behaves as a black hole that attracts every other element of the
algebra in a convex combination. It is worth to remark that this extension is folklore [23].

I Proposition 19 ([55, 23]). A + 1 as defined above is a convex algebra that extends A by
a single element. The map h+ 1 obtained with the termination functor in Sets is a convex
homomorphism if h : A→ B is. The assignments (−) + 1 give a functor on EM(D). J

We call the functor (−) + 1 on EM(D) the termination functor, due to the following.

I Lemma 20. The functor (−) + 1 is a lifting of the termination functor to EM(D). J

I Remark 21. Note that we are abusing notation here: Our termination functor (−) + 1 on
EM(D) is not the coproduct (−) + 1 in EM(D). The coproduct was concretely described in
[32, Lemma 4], and the coproduct X+ 1 has a much larger carrier than X+ 1. Nevertheless,
we use the same notation as it is very intuitive and due to Lemma 20.

5.3 Constant Exponent on Convex Algebras
We now show the existence of a constant exponent functor on EM(D). Let L be a set of
labels or actions. Let A be a convex algebra. Consider AL with carrier AL = {f | f : L→ A}
and operations defined (pointwise) by (pf + p̄g)(l) = pf(l) + p̄g(l). The following property
follows directly from the definitions.

I Proposition 22. AL is a convex algebra. If h : A→ B is a convex homomorphism, then so
is hL : AL → BL defined as in Sets. Hence, (−)L defined above is a functor on EM(D). J

We call (−)L the constant exponent functor on EM(D). The name and the notation is
justified by the following (obvious) property.

I Lemma 23. The constant exponent (−)L on EM(D) is a lifting of the constant exponent
functor (−)L on Sets. J

I Example 24. Consider a free algebra FS = (DS, µ) of distributions over the set S. By
applying first the functor Pc, then (−) + 1 and then (−)L, one obtains the algebra

(PcFS + 1)L =

D ((CS + 1)L
)

(CS + 1)L
α��


where CS is the set of non-empty convex subsets of distributions over S, and α corresponds
to the convex operations5

∑
pifi defined by(∑

pifi

)
(l) =

{
{
∑
piξi | ξi ∈ fi(l)} fi(l) ∈ CS for all i ∈ {1, . . . , n}

∗ fi(l) = ∗ for some i ∈ {1, . . . , n}

5.4 Transition Systems on Convex Algebras
We now compose the three functors introduced above to properly model transition systems as
coalgebras on EM(D). The functor that we are interested in is (Pc +1)L : EM(D)→ EM(D).
A coalgebra (S, c) for this functor can be thought of as a transition system with labels in L
where the state space carries a convex algebra and the transition function c : S→ (PcS+1)L is

5 In this case, for future reference, it is convenient to spell out the n-ary convex operations.

Bonchi, Silva, Sokolova XX:11

a homomorphism of convex algebras. This property entails compositionality: the transitions
of a composite state px1 + p̄x2 are fully determined by the transitions of its components x1
and x2, as shown in the next proposition. We write x a7→ y for x, y ∈ S, the carrier of S if
y ∈ c(x)(a), and x 6 a7→ if c(x)(a) = ∗.

I Proposition 25. Let (S, c) be a (Pc +1)L-coalgebra, and let x1, x2, y1, y2, z ∈ S be elements
of S, the carrier of S. Then, for all p ∈ (0, 1), and a ∈ L

px1 + p̄x2
a7→ z iff z = py1 + p̄y2, x1

a7→ y1 and x2
a7→ y2;

px1 + p̄x2 6
a7→ iff x1 6

a7→ y1 or x2 6
a7→ y2. J

Transition systems on convex algebras are the bridge between PA and LTSs. In the next
section we will show that one can transform an arbitrary PA into a (Pc + 1)L-coalgebra and
that, in the latter, behavioural equivalence coincides with the standard notion of bisimilarity
for LTSs (Corollary 30).

6 From PA to Belief-State Transformers

Before turning our attention to PA, it is worth to make a further step of abstraction.
Recall from Remark 17 how Pc is related to C and Pne. The following definition is the

obvious generalisation.

I Definition 26. Let M : Sets → Sets be a monad and L1,L2 : Sets → Sets be two
functors. A functor H : EM(M)→ EM(M) is

a quasi lifting of L1 if the diagram on the left commutes.
a lax lifting of L2 if there exists an injective natural transformation e : U ◦ H ⇒ L2 ◦ U
as depicted on the right.
an (L1,L2) quasi-lax lifting if it is both a quasi lifting of L1 and a lax lifting of L2.

EM(M) H // EM(M)

U
��

EM(M) H //

U
��

EM(M)

U
��

⇐
Sets L1 //

F
OO

Sets Sets L2 // Sets �

So, for instance, Pc is a (C,Pne) quasi-lax lifting. From this fact, it follows that (Pc + 1)L
is a ((C + 1)L, (Pne + 1)L) quasi-lax lifting. Another interesting example is the generalised
determinisation (Section 4.2): it is easy to see that F is a (FM, F)-quasi-lax lifting. Indeed,
like in the generalised powerset construction, one can construct the following functors.

CoalgEM(M) (H)
U
++

CoalgSets (L1)

F 33

CoalgSets (L2)

We first define F . Take an L1-coalgebra (S, c) and recall that FS is the free algebra
µ : MMS → MS. The left diagram in Definition 26 entails that HFS is an algebra
α : ML1S → L1S. We call Uc] the composition UFS = MS

Mc−→ ML1S
α−→ L1S =

UHFS. The next lemma shows that c] : FS → HFS is a map in EM(M).

I Lemma 27. There is a 1-1 correspondence between L1-coalgebras on Sets and H-coalgebras
on EM(M) with carriers free algebras:

c : S → L1S in Sets
========================
c# : FS → HFS in EM(M)

XX:12 The Power of Convex Algebras

M = (S,L,→) Mc = (S,L,→c) Mbs = (DS,L, 7→)
(S, cM : S → (PD)L) (S, cM : S → (C + 1)L) (DS, ĉM : DS → (PDS)L)

(S, cM) (S, c̄M) = Tconv(S, cM) (S, ĉM) = U ◦ F ◦ Tconv(S, cM)
cM c̄M = convL ◦ cM ĉM = (eFS + 1)L ◦ Uc]

M

Table 1 The three PA models, their corresponding Sets-coalgebras, and relations to M .

given c, we have Uc# = α ◦ Mc for α = HFS,
given c#, we have c = Uc# ◦ η.

The assignment F(S, c) = (FS, c#) and F(h) =Mh gives a functor F : CoalgSets (L1) →
CoalgEM(M) (H). J

Now we can define U : CoalgEM(M) (H) → CoalgSets (L2) as mapping every coalgebra
(S, c) with c : S→ HS into

U(S, c) = (US, eS ◦ Uc) where US Uc−→ UHS eS−→ L2US

and every coalgebra homomorphism h : (S, c)→ (T, d) into Uh = Uh. Routine computations
confirm that U is a functor.

Since U is a functor every kernel bisimulation on (S, c) is also a kernel bisimulation on
U(S, c). The converse is not true in general: a kernel bisimulation R on U(S, c) is a kernel
bisimulation on (S, c) only if it is a congruence with respect to the algebraic structure of S.
Formally, R is a congruence if and only if the set US/R of equivalence classes of R carries
an Eilenberg-Moore algebra and the function U [−]R : US → US/R mapping every element
of US to its R-equivalence class is an algebra homomorphism.

I Proposition 28. The following are equivalent:
R is a kernel bisimulation on (S, c),
R is a congruence of S and a kernel bisimulation of U(S, c). J

In particular, Proposition 28 and the following result ensure that the functor
U : CoalgEM(D) (Pc + 1)L → CoalgSets PL preserves and reflect ≈.

I Proposition 29. Let (S, c) be a (Pc + 1)L-coalgebra. Behavioural equivalence on U(S, c)
is a convex congruence6. J

I Corollary 30. The functor U preserves and reflects behavioural equivalence. J

This means that ≈ for (Pc + 1)L-coalgebras, called transition systems on convex algebras in
Section 5.4, coincides with the standard notion of bisimilarity for LTSs.

Table 1 summarises all models of PA: from the classical modelM being a PDL-coalgebra
(S, cM) on Sets, via the convex model Mc obtained as Tconv(S, cM), to the belief state
transformer Mbs. The latter coincides with U ◦ F ◦ Tconv(S, cM).

I Theorem 31. Let (S, cM) be a probabilistic automaton. For all ξ, ζ ∈ DS,

ξ ∼d ζ ⇔ ξ ≈ ζ in U ◦ F ◦ Tconv(S, cM). J

Hence, distribution bisimilarity is indeed behavioural equivalence on the belief-state
transformer and it coincides with standard bisimilarity.

6 Convex congruences are congruences of convex algebras, see e.g. [54]. They are convex equivalences,
i.e., closed under componentwise-defined convex combinations.

Bonchi, Silva, Sokolova XX:13

7 Bisimulations Up-To Convex Hull

As we mentioned in Section 4.2, the generalised determinisation allows for the use of up-
to techniques [42, 45]. An important example is shown in [6]: given a non-deterministic
automaton c : S → 2 × P(S)A, one can reason on its determinisation Uc] : P(S) → 2 ×
P(S)A up-to the algebraic structure carried by the state space P(S). Given a probabilistic
automaton (S,L,→), we would like to exploit the algebraic structure carried by D(S) to
prove properties of the corresponding belief states transformer (D(S), L, 7→). Unfortunately,
the lack of a suitable distributive law [64] makes it impossible to reuse the abstract results
in [5] and all the proofs need to be done from scratch by adapting the theory in [45] to the
case of probabilistic automata.

Hereafter we fix a PA M = (S,L,→) and the corresponding belief states transformer
Mbs = (D(S), L, 7→). We denote by RelD(S) the lattice of relations over D(S) and define the
monotone function b: RelD(S) → RelD(S) mapping every relation R ∈ RelD(S) into

b(R) ::= {(ζ1, ζ2) | ∀a ∈ L, ∀ζ ′1 s.t. ζ1
a7→ ζ ′1, ∃ζ ′2 s.t. ζ2

a7→ ζ ′2 and (ζ ′1, ζ ′2) ∈ R,
∀ζ ′1 s.t. ζ2

a7→ ζ ′2, ∃ζ ′1 s.t. ζ1
a7→ ζ ′1 and (ζ ′1, ζ ′2) ∈ R}.

A bisimulation is a relation R such that R ⊆ b(R). Observe that these are just regular
bisimulations for labeled transition systems and that the greatest fixpoint of b coincides
exactly with ∼d. The coinduction principle informs us that to prove that ζ1 ∼d ζ2 it is
enough to exhibit a bisimulation R such that (ζ1, ζ2) ∈ R.

I Example 32. Consider the PA in Figure 1 (left) and the belief-state transformer generated
by it (right). It is easy to see that the (Dirac distributions of the) states x2 and y2 are in
∼d: the relation {(x2, y2)} is a bisimulation. Also {(x3, y3)} is a bisimulation: both x3 6

a7→
and y3 6

a7→. More generally, for all ζ, ξ ∈ D(S), p, q ∈ [0, 1], pζ + p̄x3 ∼d qξ + q̄y3 since both

pζ + p̄x3 6
a7→ and qξ + q̄y3 6

a7→ . (3)

Proving that x0 ∼d y0 is more complicated. We will show this in Example 35 but, for the
time being, observe that one would need an infinite bisimulation containing the following
pairs of states.

x0
� a // x1

� a // 1
2x1 + 1

2x2
� a // 1

4x1 + 3
4x2

� a // . . .

y0
� a // 1

2y1 + 1
2y2

� a // 1
4y1 + 3

4y2
� a // 1

8y1 + 7
8y2

� a // . . .

Indeed, all the distributions depicted above have infinitely many possible choices for a7→
but, whenever one of them executes a depicted transition, the corresponding distribution is
forced, because of (3), to also choose the depicted transition.

An up-to technique is a monotone map f : RelD(S) → RelD(S), while a bisimulation up-to f
is a relation R such that R ⊆ b f(R). An up-to technique f is said to be sound if, for all
R ∈ RelD(S), R ⊆ b f(R) entails that R ⊆∼d. It is said to be compatible if f b(R) ⊆ b f(R).
In [45], it is shown that every compatible up-to technique is also sound.

Hereafter we consider the convex hull technique conv: RelD(S) → RelD(S) mapping every
relation R ∈ RelD(S) into its convex hull which, for the sake of clarity, is

conv(R) = {(pζ1 + p̄ξ1, pζ2 + p̄ξ2) | (ζ1, ζ2) ∈ R, (ξ1, ξ2) ∈ R and p ∈ [0, 1]}.

I Proposition 33. conv is compatible. J

XX:14 The Power of Convex Algebras

This result has two consequences: first, conv is sound and thus one can prove∼d by means
of bisimulation up-to conv; second, conv can be effectively combined with other compatible
up-to techniques (for more details see [45] or Appendix C). In particular, by combining
conv with up-to equivalence – which is well known to be compatible – one obtains up-to
congruence cgr : RelD(S) → RelD(S). This technique maps a relation R into its congruence
closure: the smallest relation containing R which is a congruence.

I Proposition 34. cgr is compatible. J

Since cgr is compatible and thus sound, we can use bisimulation up-to cgr to check ∼d.

I Example 35. We can now prove that, in the PA depicted in Figure 1, x0 ∼d y0. It is easy
to see that the relation R = {(x2, y2), (x3, y3), (x1,

1
2y1 + 1

2y2), (x0, y0)} is a bisimulation
up-to cgr: consider (x1,

1
2y1 + 1

2y2) (the other pairs are trivial) and observe that
x1

� a //

R

1
2x1 + 1

2x2

cgr(R)
1
2y1 + 1

2y2
�
a
// 1
4y1 + 3

4y2

x1
� a //

R

1
2x3 + 1

2x2

cgr(R)

1
2y1 + 1

2y2
�
a
// 1
2y3 + 1

2y2

Since all the transitions of x1 and 1
2y1 + 1

2y2 are obtained as convex combination of
the two above, the arriving states are forced to be in cgr(R). In symbols, if x1

a7→ ζ =
p(1

2x1 + 1
2x2) + p̄(1

2x3 + 1
2x2), then 1

2y1 + 1
2y2

a7→ ξ = p(1
4y1 + 3

4y2) + p̄(1
2y3 + 1

2y2) and
(ζ, ξ) ∈ cgr(R).

Recall that in Example 32, we showed that to prove x0 ∼d y0 without up-to techniques
one would need an infinite bisimulation. Instead, the relation R in Example 35 is a finite
bisimulation up-to cgr. It turns out that this holds in general: one can check ∼d by means
of only finite bisimulations up-to. The key to this result is the following theorem, recently
proved in [54].

I Theorem 36. Every congruence of a finitely generated convex algebra is finitely generated.

This result informs us that for a PA with a finite state space S, ∼d ⊆ D(S) × D(S) is
finitely generated (since ∼d is a congruence, see Proposition 29). In other words there exists
a finite relation R such that cgr(R) = ∼d. Such R is a finite bisimulation up-to cgr:

R ⊆ cgr(R) =∼d = b(∼d) = b(cgr(R)).

I Corollary 37. Let (S,L,→) be a finite PA and let ζ1, ζ2 ∈ D(S) be two distributions such
that ζ1 ∼d ζ2. Then, there exists a finite bisimulation up-to cgr R such that (ζ1, ζ2) ∈ R. J

8 Conclusions and Future Work

Belief-state transformers and distribution bisimilarity have a strong coalgebraic foundation
which leads to a new proof method – bisimulation up-to convex hull. More interestingly,
and somewhat surprisingly, proving distribution bisimilarity can be achieved using only finite
bisimulation up-to witness. This opens exciting new avenues: Corollary 37 gives us hope
that bisimulations up-to may play an important role in designing algorithms for automatic
equivalence checking of PA, similar to the one played for NFA. Exploring their connections
with the algorithms in [26, 20] is our next step.

From a more abstract perspective, our work highlights some limitations of the bialgebraic
approach [61, 3, 34]. Despite the fact that our structures are coalgebras on algebras, they
are not bialgebras: but still ≈ is a congruence and it is amenable to up-to techniques. We
believe that lax bialgebra may provide some deeper insights.

Bonchi, Silva, Sokolova XX:15

References
1 Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagarajan. Approximate verific-

ation of the symbolic dynamics of markov chains. In Proc LICS 2012, pages 55–64. IEEE,
2012.

2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 F. Bartels. On generalised coinduction and probabilistic specification formats: distributive

laws in coalgebraic modelling. PhD thesis, Vrije Universiteit, Amsterdam, 2004.
4 F. Bartels, A. Sokolova, and E.P. de Vink. A hierarchy of probabilistic system types.

Theoretical Computer Science, 327:3–22, 2004.
5 Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. Coinduction up-to in a

fibrational setting. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), page 20. ACM, 2014.

6 Filippo Bonchi and Damien Pous. Checking nfa equivalence with bisimulations up to
congruence. In Principle of Programming Languages (POPL), pages 457–468. ACM, 2013.

7 Ivica Bošnjak and Rozálija Madarász. On power structures. Algebra and Discrete Math-
ematics, 2:14–35, 2003.

8 Ivica Bošnjak and Rozálija Madarász. Some results on complex algebras of subalgebras.
Novi Sad Journal of Mathematics, 237(2):231–240, 2007.

9 C. Brink. On power structures. Algebra Universalis, 30:177–216, 1993.
10 P. Castro, P. Panangaden, and D. Precup. Equivalence relations in fully and partially

observable Markov decision processes. In Proc. IJCAI 2009, pages 1653–1658, 2009.
11 S. Crafa and F. Ranzato. A spectrum of behavioral relations over LTSs on probability

distributions. In Proc. CONCUR 2011, pages 124–139. LNCS 6901, 2011.
12 Fredrik Dahlqvist, Vincent Danos, and Ilias Garnier. Robustly parameterised higher-order

probabilistic models. In Josée Desharnais and Radha Jagadeesan, editors, 27th Interna-
tional Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada, volume 59 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

13 Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. Characterising testing preorders
for finite probabilistic processes. Logical Methods in Computer Science, 4(4), 2008.

14 Yuxin Deng and Matthew Hennessy. On the semantics of Markov automata. Inf. Comput.,
222:139–168, 2013.

15 Yuxin Deng, Rob J. van Glabbeek, Matthew Hennessy, and Carroll Morgan. Testing finitary
probabilistic processes. In Proc. CONCUR 2009, volume 5710 of LNCS, pages 274–288,
2009.

16 Ernst-Erich Doberkat. Eilenberg-Moore algebras for stochastic relations. Inform. and
Comput., 204(12):1756–1781, 2006.

17 Ernst-Erich Doberkat. Erratum and addendum: Eilenberg-Moore algebras for stochastic
relations [mr2277336]. Inform. and Comput., 206(12):1476–1484, 2008.

18 Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
Markov chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008.

19 Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit synchronization in
markov decision processes. In Proc FOSSACS 2014, volume 8412 of LNCS, pages 58–72,
2014.

20 Christian Eisentraut, Holger Hermanns, Julia Krämer, Andrea Turrini, and Lijun Zhang.
Deciding bisimilarities on distributions. In QEST’13, volume 8054 of LNCS, pages 72–88.
Springer, 2013.

21 Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic automata in
continuous time. In LICS’10, pages 342–351. IEEE Computer Society, 2010.

XX:16 The Power of Convex Algebras

22 Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in probabilistic
automata. In Proc. FM 2014, volume 8442 of LNCS, pages 247–262, 2014.

23 Tobias Fritz. Convex spaces I: Definition and Examples. arXiv:0903.5522v3 [math.MG].
24 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.

Tenenbaum. Church: a language for generative models. CoRR, abs/1206.3255, 2012.
25 Matthew Hennessy. Exploring probabilistic bisimulations, part I. Formal Asp. Comput.,

24(4-6):749–768, 2012.
26 Holger Hermanns, Jan Krcál, and Jan Kretínský. Probabilistic bisimulation: Naturally on

distributions. In Proc. CONCUR’14, volume 8704 of LNCS, pages 249–265, 2014.
27 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category

for higher-order probability theory. CoRR, abs/1701.02547, 2017.
28 B. Jacobs. Convexity, duality and effects. In Theoretical computer science, volume 323 of

IFIP Adv. Inf. Commun. Technol., pages 1–19. Springer, Berlin, 2010.
29 Bart Jacobs. Coalgebraic trace semantics for combined possibilitistic and probabilistic

systems. Electr. Notes Theor. Comput. Sci., 203(5):131–152, 2008.
30 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,

volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016.

31 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comput. Syst. Sci., 81(5):859–879, 2015.

32 Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. States of convex sets. In
Proc. FOSSACS, volume 9034 of LNCS, pages 87–101, 2015.

33 B.P.F. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin
of the EATCS, 62:222–259, 1996.

34 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theor.
Comput. Sci., 412(38):5043–5069, 2011.

35 Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin Kwon. Reas-
oning about mdps as transformers of probability distributions. In Proc. QEST 2010, pages
199–208. IEEE, 2010.

36 A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-
Maximilians-Universität München, 2000.

37 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science,
pages 585–591. Springer, 2011.

38 Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Automatic
verification of real-time systems with discrete probability distributions. Theor. Comput.
Sci., 282(1):101–150, 2002.

39 K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94:1–28, 1991.

40 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell. On automated verific-
ation of probabilistic programs. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 173–187. Springer, 2008.

41 Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G. Larsen, and Brian
Nielsen. Learning deterministic probabilistic automata from a model checking perspective.
Machine Learning, 105(2):255–299, 2016.

Bonchi, Silva, Sokolova XX:17

42 Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc.,
1989.

43 Matteo Mio. Upper-expectation bisimilarity and łukasiewicz µ-calculus. In
Proc. FOSSACS’14, volume 8412 of LNCS, pages 335–350, 2014.

44 Michael W. Mislove. Discrete random variables over domains, revisited. In Thomas Gibson-
Robinson, Philippa J. Hopcroft, and Ranko Lazic, editors, Concurrency, Security, and
Puzzles - Essays Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday,
volume 10160 of Lecture Notes in Computer Science, pages 185–202. Springer, 2017.

45 Damien Pous and Davide Sangiorgi. Enhancements of the coinductive proof method. In
Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduc-
tion. Cambridge University Press, 2011.

46 J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science,
249:3–80, 2000.

47 R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.

48 R. Segala. Modeling and verification of randomized distributed real-time systems. PhD
thesis, MIT, 1995.

49 R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In Proc.
CONCUR’94, pages 481–496. LNCS 836, 1994.

50 Zbigniew Semadeni. Monads and their Eilenberg-Moore algebras in functional analysis.
Queen’s University, Kingston, Ont., 1973. Queen’s Papers in Pure and Applied Mathem-
atics, No. 33.

51 Falak Sher and Joost-Pieter Katoen. Compositional abstraction techniques for probabilistic
automata. In Jos C. M. Baeten, Thomas Ball, and Frank S. de Boer, editors, Theoretical
Computer Science - 7th IFIP TC 1/WG 2.2 International Conference, TCS 2012, Amster-
dam, The Netherlands, September 26-28, 2012. Proceedings, volume 7604 of Lecture Notes
in Computer Science, pages 325–341. Springer, 2012.

52 A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset construction,
coalgebraically. In Proc. FSTTCS 2010, volume 8 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 272–283, 2010.

53 Ana Sokolova. Probabilistic systems coalgebraically: A survey. Theor. Comput. Sci.,
412(38):5095–5110, 2011.

54 Ana Sokolova and Harald Woracek. Congruences of convex algebras. Journal of Pure and
Applied Algebra, 219(8):3110–3148, 2015.

55 Ana Sokolova and Harald Woracek. Termination in convex sets of distributions, 2017.
submitted.

56 Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer
Science, 7(1), 2011.

57 Sam Staton. Commutative semantics for probabilistic programming. In Hongseok Yang,
editor, Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of
Lecture Notes in Computer Science, pages 855–879, 2017.

58 Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad Kammar. Semantics
for probabilistic programming: higher-order functions, continuous distributions, and soft
constraints. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016, pages 525–534. ACM, 2016.

59 M.H. Stone. Postulates for the barycentric calculus. Ann. Mat. Pura Appl. (4), 29:25–30,
1949.

XX:18 The Power of Convex Algebras

60 T. Świrszcz. Monadic functors and convexity. Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys., 22:39–42, 1974.

61 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
LICS 1997, pages 280–291. IEEE Computer Society, 1997.

62 D. Varacca. Probability, Nondeterminism and Concurrency: Two Denotational Models for
Probabilistic Computation. PhD thesis, Univ. Aarhus, 2003. BRICS Dissertation Series,
DS-03-14.

63 D. Varacca and G. Winskel. Distributing probabililty over nondeterminism. MSCS,
16(1):87–113, 2006.

64 D. Varacca and G. Winskel. Distributing probability over non-determinism. Mathematical
Structures in Computer Science, 16(1):87–113, 2006.

65 E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a
coalgebraic approach. Theoretical Computer Science, 221:271–293, 1999.

66 Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám, Joost-Pieter Katoen, and
Bernd Becker. High-level counterexamples for probabilistic automata. Logical Methods in
Computer Science, 11(1), 2015.

67 U. Wolter. On corelations, cokernels, and coequations. Electronic Notes in Theoretical
Computer Science, 33, 2000.

A Proofs for Section 5

Proof of Lemma 14. Due to Proposition 7, all we need is to check (1) idempotence, (2)
parametric commutativity, and (3) parametric associativity.

(1) C ⊆ pC + p̄C as c = pc+ p̄c ∈ pC + p̄C. For the oposite inclusion, consider pc1 + p̄c2 ∈
pC + p̄C for c1, c2 ∈ C. As C is convex, pc1 + p̄c2 ∈ C. Hence idempotence holds.

(2) Follows from parametric commutativity in A. We have

pC + p̄D = {pc+ p̄d | c ∈ C, d ∈ D} = {p̄d+ pc | d ∈ D, c ∈ C} = p̄D + pC

proving parametric commutativity.
(3) Similarly, parametric associativity follows from parametric associativity in A:

p(qC + q̄D) + p̄E = {p(qc+ q̄d) + p̄e | c ∈ C, d ∈ D, e ∈ E}

= {pqc+ pq

(
pq̄

pq
d+ p̄

pq
e

)
| c ∈ C, d ∈ D, e ∈ E}

= pqC + pq

(
pq̄

pq
D + p̄

pq
E

)
.

J

Proof of Lemma 15. We have, straightforwardly,

Pch(pC + p̄D) = h(pC + p̄D)
= h({pc+ p̄d | c ∈ C, d ∈ D})
= {h(pc+ p̄d) | c ∈ C, d ∈ D}
= {ph(c) + p̄h(d) | c ∈ C, d ∈ D}
= ph(C) + p̄h(D)
= pPch(C) + p̄Pch(D).

J

Bonchi, Silva, Sokolova XX:19

Proof of Proposition 18. Let X be a convex algebra and consider PcX. We have η(x) =
{x} is a convex subset, as every singleton is. Moreover, η is a convex homomorphism as
p{x} + p̄{y} = {px + p̄y}. We have η (of Pc) is natural if and only if the upper square of
the left diagram below commutes.

UX
ηX
��

Uf //

ηX

UY
ηY
��

ηY

~~

UPcPcX
µX
��

UPcPcf //

µX

UPcPcY
µY
��

µY

~~

UPcX
eX
��

UPcf // UPcY
eY
��

UPcX
eX
��

UPcf // UPcY
eY
��

PUX
PUf // PUY PUX

PUf // PUY

However, the outer square of the diagram does commute - due to naturality of η (of P),
the lower square does commute - due to naturality of e, the outside triangles also do - due
to the definitions of both η’s and e, and e is injective. As a consequence, the upper square
commutes as well.

For µ, notice that also µX is a convex homomorphism from PcPcX to PcX, and all the
arguments that we used for naturality of η apply to the naturality of µ (of Pc) as well, when
looking at the right diagram above. So, µ is natural as well.

Clearly, η and µ (of Pc) satisfy the compatibility conditions of the definition of a monad,
as so do η and µ (of P). J

Proof of Proposition 25. Since c is a convex algebra homomorphism, we have that for all
p ∈ (0, 1) and a ∈ L, c(px1 + p̄x2)(a) = (pc(x1) + p̄c(x2))(a). The latter is equivalent, by
definition of (−)L (see Section 5.3), to (pc(x1)(a) + p̄c(x2)(a)). If there is i ∈ {1, 2} such
that c(xi)(a) = ∗, then (pc(x1)(a) + p̄c(x2)(a)) = ∗ (see Section 5.2). If not, then both
c(x1)(a) and c(x2)(a) are in PcS: (pc(x1)(a) + p̄c(x2)(a)) is by definition (see Section 5.1)
the set {py1 + p̄y2 | y1 ∈ c(x1)(a) and y2 ∈ c(x2)(a)}. J

B Proofs for Section 6

Proof of Lemma 27. First, given c, consider the map α ◦ Mc. We need to show that
α ◦ Mc is an algebra homomorphism from the free algebra FS to HFS in EM(M). This
will show that c# : FS → HFS and Uc# = α ◦ Mc.

Note that (ML1S

L1S

α��

)
= H

(MMS

MS

µ��

)
.

The needed homomorphism property holds since the following diagram commutes:

MMS

µ

��

MMc //MML1S
Mα //

µ

��

ML1S

α

��
MS

Mc //ML1S
α // L1S

as the left square commutes by the naturality of µ and the right one by the Eilenberg-Moore
law for α.

Next, we show that the assignments c .7→ c# and c# /7→ c are inverse to each other.

XX:20 The Power of Convex Algebras

We have / ◦ .(c) = c as α ◦ Mc ◦ η nat.η= α ◦ η ◦ c EM−law= c. Also, we have
. ◦ /(c#) = c# as

α ◦ M(Uc# ◦ η) = α ◦ MUc# ◦ Mη

(∗)= Uc# ◦ µ ◦ Mη
(∗∗)= Uc#

where the equality marked by (∗) holds since Uc# is an algebra homomorphism, proven
above, and the equality marked by (∗∗) holds by the monad law.

By the above, F is well defined on objects. It remains to prove that for two L1-coalgebras
on Sets (S, cS) and (T, cT), and a coalgebra homomorphism h : (S, cS) → (T, cT) with
cT ◦ h = L1h ◦ cS we have that Mh is a coalgebra homomorphism in EM(M) from
(FS, c#S) to (FT, c#T).

We have
UFS UFh //

UFcS

��
Uc#

S

%%

UFT

UFcT

��
Uc#

T

yy

UFL1S
UFL1h //

αS

��

UFL1T

αT

��
UHFS L1h // UHFT

where the outer triangles commute by definition; the upper square commutes by assumption,
i.e., since h is a homomorphism and U and F are functors; and the lower square simply states
that HFh is an arrow in EM(M) which of course holds as H and F are functors. J

Proof of Proposition 28. Assume that R is a congruence. Then US/R carries aM-algebra,
denoted by S/R, and [−]R : S→ S/R is a map in EM(M). If R is a kernel bisimulation on
U(S, c), then there exists a function f : U(S/R)→ L2U(S/R) such that the outer square in
the diagram below on the left commutes.

US

Uc

��

U [−]R // // U(S/R)

cR

��

f

��

UHS
��

eS

��

UH[−]R // UH(S/R)
��

eS/R

��
L2US L2U [−]R

// L2U(S/R)

US

UH[−]R◦Uc

��

U [−]R // // U(S/R)

f

��

cR

||
UH(S/R) //

eS/R

// L2U(S/R)

The bottom square commutes by naturality of e. The function cR is obtained by the
epi-mono factorisation structure on Sets as shown on the right. To conclude that R is a
kernel bisimulation on (S, c), one only needs to show that cR is a map in EM(M).

Bonchi, Silva, Sokolova XX:21

Let α : MUS → US denote the algebra structure of S, that is S = (US, α). Similarly
S/R = (U(S/R), αR), HS = (UHS, αH) and H(S/R) = (UH(S/R), αRH).

MUS
α

((

MUc

��

MU [−]R // //MU(S/R)

McR

��

αR

**
US

Uc

��

U [−]R // // U(S/R)

cR

��

MUHS
αH ((

MUH[−]R
//MUH(S/R)

αRH

**
UHS

UH[−]R
// UH(S/R)

Consider the above cube on Sets. The front face commutes by construction of cR. The back
face commutes as it is justM applied to the front face. The top face commutes because R is a
congruence: the map [−]R : (US, α)→ (U(S/R), αR) is aM-algebra homomorphism. Since
H is a functor also H[−]R : H(US, α) → H(U(S/R), αR) is a M-algebra homomorphism:
this means that also the bottom face commutes. The leftmost face commutes since, by
assumption, c is a homomorphism ofM-algebras.

To prove that also cR is a homomorphism ofM-algebras amounts to checking that also
the rightmost face commutes. For this it is essential thatM preserves epis, as every Sets-
endofunctor does, so that MU [−]R is an epi. From this fact and the following derivation,
we conclude that cR ◦ αR = αRH ◦McR.

cR ◦ αR ◦MU [−]R = cR ◦ U [−]R ◦ α
= UH[−]R ◦ Uc ◦ α
= UH[−]R ◦ αH ◦MUc
= αRH ◦MUH[−]R ◦MUc
= αRH ◦McR ◦MU [−]R

The other implication follows trivially from the fact that U is a functor. J

Proof of Proposition 29. U(S, c) is a coalgebra for the functor PL : Sets → Sets, namely
a labeled transition system. It is well known that for these kind of coalgebras, behavioural
equivalence (≈) coincides with the standard notion of bisimilarity.

We can thus proceed by exploiting coinduction and prove that the following relation is
a bisimulation (in the standard sense).

R = {(pζ1 + p̄ξ1, pζ2 + p̄ξ2) | ζ1 ≈ ζ2, ξ1 ≈ ξ2 and p ∈ [0, 1]}

Suppose that pζ1 + p̄ξ1
a7→ ε1. Then, by Proposition 25, ε1 = pζ ′1 + p̄ξ′1 with ζ1

a7→ ζ ′1 and
ξ1

a7→ ξ′1. Since ζ1 ≈ ζ2 and ξ1 ≈ ξ2, there exists ζ ′2 ≈ ζ ′1 and ξ′2 ≈ ξ′1 such that ζ2
a7→ ζ ′2 and

ξ2
a7→ ξ′2. Again, by Proposition 25, pζ2 + p̄ξ2

a7→ pζ ′2 + p̄ξ′2. Moreover, by definition of R,
pζ ′1 + p̄ξ′1 R pζ ′2 + p̄ξ′2. J

Proof of Theorem 31. We have that U ◦ F ◦ Tconv(S, cM) = (DS, ĉM) = (DS, (eFS + 1)L ◦
Uc]M). Since behavioural equivalence in (DS, (eFS + 1)L ◦ Uc]M) is bisimilarity for LTSs, by
Corollary 30, all that we need to show is that (DS, ĉM) = (DS, (eFS + 1)L ◦Uc]M) is exactly
the belief-state transformer Mbs induced by M , as announced by Table 1. Moreover, since
(eFS + 1)L is the identity embedding, it suffices to understand Uc]M .

XX:22 The Power of Convex Algebras

First, by definition, Tconv(S, cM) = (S, c̄M) = (S, convL ◦ cM), and concretely,

s
l→c ξ in Mc iff ξ ∈ c̄M (s)(l) = conv(cM (s)(l)).

Then U c̄]M = α ◦ Dc̄M : DS → D((CS + 1)L) → (CS + 1)L by Lemma 27, where α is
the algebra structure from Example 24. Concretely, we have, for a distribution7 [si 7→ pi]

U c̄]M ([si 7→ pi])(l) = α ◦ Dc̄M ([si 7→ pi])(l)
= α(Dc̄M ([si 7→ pi])(l)
= α([c̄M (si) 7→ pi])(l)
= (∗)

Now [c̄M (si) 7→ pi] is the distribution that assigns probability pi to the function l 7→ {ξi |
si

l→c ξi} if si
l→c, and l 7→ ∗ otherwise. Hence, by the convex operations corresponding to

the algebra structure α from Example 24 we have

(∗) =
{ ∑

pi{ξi | si
l→c ξi}) , ∀i. si

l→c

∗ , ∃i. si 6
l→c

=
{
{
∑
piξi | si

l→c ξi}) , ∀i. si
l→c

∗ , ∃i. si 6
l→c

which means8 that
∑
pisi = [si 7→ pi]

l7→
∑
piξi in (DS, ĉM) whenever si

l→c ξi which is
exactly the same condition as

∑
pisi

l7→
∑
piξi in Mbs. This completes the proof that Mbs

is exactly the coalgebra (DS, ĉM). J

C Proofs for Section 7

In this appendix we show the proofs for Propositions 33 and 34. While the first basically
requires only Proposition 25, the second can be more elegantly illustrated by using the
modular approach developed in [45] that we recall hereafter.

Up-to techniques can be combined in a number of interesting ways. For a map
f : RelD(S) → RelD(S), the n-iteration of f is defined as fn+1 = f ◦ fn and f0 = id, the
identity function. The omega iteration is defined as fω(R) =

⋃∞
i=0 fi(R). The following

result from [45] informs us that compatible up-to techniques can be composed resulting in
other compatible techniques.

I Lemma 38. The following functions are compatible:
id: the identity function;
f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible functions:

⋃
F (R) =⋃

f∈F f(R);
fω: the (omega) iteration of a compatible function f, defined as fω(R) =

⋃∞
i=0 fi(R)

J

Apart from conv, we are interested in the following up-to techniques.

7 In order to avoid confusion between convex operations and distributions, for the moment we use this
explicit notation for distributions.

8 Coming back to the usual notation for distributions, as formal sums.

Bonchi, Silva, Sokolova XX:23

the constant function r mapping every R into the identity relation Id ⊆ D(S)×D(S);
the square function t mapping every R into t(R) = {(ζ1, ζ3) | ∃ζ2 s.t. ζ1Rζ2Rζ3};
the opposite function s mapping every R into its opposite relation R−1.

It is easy to check that all these functions are compatible. Lemma 38 allows us to combine
them so to obtain novel compatible up-to techniques. For instance the equivalence closure
e : RelD(S) → RelD(S) can be decomposed as (id∪ r∪ t∪ s)ω. The fact that e is compatible
follows immediately from Lemma 38.

In a similar way, we can decompose cgr as (id∪ r∪ t∪ s∪ conv)ω. To prove that it is
compatible, we have first to prove that conv is compatible.

Proof of Proposition 33. Assume that (ε1, ε2) ∈ conv(b(R)). By definition of conv there
exist p ∈ [0, 1], ζ1, ξ1, ζ2, ξ2 ∈ D(S) such that

(a) ε1 = pζ1 + p̄ξ1, ε2 = pζ2 + p̄ξ2,
(b) (ζ1, ζ2) ∈ b(R) and (ξ1, ξ2) ∈ b(R).
To prove that (ε1, ε2) ∈ b(conv(R)), assume that ε1

a7→ ε′1 for some a ∈ A and ε′1 ∈ D(S).
Then, by (a) and Proposition 25, ζ1

a7→ ζ ′1 and ξ1
a7→ ξ′1 and ε′1 = pζ ′1 + p̄ξ′1. By (b), there

exist ζ ′2, ξ′2 ∈ D(S) such that
(c) ζ2

a7→ ζ ′2, ξ2
a7→ ξ′2 and

(d) (ζ ′1, ζ ′2) ∈ R, (ξ′1, ξ′2) ∈ R.
From (c) and Proposition 25, it follows that ε2

a7→ pζ ′2 + p̄ξ′2. From (d), one obtains that
(ε′1 = pζ ′1 + p̄ξ′1, pζ

′
2 + p̄ξ′2) ∈ conv(R).

One can proceed symmetrically for ε2
a7→ ε′2.

Therefore, by definition of b, (ε1, ε2) ∈ b(conv(R)). J

Proof of Proposition 34. Observe that cgr = (id∪ r∪ t∪ s∪ conv)ω. We know that r, s, t
and conv (Proposition 33) are compatible. Compatibility of cgr follows by Lemma 38. J

D Detailed Introduction to Coalgebras

In this appendix we give a gentle introduction to (co)algebra that enables us to highlight the
generic principles behind the semantics of probabilistic automata. The interested reader is
referred to [30, 46, 33] for more details. We start by recalling the basic notions of category,
functor and natural transformation, so that all of the results in the paper are accessible also
to non-experts.

A category C is a collection of objects and a collection of arrows (or morphisms) from
one object to another. For every object X ∈ C, there is an identity arrow idX : X → X.
For any three objects X,Y, Z ∈ C, given two arrows f : X → Y and g : Y → Z, there
exists an arrow g ◦ f : X → Z. Arrow composition is associative and idX is neutral w.r.t.
composition. The standard example is Sets, the category of sets and functions.

A functor F from a category C to a category D, notation F : C → D, assigns to every
object X ∈ C, an object FX ∈ D, and to every arrow f : X → Y in C an arrow Ff : FX →
FY in D such that identity arrows and composition are preserved.

I Example 39. Examples of functors on Sets of particular interest to us are

1. The constant exponent functor (−)L for a set L, mapping a set X to the set XL of all
functions from L to X, and a function f : X → Y to fL : XL → Y L with fA(g) = f ◦ g.

2. The termination functor (−) + 1 that maps a set X to the set X + 1 = X ∪ {∗} with
∗ /∈ X, and a map f : X → Y to f + 1: X + 1 → Y + 1 given by f + 1(x) = f(x) for
x ∈ X and f + 1(∗) = ∗.

XX:24 The Power of Convex Algebras

3. The non-empty powerset functor Pne mapping a set X to the set of its non-empty subsets
Pne = {S | S ⊆ X and S 6= ∅} and a function f : X → Y to a Pnef : PneX → PneY
with Pnef(S) = f(S) for S ⊆ X.

4. The powerset functor P mapping a set X to its powerset PX = {S | S ⊆ X} and on
functions it is defined as the previous one. Observe that P = Pne + 1.

5. The finitely supported probability distribution functor D is defined, for a set X and a
function f : X → Y , as

DX = {ϕ : X → [0, 1] |
∑
x∈X

ϕ(x) = 1, supp(ϕ) is finite} Df(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x).

The support set of a distribution ϕ ∈ DX is defined as supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}.
6. The nonempty-convex-subsets-of-distributions monad [43, 29, 62] C maps a set X to the

set of all nonempty convex subsets of distributions over X, and a function f : X → Y to
the function PDf .

A category C is concrete, if it admits a canonical forgetful functor U : C→ Sets. By a
forgetful functor we mean a functor that is identity on arrows. Intuitively, a concrete cat-
egory has objects that are sets with some additional structure, e.g. algebras, and morphisms
that are particular kind of functions.

FX

σX

��

Ff // FY
σY

��
GX

Gf // GY

Let F : C → D and G : C → D be two functors. A natural trans-
formation σ : F ⇒ G is a family of arrows σX : FX → GX in D such
that the diagram on the right commutes for all arrows f : X → Y .

Coalgebras provide an abstract framework for state-based system. Let C be a base
category. A coalgebra is a pair (S, c) of a state space S (object in C) and an arrow c : S → FS

in C where F : C→ C is a functor that specify the type of transitions. We
S

c
��

h // T

d
��

FS
Fh // FT

will sometimes just say the coalgebra c : S → FS, meaning the coalgebra
(S, c). A coalgebra homomorphism from a coalgebra (S, c) to a coalgebra
(T, d) is an arrow h : S → T in C that makes the diagram on the right
commute. Coalgebras of a functor F and their coalgebra homomorphisms form a category
that we denote by CoalgC (F).

Coalgebras over a concrete category are equipped with a generic behavioural equivalence,
which we define next. Let (S, c) be an F -coalgebra on a concrete category C. An equivalence
relation R ⊆ US × US is a kernel bisimulation (synonymously, a cocongruence) [56, 36, 67]
if it is the kernel of a homomorphism, i.e., R = kerUh = {(s, t) ∈ US×US | Uh(s) = Uh(t)}
for some coalgebra homomorphism h : (S, c)→ (T, d) to some F -coalgebra (T, d). Two states
s, t of a coalgebra are behaviourally equivalent notation s ≈ t iff there is a kernel bisimulation
R with (s, t) ∈ R. A trivial but important property is that if there is a functor from one
category of coalgebras (over a concrete category) to another, then this functor preserves
behavioral equivalence: if two states are equivalent in a coalgebra of the first category, then
they are also equivalent in the image under the functor in the second category.

We are now in position to connect probabilistic automata to coalgebras.

I Proposition 40 ([4, 53]). A probabilistic automatonM = (S,L,→) can be identified with a
(PD)A-coalgebra cM : S → (PDS)A on Sets, where s a→ ξ in M iff ξ ∈ cM (s)(a) in (S, cM).
Bisimilarity in M equals behavioural equivalence in (S, cM), i.e., for two states s, t ∈ S we
have s ∼ t⇔ s ≈ t. J

It is also possible to provide convex bisimilarity semantics to probabilistic automata via
coalgebraic behavioural equivalence, as the next proposition shows.

Bonchi, Silva, Sokolova XX:25

I Proposition 41 ([43]). Let M = (S,L,→) be a probabilistic automaton, and let (S, c̄M) be
a (C + 1)A-coalgebra on Sets defined by c̄M (s)(a) = conv(cM (s)(a)) where cM is as before,
if cM (s)(a) = {ξ | s a→ ξ} 6= ∅; and c̄M (s)(a) = ∗ if cM (s)(a) = ∅. Convex bisimilarity in
M equals behavioural equivalence in (S, c̄M). J

The connection between (S, cM) and (S, c̄M) in Proposition ?? is the same as the con-
nection between M and Mc in Section 2. Abstractly, it can be explained using the following
well known generic property.

I Lemma 42 ([46, 4]). Let σ : F ⇒ G be a natural transformation from F : C → C to
G : C→ C. Then T : CoalgC (F)→ CoalgC (G) given by

T (S c→ FS) = (S c→ FS
σS→ GS)

on objects and identity on morphisms is a functor. As a consequence, T preserves behavioural
equivalence. If σ is injective, then T also reflects behavioural equivalence. J

I Example 43. We have that conv: PD ⇒ C + 1 given by conv(∅) = ∗ and conv(X)
is the already-introduced convex hull for X ⊆ DS, X 6= ∅ is a natural transformation.
Therefore, convL : (PD)L ⇒ (C + 1)L is one as well, defined pointwise. As a consequence
from Lemma 11, we get a functor Tconv : CoalgSets ((PD)L) → CoalgSets ((C + 1)L) and
hence bisimilarity implies convex bisimilarity in probabilistic automata.

On the other hand, we have the injective natural transformation ι : C + 1 ⇒ PD given
by ι(X) = X and ι(∗) = ∅ and hence a natural transformation χ : (C + 1)L ⇒ (PD)L. As
a consequence, convex bisimilarity coincides with strong bisimilarity on the “convex-closed”
probabilistic automaton Mc, i.e., the coalgebra (S, c̄M) whose transitions are all convex
combinations of M -transitions.

D.1 Algebras for a Monad

The behaviour functor F often is, or involves, a monadM, providing certain computational
effects, such as partial, non-deterministic, or probabilistic computation.

More precisely, a monad is a functorM : C → C together with two natural transform-
ations: a unit η : idC ⇒ M and multiplication µ : M2 ⇒ M. These are required to make
the following diagrams commute, for X ∈ C.

MX
ηMX //M2X

µX

��

MX
MηXoo M3X

µMX //

MµX ��

M2X

µX

��
MX M2

µX

//MX

We briefly describe two examples of monads on Sets.
The unit of the powerset monad P is given by singleton η(x) = {x} and multiplication
by union µ({Xi ∈ PX | i ∈ I}) =

⋃
i∈I Xi.

The unit of D is given by a Dirac distribution η(x) = δx = (x 7→ 1) for x ∈ X and the
multiplication by µ(Φ)(x) =

∑
ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x) for Φ ∈ DDX.

With a monad M on a category C one associates the Eilenberg-Moore category
EM(M) of Eilenberg-Moore algebras. Objects of EM(M) are pairs A = (A, a) of an

XX:26 The Power of Convex Algebras

object A ∈ C and an arrow a : MA→ A, making the first two diagrams below commute.

A
η //MA

a
��

M2A

µ
��

Ma //MA

a
��

MA

a
��

Mh //MB

b
��

A MA
a
// A A

h
// B

A homomorphism from an algebra A = (A, a) to an algebra B = (B, b) is a map h : A→ B

in C between the underlying objects making the diagram above on the right commute. The
diagram in the middle thus says that the map a is a homomorphism from (MA,µA) to A.
The forgetful functor U : EM(M) → C mapping an algebra to its carrier has a left adjoint
F , mapping an object X ∈ C to the (free) algebra (MX,µX). We have thatM = F ◦ U .

A category of Eilenberg-Moore algebras which is particularly relevant for our exposition
is described in the following proposition. See [60] and [50] for the original result, but
also [16, 17] or [28, Theorem 4] where a concrete and simple proof is given.

I Proposition 44 ([60, 16, 17, 28]). Eilenberg-Moore algebras of the finitely supported dis-
tribution monad D are exactly convex algebras as defined in Section 3. The arrows in the
Eilenberg-Moore category EM(D) are convex algebra homomorphisms. J

As a consequence, we will interchangeably use the abstract (Eilenberg-Moore algebra)
and the concrete definition (convex algebra), whatever is more convenient. For the latter,
we also just use binary convex operations, by Proposition 7, whenever more convenient.

	Introduction
	Probabilistic Automata
	Convex Algebras
	Coalgebras
	Algebras for a Monad
	The Generalised Determinisation

	Coalgebras on Convex Algebras
	Convex Powerset on Convex Algebras
	Termination on Convex Algebras
	Constant Exponent on Convex Algebras
	Transition Systems on Convex Algebras

	From PA to Belief-State Transformers
	Bisimulations Up-To Convex Hull
	Conclusions and Future Work
	Proofs for Section 5
	Proofs for Section 6
	Proofs for Section 7
	Detailed Introduction to Coalgebras
	Algebras for a Monad

