R SE

Rigorous Systems Engineering

Rigorous Systems Engineering

Rigorous Systems Engineering

Semantics of Concurrent
Data Structures

Ana Sokolova PersaLzsurs

AVM, 25.9.2018

Concurrent data structures
correctness and performance

via semantic

r re and power -
structure and p relaxations

* New results enabling
veritying linearizability

Ana Sokolova P:siizsure AVM 259.18

Concurrent Data Structures
Correctness and Relaxations

. . EH UNIVERSITY OF
Ali Sezgin & cavsrince

Hannes Péyer

Google

Tom Henzinger Christoph Kirsch

UNIVERSITY
I‘S YN AUSTRIA of SALZBURG

Andreas Haas Google Michael Lippautz

Andreas Holzer Helmut Veith

Google

R SE

Rigorous Systems Engineering

Data structures

N en de
Queue FIFO ena b o I 4 o1l 61 5 q
push } olele
e Stack LIFO
y
INS rem
z \ /'
e Pool unordered ‘ "
_ 0
J
m

Ana Sokolova P:siizsure AVM 259.18

Concurrent data structures

. Queue FIFO —2 .
ueue —| f e d C b || a —>
_> _>

POP
—»| x |[—

° Stack LIFO 5L -

y
ins s /r?m rem
z N l e
* Pool unordered LA n
|
- O rem
L m N =
INS

Ana Sokolova P:siizsure AVM 259.18

Semantics of concurrent
data structures

e.g. gqueues

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

« (Consistency condition = e.qg. linearizability / sequential
consistency

e.g. the concurrent history above is a

inearizable queue concurrent history

Ana Sokolova P:siizsure AVM 259.18

Consistency conditions

A history is ... wrt a sequential

specification iff

there exists a legal

sequence that preserves . . -
orecedence order Linearizability [Herlihy,Wing '90]

consistency is
about extending
partial orders to v
total orders

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova P:siizsure AVM 259.18

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova P:siizsure AVM 259.18

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
iImplementations

Ana Sokolova P:siizsure AVM 259.18

Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Sequential specification = set of legal sequences

e (Consistency condition = e.qg. linearizability / sequential
consistency

Local linearizability

Haas, Henzinger, Holzer,..., S, Veith CONCUR16

Ana Sokolova P:siizsure AVM 259.18

Relaxing
the
Sequential
Specification

Relaxations
(POPL13)

Ana Sokolova P:siizsure AVM 259.18

Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?

Ana Sokolova P:siizsure AVM 259.18

HOwW can relaxing
help”?

0P I~ thread 1
} \l\ thread 2

thread n

IIIIIIIIII

Ana Sokolova Psiisurs

k-Relaxed stack

1

SN~
%}K

+op

thread 1
thread 2

thread n

AVM 25.9.18

We have got

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances

Ana Sokolova P:siizsure AVM 259.18

The big picture

sequential specification

> - methods with arguments

Ana Sokolova P:siizsure AVM 259.18

The big picture

seguential specification

relaxed sequential specification

> - methods with arguments

Ana Sokolova PGZsure AVM 25.9.18

Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)

Ana Sokolova P:siizsure AVM 259.18

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova P:siizsure AVM 259.18

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova P:siizsure AVM 259.18

Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency

Ana Sokolova P:siizsure AVM 259.18

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'*\ Sequential Consistency

Ana Sokolova P:siizsure AVM 259.18

| ead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes

AVM 25.9.18

million operations per sec (more is better)

Ana Sokolova

26
24 |
22 |
20 |
s LL+D MS queue
16 L performs
14 L /}’ significantly better
12 | o than
10 | g/ MS queue
g | R
3 e X--
6 L I S X -
L |
o & B E— o E— frocooeoee T S S +
2 10 20 30 40 50 60 70 80
number of threads

. B e

LCRQ - LLD LCRQ :----aA----:

k-FIFO LLD k-FIFQ «---A----

(a) Queues, LL queues, and “queue-like” pools
i AVM 25.9.18

million operations per sec (more is better)

Ana Sokolova

26
24 |
22 |
ol LLD &
16 performs
14 L A significantly better
12 L T than
i //;:’ff/)
1(8) .;:‘iffg/
- ST G
6 L LT X -
L |
o & B E— o E— frocooeoee T S S +
2 10 20 30 40 50 60 70 80
number of threads
B B e .
LCRQ - LLD LCRQ :----aA----:
k-FIFO LLD k-FIFO +---A--——
(a) Queues, LL queues, and “queue-like” pools
i AVM 25.9.18

26
24
22
20
18
16
14
12
10

LL+D MS queue
performs better

> than
.‘:"_'//"’
e the best known
»'— -
z
\ 2 oJele][S
.‘,:‘,/
”~

million operations per sec (more is better)

S N B O ©

number of threads

B B e .

LCRQ - LLD LCRQ -
k-FIFO LLD k-FIFO -/

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova Psfsazeiis AVM 25.9.18

scal.cs.uni-salzburg.at

Scal g; High-Performance Multicore-Scalable Computing

objects on multicore systems by analyzing the apparent trade-off between
adherence to concurrent data structure semantics and scalability.

Ana Sokolova P:siizsure AVM 259.18

scal.cs.uni-salzburg.at

Scal ;’;’ High-Performance Multicore-Scalable Computing

arent trade-off between
and scalability.

Ana Sokolova PGZsure AVM 25.9.18

Concurrent Data Structures
Correctness and Performance

- Ali Sezgin | & chnct
Google T Tom Henzinger O el

AUSTRIA of SALZBURG

ogl M i T
Andreas Haas (Google Michael Lippautz Helmut Veith A%

WIEN

Andreas Holzer
Google

R SE

Rigorous Systems Engineering

Linearizability via Order
Extension Theorems

foundational results
for

veritying linearizability

bl |
Harald Woracek M

As well as

INspiration e

[Bouajjani, Emmi, Enea, Hamza]
[EA =R IoE . i

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, anad
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(ly)eh = deg(x)eh A deq(y)deq(x)

precedence order

Ana Sokolova P:siizsure AVM 259.18

Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and
2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POpP(X)

Stack linearizability (axiomatic)

h is stack linearizable f?f?f?
Iﬂ: [| | [|

1. his pool linearizable, and

2. push(x) <n push(y) <n pop(x) = pop(y) e h A pop(x) «n pop(y)

Ana Sokolova P:siizsure AVM 259.18

Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and
2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POpP(X)

Stack linearizability (axiomatic)

h s stack |i

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(

Ana Sokolova P:siizsure AVM 259.18

Problems (stack)

not stack
linearizable

Stack linearizability (axiomatic)

h s stack ||

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(

Ana Sokolova P:siizsure AVM 259.18

|_inearizability verification
oni

* signature 2 - set of method calls including data values sequences with
* seqguential specification S € 2%, prefix closed s

Seqguential specification via violations

iolatior clation Ich that s € S iff 8 has no violations
It is easy to find a large CV,

but difficult to find a small representative

Extract a set g ot

2s)nV=0

Linearizability ver rication

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

we build concurrent history

CV iteratively legal sequence
from V

AVM 25.9.18

't works for

* Pool without empty removals

* Queue without empty removals

But not yet for Stack:
removals infinite CV violations
without clear
Inductive structure

* Priority queue withou

* Pool
* Queue
Exploring the space of
o data structures
* Priority qu

Ana Sokolova P:siizsure AVM 259.18

