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Concurrent data structures
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Semantics of concurrent
data structures

e.g. gqueues

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

« (Consistency condition = e.qg. linearizability / sequential
consistency

e.g. the concurrent history above is a

inearizable queue concurrent history
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Consistency conditions

A history is ... wrt a sequential

specification iff

there exists a legal

sequence that preserves . . -
orecedence order Linearizability [Herlihy,Wing '90]

consistency is
about extending
partial orders to v
total orders

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)
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Performance and scalabillity

-)))

throughput :_)

# of threads / cores

Ana Sokolova P:siizsure AVM 259.18



Relaxations allow trading

correctness
for
performance

provide the

for better-performing
iImplementations
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Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Sequential specification = set of legal sequences

e (Consistency condition = e.qg. linearizability / sequential
consistency

Local linearizability

Haas, Henzinger, Holzer,..., S, Veith CONCUR16
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Relaxing
the
Sequential
Specification

Relaxations
(POPL13)
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Goal

Stack - incorrect behavior

push(a)push(b)push(c)pop(a)pop(b)

e trade correctness for performance

® |n a controlled way with quantitative bounds

measure the
error from correct

correct in a relaxed stack behaviour
... 2-relaxed? 3-relaxed?
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HOwW can relaxing
help”?
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We have got

for semantic

relaxations

Framework

out-of-order /

* (Generic examples

stuttering stacks, queues,

« Concrete relaxation examples priority queues,.. /
CAS, shared counter

 Efficient concurrent implementations

of relaxation
Instances
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The big picture

sequential specification

> - methods with arguments
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The big picture

seguential specification

relaxed sequential specification

> - methods with arguments
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Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)
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Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable
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Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency
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Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'\*\ Sequential Consistency
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| ead to scalable
implementations

e.g. k-FIFO, k-Stack

k-out-of-order
queue

local inserts / global removes
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million operations per sec (more is better)
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scal.cs.uni-salzburg.at

Scal g; High-Performance Multicore-Scalable Computing

objects on multicore systems by analyzing the apparent trade-off between
adherence to concurrent data structure semantics and scalability.
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scal.cs.uni-salzburg.at
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Linearizability via Order
Extension Theorems

foundational results
for

veritying linearizability
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As well as

INspiration e

[Bouajjani, Emmi, Enea, Hamza]
[EA =R IoE . i

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, anad
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(ly)eh = deg(x)eh A deq(y)deq(x)

precedence order
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Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and
2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POpP(X)

Stack linearizability (axiomatic)

h is stack linearizable f?f?f?
Iﬂ: [ | | [ |

1. his pool linearizable, and

2. push(x) <n push(y) <n pop(x) = pop(y) e h A pop(x) «n pop(y)
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Problems (stack)

Stack sequential specification (axiomatic)

S IS a legal stack sequence
|ff
1. sis alegal pool sequence, and
2. push(x) <s push(y) <s pop(x) = pop(y)es A pop(y) <s POpP(X)

Stack linearizability (axiomatic)

h s stack |i

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(
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Problems (stack)

not stack
linearizable

Stack linearizability (axiomatic)

h s stack ||

ble, and

1. his pool i
h pop(x) = pop(y) e h A pop(x) «n pop(y)

2. push(
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|_inearizability verification
oni

* signature 2 - set of method calls including data values sequences with
* seqguential specification S € 2%, prefix closed s

Seqguential specification via violations

iolatior clation Ich that s € S iff 8 has no violations
It is easy to find a large CV,

but difficult to find a small representative

Extract a set g ot

2s)nV=0

Linearizability ver rication

Find a set of violations CV such that: every interval order with no CV violations
extends to a total order with no V violations.

we build concurrent history

CV iteratively legal sequence
from V
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't works for

* Pool without empty removals

* Queue without empty removals

But not yet for Stack:
removals infinite CV violations
without clear
Inductive structure

* Priority queue withou

* Pool
* Queue
Exploring the space of
o data structures
* Priority qu
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