L ocal Linearizability

Ana Sokolova ParerLzsure

joint work with:

Andreas Haas P Tom Henzinger M.
Andreas Holzer ssisiio Christoph Kirsch pesiss

Michael Lippautz P annes Payer Goosie
Ali Sezgin s elmut Veith@

Semantics of concurrent
data structures

e.g. pools, queues, stacks

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

e Consistency condition = e.q. linearizability /
sequential consistency

enq(2) deq(1)

eng(1) deq(2)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Consistency conditions

there exists a sequential

witness that preserves . _ o
precedence L|near|zab|l|ty [Herlihy,Wing '90]

\4

there exists a sequential
witness that preserves per-
thread precedence
(program order)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Relaxing the Semantics

Not
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Seqguential specification = set of legal sequences

« Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
IN this talk

for queues only

(feel free to ask for more)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

|_ocal Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

e Partition a history into a set of local histories

 Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

|_ocal Linearizability
(Queue) example

(sequential) history
not linearizable

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

|_ocal Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

in-methods of thread i
enqueues performed
by thread |

out-methods of thread |

dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Generalizations of
|_ocal Linearizability

Signhature >

iIn-methods of thread |,
methods that go in h;

by increasing the

IN-methods, |
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Where do we stand?

In general

Llnearlzablhty

Local Lmearlzablllty

\4

q\\ Sequential Consistency

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Where do we stand?

For queues (and all pool-like data structures)

Linearizability

Local Linearizabillity

\4

"SR Sequential Consistency

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Where do we stand?

Linearizability

Local Linearizability /

& Pool-seq.cons.

\4

\ Sequential Consistency

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

allows for modular verification

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Verification (queue)

Queue seqguential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
|ff
1. his pool linearizable, and
2. eng(x) <nenqg(y) A degly)eh = deqg(x)eh A deq(y) deq(x)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Verification (queue)

Queue seqguential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, ana
2. enq(x @enq A degly)eh = deg(x)eh A deq(y)deq(x)

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of
size (n)

LLD ®
pool linearizable
&
locally
linearizable

local inserts / global (randomly distributed) removes

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Performance

18 | | | | | | | | |
S
= 16 | d
Ha)
4 14 L i
o
g 12t
S 0L LLD MS queue
2} performs

8 | . N
: 3 significantly better
= 6 L than
S .
2 MS queue
o 4 ?ST,'
g x'/’A
= 2 - ¢
E L —— - - -

O i l l l l l

2 10 20 30 40 50 60 70 80

MS queue [N

UNIVERSITY

Ana SOI(OIOV& of SALZBURG

number of threads

LLD MS queue

FRIDA DisCoTec 5.6.15

Performance

18 | | | | | | | | |
S
= 16 + d
Ha)
4 14 L i
o
g 12t
9 o L LLD @
2} performs

8 | . N
: 3 significantly better
3= 6 L than
8 2 CD
() .
o,
S
=S
E L —— - - -

O i l l l l l

2 10 20 30 40 50 60 70 80

number of threads

S queue [
LLD MS queue

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

Performance

18 | | | | | | | | |
5
= 16 - .
O
4 14 L
=
£ 12
S 0L LLD MS queue
= performs better
2* 8 I than
= 6 L . the best known
g oJele][S
S 4 +
S
= 27
= [- + +
() l l I

2 10 20 30 40 50 60 70 80

number of threads

—— LL k-FIFO (k=80) 1-RA DQ (p=80)

LCRQ =---r static LL. DO (p=40) + -u-4
k-FIFO (k‘:SO) EEE LY. LLD MS queue

Ana Sokolova PRxTsiRe FRIDA DisCoTec 5.6.15

