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Probabilistic Bisimulation:

Naturally on Distributions
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Abstract. In contrast to the usual understanding of probabilistic sys-
tems as stochastic processes, recently these systems have also been re-
garded as transformers of probabilities. In this paper, we give a natural
definition of strong bisimulation for probabilistic systems correspond-
ing to this view that treats probability distributions as first-class cit-
izens. Our definition applies in the same way to discrete systems as
well as to systems with uncountable state and action spaces. Several
examples demonstrate that our definition refines the understanding of
behavioural equivalences of probabilistic systems. In particular, it solves
a long-standing open problem concerning the representation of memo-
ryless continuous time by memory-full continuous time. Finally, we give
algorithms for computing this bisimulation not only for finite but also
for classes of uncountably infinite systems.

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal man-
ners: On the one hand, timed automata (TA) extend interleaving concurrency
with real-valued clocks [2]. On the other hand, time can be represented by memo-
ryless stochastic time, as in continuous time Markov chains (CTMC) and exten-
sions, where time is represented in the form of exponentially distributed random
delays [37,35,6,26]. TA and CTMC variations have both been applied to very
many intriguing cases, and are supported by powerful real-time, respectively
stochastic time model checkers [3,42] with growing user bases. The models are
incomparable in expressiveness, but if one extends timed automata with the pos-
sibility to sample from exponential distributions [5,12,33], there appears to be
a natural bridge from CTMC to TA. This kind of stochastic semantics of timed
automata has recently gained considerable popularity by the statistical model
checking approach to TA analysis [16,15].

Still there is a disturbing difference, and this difference is the original moti-
vation [14] of the work presented in this paper. The obvious translation of an
exponentially distributed delay into a clock expiration sampled from the very
same exponential probability distribution fails in the presence of concurrency.
This is because the translation is not fully compatible with the natural inter-
leaving concurrency semantics for TA respectively CTMC. This is illustrated by
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Abstract. We take a fresh look at strong probabilistic bisimulations for processes which exhibit both non-deter-
ministic and probabilistic behaviour. We suggest that it is natural to interpret such processes as distributions
over states in a probabilistic labelled transition system, a pLTS; this enables us to adapt the standard notion
of contextual equivalence to this setting. We then prove that a novel form of bisimulation equivalence between
distributions are both sound and complete with respect to this contextual equivalence. We also show that a
very simple extension to HML, Hennessy–Milner Logic, provides finite explanations for inequivalences between
distributions. Finally we show that our bisimulations between distributions in a pLTS are simply an alternative
characterisation of a standard notion of probabilistic bisimulation equivalence, defined between states in a pLTS.

Keywords: Probabilistic processes, Contextual equivalence, Bisimulation equivalence, Logical characterisation,
Equational theory

1. Introduction

Bisimulations [Mil89] provide a well-established and elegant theory of the behaviour of non-deterministic pro-
cesses. Let us review the framework.

(1) Labelled transitions systems, LTSs: These provide an intensional semantics for processes, describing their
computations or more generally the interactions between processes and their environment.

(2) Process calculi: Formal description languages for describing processes and their specifications. These usually
consist of a small number of combinators with which processes can be described by their structure.

(3) Behavioural equivalence: This determines which process descriptions are extensionally equivalent; that is
which processes can not be distinguished by their users or more generally their environments. Perhaps the
most uncontroversial is the so-called contextual equivalence, ∼cxt [MS92, SW01, HY95, Hen07], defined in
terms of simple properties one would expect of a behavioural equivalence.

(4) Bisimulations: These are relations between processes which satisfy simple properties expressed in terms of the
intensional semantics. They provide an elegant proof methodology for demonstrating process equivalence;
to show two processes behaviourally equivalent it is sufficient to exhibit a witness bisimulation containing
them. In many settings this proof method is not only sound with respect to contextual equivalence but also
complete.

Correspondence and offprint requests to: M. Hennessy, E-mail: matthew.hennessy@cs.tcd.ie
Supported financially by SFI project no. SFI 06 IN.1 1898.
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Abstract. Probabilistic automata were introduced by Rabin in 1963 as language
acceptors. Two automata are equivalent if and only if they accept each word with
the same probability. On the other side, in the process algebra community, prob-
abilistic automata were re-proposed by Segala in 1995 which are more general
than Rabin’s automata. Bisimulations have been proposed for Segala’s automata
to characterize the equivalence between them. So far the two notions of equiv-
alences and their characteristics have been studied most independently. In this
paper, we consider Segala’s automata, and propose a novel notion of distribution-
based bisimulation by joining the existing equivalence and bisimilarities. Our
bisimulation bridges the two closely related concepts in the community, and pro-
vides a uniform way of studying their characteristics. We demonstrate the utility
of our definition by studying distribution-based bisimulation metrics, which gives
rise to a robust notion of equivalence for Rabin’s automata.

1 Introduction

In 1963, Rabin [29] introduced the model probabilistic automata as language accep-
tors. In a probabilistic automaton, each input symbol determines a stochastic transition
matrix over the state space. Starting with the initial distribution, each word (a sequence
of symbols) has a corresponding probability of reaching one of the final states, which
is referred to the accepting probability. Two automata are equivalent if and only if they
accept each word with the same probability. The corresponding decision algorithm has
been extensively studied, see [29, 31, 25, 26].

Markov decision processes (MDPs) were known as early as the 1950s [3], and are a
popular modeling formalism used for instance in operations research, automated plan-
ning, and decision support systems. In MDPs, each state has a set of enabled actions
and each enabled action leads to a distribution over successor states. MDPs have been
widely used in the formal verification of randomized concurrent systems, and are now
supported by probabilistic model checking tools such as PRISM [27], MRMC [24] and
IscasMC [20].
? Supported by the National Natural Science Foundation of China (NSFC) under grant No.

61361136002, and Australian Research Council (ARC) under grant Nos. DP130102764 and
FT100100218. Y. F. is also supported by the Overseas Team Program of Academy of Mathe-
matics and Systems Science, Chinese Academy of Sciences.
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Abstract—A finite state Markov chain M is often viewed as a
probabilistic transition system. An alternative view - which we
follow here - is to regard M as a linear transform operating on
the space of probability distributions over its set of nodes. The
novel idea here is to discretize the probability value space [0,1]
into a finite set of intervals. A concrete probability distribution
over the nodes is then symbolically represented as a tuple D of
such intervals. The i-th component of the discretized distribution
D will be the interval in which the probability of node i falls.

The set of discretized distributions is a finite set and each
trajectory, generated by repeated applications of M to an initial
distribution, will induce a unique infinite string over this finite set
of letters. Hence, given a set of initial distributions, the symbolic
dynamics of M will consist of an infinite language L over the finite
alphabet of discretized distributions. We investigate whether L
meets a specification given as a linear time temporal logic formula
whose atomic propositions will assert that the current probability
of a node falls in an interval.

Unfortunately, even for restricted Markov chains (for instance,
irreducible and aperiodic chains), we do not know at present if
and when L is an (omega)-regular language. To get around this
we develop the notion of an epsilon-approximation, based on
the transient and long term behaviors of M. Our main results
are that, one can effectively check whether (i) for each infinite
word in L, at least one of its epsilon-approximations satisfies
the specification; (ii) for each infinite word in L all its epsilon-
approximations satisfy the specification. These verification results
are strong in that they apply to all finite state Markov chains.
Further, the study of the symbolic dynamics of Markov chains
initiated here is of independent interest and can lead to other
applications.

Index Terms—Model Checking, Probabilistic Computation,
Approximation, Markov Processes.

I. INTRODUCTION

Finite state Markov chains are a fundamental model of
probabilistic dynamical systems. They are well-understood
[13], [20] and their formal verification is well established [3]–
[5], [8]–[10], [12], [14], [16], [17], [23]. In a majority of
the verification related studies, the Markov chain is viewed
a probabilistic transition system. The goal is to reason about
the paths of the transition system using probabilistic temporal
logics such as PCTL [5], [10], [12].

An alternative view - which we follow here - is to view the
state space of the chain to be the set of probability distributions
over the nodes of the chain. The Markov chain transforms -

in a linear fashion - a given probability distribution into a new
one. Starting from a distribution µ one iteratively applies M to
generate a trajectory consisting of a sequence of distributions.
Given a set of initial distributions, one can study the properties
of the set of trajectories generated by these distributions.
The novel idea we explore in this setting is the symbolic
dynamics of a Markov chain. We do so by discretizing the
probability value space [0, 1] into a finite set of intervals
I = {[0, p

1

), [p
1

, p
2

), . . . , [pm, 1]}. A probability distribution
µ of M over its set of nodes {1, 2, . . . , n} is then represented
symbolically as a tuple of intervals (d

1

, d
2

, . . . , dn) with
di being the interval in which µ(i) falls. Such a tuple of
intervals which symbolically represents at least one probability
distribution is called a discretized distribution. In general a
discretized distribution will represent an infinite set of concrete
distributions.

A simple but crucial fact is that the set of discretized
distributions, denoted D, is a finite set. Consequently, each
trajectory generated by an initial probability distribution will
uniquely induce a sequence over the finite alphabet D. Hence,
given a (possibly infinite) set of initial distributions, the
symbolic dynamics of M can be studied in terms of a language
over the alphabet D. Our focus here will be on infinite
behaviors. Consequently, the main object of our study will
be LM , the !-language over D induced by the set infinite
trajectories generated by the set of initial distributions.

The main motivation for studying Markov chains in this
fashion is to avoid the difficulties of numerically tracking
sequences of probability distributions exactly. In many ap-
plications such as the probabilistic behavior of biochemical
networks, queuing systems or sensor networks, exact estimates
of the probability distributions (including the initial ones)
may neither be feasible nor necessary. Further, not all the
nodes may be relevant for the question at hand. In this
case we can filter out such nodes by associating the “don’t
care” discretization {[0, 1]} with each of them. This is a
novel approach to dimension reduction and it can significantly
reduce the practical complexity of analyzing high dimensional
Markov chains. In our future work, we plan to apply this idea
specifically to study the dynamics of biochemical networks.

To reason about the symbolic dynamics, we formulate a
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ABSTRACT

We consider the equivalence problem for labeled Markov chains (LMCs), where each
state is labeled with an observation. Two LMCs are equivalent if every finite sequence
of observations has the same probability of occurrence in the two LMCs. We show that
equivalence can be decided in polynomial time, using a reduction to the equivalence
problem for probabilistic automata, which is known to be solvable in polynomial time.
We provide an alternative algorithm to solve the equivalence problem, which is based on
a new definition of bisimulation for probabilistic automata. We also extend the technique
to decide the equivalence of weighted probabilistic automata.
Then, we consider the equivalence problem for labeled Markov decision processes
(LMDPs), which asks given two LMDPs whether for every scheduler (i.e. way of re-
solving the nondeterministic decisions) for each of the processes, there exists a scheduler
for the other process such that the resulting LMCs are equivalent. The decidability
of this problem remains open. We show that the schedulers can be restricted to be
observation-based, but may require infinite memory.

Keywords: Labeled Markov chain, Markov decision process, probabilistic automaton,
equivalence, bisimulation.
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Abstract. In contrast to the usual understanding of probabilistic sys-
tems as stochastic processes, recently these systems have also been re-
garded as transformers of probabilities. In this paper, we give a natural
definition of strong bisimulation for probabilistic systems correspond-
ing to this view that treats probability distributions as first-class cit-
izens. Our definition applies in the same way to discrete systems as
well as to systems with uncountable state and action spaces. Several
examples demonstrate that our definition refines the understanding of
behavioural equivalences of probabilistic systems. In particular, it solves
a long-standing open problem concerning the representation of memo-
ryless continuous time by memory-full continuous time. Finally, we give
algorithms for computing this bisimulation not only for finite but also
for classes of uncountably infinite systems.

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal man-
ners: On the one hand, timed automata (TA) extend interleaving concurrency
with real-valued clocks [2]. On the other hand, time can be represented by memo-
ryless stochastic time, as in continuous time Markov chains (CTMC) and exten-
sions, where time is represented in the form of exponentially distributed random
delays [37,35,6,26]. TA and CTMC variations have both been applied to very
many intriguing cases, and are supported by powerful real-time, respectively
stochastic time model checkers [3,42] with growing user bases. The models are
incomparable in expressiveness, but if one extends timed automata with the pos-
sibility to sample from exponential distributions [5,12,33], there appears to be
a natural bridge from CTMC to TA. This kind of stochastic semantics of timed
automata has recently gained considerable popularity by the statistical model
checking approach to TA analysis [16,15].

Still there is a disturbing difference, and this difference is the original moti-
vation [14] of the work presented in this paper. The obvious translation of an
exponentially distributed delay into a clock expiration sampled from the very
same exponential probability distribution fails in the presence of concurrency.
This is because the translation is not fully compatible with the natural inter-
leaving concurrency semantics for TA respectively CTMC. This is illustrated by
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preserves semantics:  
probabilistic-bisimilar states 

are 
combined-probabilistic-

bisimilar

also the other way 
around…

SÑpPDSqL SÑpCSqL



For PA III we will now 
move to EM(D) 

Ana Sokolova IFIP WG1.3 Binz Rügen

the true nature

the Eilenberg-Moore 
algebras 

for the distribution monad

(co)algebraic



Eilenberg-Moore algebras

• Objects

• Morphisms - algebra homomorphisms                           
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EMpDq
DA

a✏✏
A

DA
a✏✏

A

DB
b✏✏

B

h

h ˝ a “ b ˝ Dh

satisfying

A
a

⌘ // DA
a✏✏

A

DDA
Da ✏✏

µ // DA
a✏✏

DA
a // A



Eilenberg-Moore algebras

• convex algebras 

• affine (convex) maps                            
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of D 
concretely

pA,
nÿ

i“1

pip´qiq

infinitely many 
finitary operations

convex combinations

pi P r0, 1s,
nÿ

i“1

pi “ 1

satisfying

Projection

Barycentre

nÿ

i“1

piai “ ak, pk “ 1

nÿ

i“1

pi

˜
mÿ

j“1

pijaj

¸
“

mÿ

j“1

˜
nÿ

i“1

pipij

¸
aj

h

˜
nÿ

i“1

piai

¸
“

nÿ

i“1

pihpaiq



The convex powerset
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Pc on EMpDq



The convex powerset

• On objects

• On morphisms                           
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DA
a✏✏

A

Pc on EMpDq

Pc

DAc
ac✏✏

Ac

nonempty convex subsets of A

nonempty!

Pc“ “ ”P

Theorem Pc is a functor on EMpDqis a functor on

pointwise !



The constant exponent
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p´qL on EMpDq



The constant exponent

• On objects

• On morphisms                           
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DA
a✏✏

A

constant exponent on Set

pointwise

L
DAL

aL✏✏
AL

p´qL on EMpDq

p´qL“ “ ”p´qL

Proposition p´qL is a functor on EMpDqis a functor on



Probabilistic automata III

• EM(D) -coalgebras with carriers free algebras                            

x1a

||
a

""

b

��

2
3

||

1
3

""

1
2

""

1
2

||
x2

a

33
x3

b

kk
x4

b

kk
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semantics:  
bisimilarity on distributions

DDS
µ✏✏

DS

SÑpCSqL
Recall PA II

Ñ Pc

DDS
µ✏✏

DS

L

input-
enabled

connection?



Quasi-liftings
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DDS
µ✏✏

DS

SÑpCSqL
Recall PA II

Ñ Pc

DDS
µ✏✏

DS

L

connection?

U ˝ p´qL “ p´qL ˝ U

Set
F ,,

EMpDq
U

kk with F % U

lifting

C “ U ˝ Pc ˝ F

quasi-lifting

D “ U ˝ F



PA II —> PA III

• Translation                            
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T

embedding = faithful & injective on objects 
 preserves semantics

input-
enabled

SÑpCSqL

EM(D)

Pc

DDS
µ✏✏

DS

L

Set

T “ “ ” D

on morphisms

T pcq “ c# “ ↵ ˝ Dc

DDS
µ✏✏

DS
Ñ

Pc

DDS
µ✏✏

DS

L

=
DppCSqLq

↵✏✏
pCSqL



The true nature of PA

Ana Sokolova IFIP WG1.3 Binz Rügen

T

input-
enabled

SÑpCSqL

EM(D)

Pc

DDS
µ✏✏

DS

L

Set DDS
µ✏✏

DS
Ñ

T
SÑpPDSqL

Set

Thank You! 

x1a

||
a

""

b

��

2
3

||

1
3

""

1
2

""

1
2

||
x2

a

33
x3

b

kk
x4

b

kk

1
3x1 ` 2

3x2

a✏✏
2
3x2 ` 1

6x3 ` 1
6x4

1
3x1 ` 2

3x2

a✏✏
8
9x2 ` 1

9x3


