
Local Linearizability
Ana Sokolova

joint work with:

Andreas Haas

Michael Lippautz
Christoph Kirsch
Tom Henzinger

Andreas Holzer

Ali Sezgin Helmut Veith
Hannes Payer

Semantics of concurrent
data structures

• Sequential specification = set of legal sequences

!

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova FRIDA DisCoTec 5.6.15

e.g. pools, queues, stacks

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

e.g. linearizable queue
 concurrent history

t1: enq(2) deq(1)

enq(1) deq(2)t2:

Consistency conditions

Ana Sokolova FRIDA DisCoTec 5.6.15

Linearizability

Sequential Consistency

there exists a sequential
witness that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a sequential
witness that preserves per-

thread precedence
(program order)

t1: enq(1) deq(2)

deq(1) enq(2)t2:
1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]

Performance and scalability

Ana Sokolova FRIDA DisCoTec 5.6.15

throughput

of threads / cores

:-)))

:-)

:-(
:-\

Relaxations allow trading
!

correctness
for

performance

Ana Sokolova FRIDA DisCoTec 5.6.15

provide the potential
for better-performing

implementations

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova FRIDA DisCoTec 5.6.15

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability
in this talk for queues only

(feel free to ask for more)

not
“sequentially

correct”

too weak

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova FRIDA DisCoTec 5.6.15

Already present in some shared-memory
consistency conditions

(not in our form of choice)

Local sequential consistency… is also
possible

no global witness

Local Linearizability
(queue) example

Ana Sokolova FRIDA DisCoTec 5.6.15

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

t2-induced history,
linearizable

locally
linearizable

Local Linearizability
(queue) definition

Ana Sokolova FRIDA DisCoTec 5.6.15

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with n threads, we put

Inh(i) = {enq(x)i ∈ h | x ∈ V}

Outh(i) = {deq(x)j ∈ h | enq(x)i ∈ Inh(i)} ∪ {deq(empty)}

in-methods of thread i
enqueues performed

by thread i

out-methods of thread i
dequeues

(performed by any thread)
corresponding to enqueues that

are in-methods
h is locally linearizable iff every thread-induced history
 hi = h | (Inh(i) ∪ Outh(i))
 is linearizable.

Generalizations of
Local Linearizability

Ana Sokolova FRIDA DisCoTec 5.6.15

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i,
methods that go in hi

out-methods of thread i,
dependent methods

on the methods in Inh(i)
(performed by any thread)

h is locally linearizable iff every thread-induced history
 hi = h | (Inh(i) ∪ Outh(i))
 is linearizable.

by increasing the
in-methods,

LL gradually moves to
linearizability

Where do we stand?

Ana Sokolova FRIDA DisCoTec 5.6.15

In general

Linearizability

Sequential Consistency

Local Linearizability

Where do we stand?

Ana Sokolova FRIDA DisCoTec 5.6.15

For queues (and all pool-like data structures)

Linearizability

Sequential Consistency

Local Linearizability

Where do we stand?

Ana Sokolova FRIDA DisCoTec 5.6.15

C: For queues

Linearizability

Sequential Consistency

Local Linearizability
& Pool-seq.cons.

Properties

Ana Sokolova FRIDA DisCoTec 5.6.15

Local linearizability is compositional

h (over multiple objects) is locally linearizable
 iff
each per-object subhistory of h is locally linearizable

like linearizability
unlike sequential consistency

Local linearizability is modular /
“decompositional”

uses decomposition into smaller
histories, by definition

allows for modular verification

Verification (queue)

Ana Sokolova FRIDA DisCoTec 5.6.15

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
 iff
1. h is pool linearizable, and
2. enq(x) <h enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

Verification (queue)

Ana Sokolova FRIDA DisCoTec 5.6.15

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
 iff
1. h is pool locally linearizable, and
2. enq(x) <hi enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

Generic Implementations

Ana Sokolova FRIDA DisCoTec 5.6.15

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

segment of dynamic
size (n)

t2t1 tn…

Φ Φ Φ

local inserts / global (randomly distributed) removes

LLD Φ
pool linearizable

&
locally

linearizable

Performance

Ana Sokolova FRIDA DisCoTec 5.6.15

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO (k=80)

LL k-FIFO (k=80)
static LL DQ (p=40)

dynamic LL DQ

1-RA DQ (p=80)

(a) FIFO queues and “queue-like” pools

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS-interval Stack
k-Stack (k=80)

LL k-Stack (k=80)
static LL DS (p=40)

dynamic LL DS

1-RA DS (p=80)

(b) Stacks and “stack-like” pools

Figure 9: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.

References
[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed

Consistency for Improved Concurrency. In Proc. Conference on
Principles of Distributed Systems (OPODIS), LNCS, pages 395–410.
Springer, 2010. .

[2] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power
of processor consistency. In Proc. Symposium on Parallel Algorithms
and Architectures (SPAA), pages 251–260. ACM, 1993. .

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal
memory: definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. ISSN 0178-2770. .

[4] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scalable
relaxed priority queue. In Proc. Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 11–20. ACM, 2015. .

[5] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. ACM, 41
(5):1020–1048, Sept. 1994. ISSN 0004-5411. .

[6] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for c/c++
concurrency. In Proc. Symposium on Principles of Programming Lan-
guages (POPL), pages 235–248, New York, NY, USA, 2013. ACM.
.

[7] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable refinement
checking for concurrent objects. In Proc. Symposium on Principles of
Programming Languages (POPL), pages 651–662. ACM, 2015. .

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: Specification, verification, optimality. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 271–284,
New York, NY, USA, 2014. ACM. .

[9] P. . A. E. Committee. Popl 2015 artifact evaluation. URL http:
//popl15-aec.cs.umass.edu/home/. Accessed on 01/14/2015.

[10] Computational Systems Group, University of Salzburg. Scal: High-
performance multicore-scalable computing. URL http://scal.cs.
uni-salzburg.at.

[11] J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and
H. Wehrheim. Quiescent Consistency: Defining and Verifying Re-
laxed Linearizability. In Proc. International Symposium on Formal
Methods (FM), LNCS, pages 200–214. Springer, 2014. .

[12] M. Dodds, A. Haas, and C. Kirsch. A scalable, correct time-stamped
stack. In Proc. Symposium on Principles of Programming Languages
(POPL), pages 233–246. ACM, 2015. .

[13] J. Goodman. Cache consistency and sequential consistency. Univer-
sity of Wisconsin-Madison, Computer Sciences Department, 1991.

[14] A. Haas, T. Henzinger, C. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
and A. Sokolova. Distributed queues in shared memory: Multicore
performance and scalability through quantitative relaxation. In Proc.
International Conference on Computing Frontiers (CF). ACM, 2013.
.

[15] A. Heddaya and H. Sinha. Coherence, non-coherence and local consis-
tency in distributed shared memory for parallel computing. Technical
report, Computer Science Department, Boston University, 1992.

[16] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. In Proc.
Conference on Principles of Distributed Systems (OPODIS), LNCS.
Springer, 2005. .

[17] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011. ISBN 012383872X,
9780123838728.

[18] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quan-
titative relaxation of concurrent data structures. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 317–328.
ACM, 2013. .

[19] T. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented lineariz-
ability proofs. In Proc. Internatonal Conference on Concurrency The-
ory (CONCUR), LNCS, pages 242–256. Springer, 2013. .

short description of paper 8 2015/5/21

MS queue

LLD MS queue

LLD MS queue
performs

significantly better
than

MS queue

Performance

Ana Sokolova FRIDA DisCoTec 5.6.15

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO (k=80)

LL k-FIFO (k=80)
static LL DQ (p=40)

dynamic LL DQ

1-RA DQ (p=80)

(a) FIFO queues and “queue-like” pools

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS-interval Stack
k-Stack (k=80)

LL k-Stack (k=80)
static LL DS (p=40)

dynamic LL DS

1-RA DS (p=80)

(b) Stacks and “stack-like” pools

Figure 9: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.

References
[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed

Consistency for Improved Concurrency. In Proc. Conference on
Principles of Distributed Systems (OPODIS), LNCS, pages 395–410.
Springer, 2010. .

[2] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power
of processor consistency. In Proc. Symposium on Parallel Algorithms
and Architectures (SPAA), pages 251–260. ACM, 1993. .

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal
memory: definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. ISSN 0178-2770. .

[4] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scalable
relaxed priority queue. In Proc. Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 11–20. ACM, 2015. .

[5] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. ACM, 41
(5):1020–1048, Sept. 1994. ISSN 0004-5411. .

[6] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for c/c++
concurrency. In Proc. Symposium on Principles of Programming Lan-
guages (POPL), pages 235–248, New York, NY, USA, 2013. ACM.
.

[7] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable refinement
checking for concurrent objects. In Proc. Symposium on Principles of
Programming Languages (POPL), pages 651–662. ACM, 2015. .

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: Specification, verification, optimality. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 271–284,
New York, NY, USA, 2014. ACM. .

[9] P. . A. E. Committee. Popl 2015 artifact evaluation. URL http:
//popl15-aec.cs.umass.edu/home/. Accessed on 01/14/2015.

[10] Computational Systems Group, University of Salzburg. Scal: High-
performance multicore-scalable computing. URL http://scal.cs.
uni-salzburg.at.

[11] J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and
H. Wehrheim. Quiescent Consistency: Defining and Verifying Re-
laxed Linearizability. In Proc. International Symposium on Formal
Methods (FM), LNCS, pages 200–214. Springer, 2014. .

[12] M. Dodds, A. Haas, and C. Kirsch. A scalable, correct time-stamped
stack. In Proc. Symposium on Principles of Programming Languages
(POPL), pages 233–246. ACM, 2015. .

[13] J. Goodman. Cache consistency and sequential consistency. Univer-
sity of Wisconsin-Madison, Computer Sciences Department, 1991.

[14] A. Haas, T. Henzinger, C. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
and A. Sokolova. Distributed queues in shared memory: Multicore
performance and scalability through quantitative relaxation. In Proc.
International Conference on Computing Frontiers (CF). ACM, 2013.
.

[15] A. Heddaya and H. Sinha. Coherence, non-coherence and local consis-
tency in distributed shared memory for parallel computing. Technical
report, Computer Science Department, Boston University, 1992.

[16] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. In Proc.
Conference on Principles of Distributed Systems (OPODIS), LNCS.
Springer, 2005. .

[17] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011. ISBN 012383872X,
9780123838728.

[18] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quan-
titative relaxation of concurrent data structures. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 317–328.
ACM, 2013. .

[19] T. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented lineariz-
ability proofs. In Proc. Internatonal Conference on Concurrency The-
ory (CONCUR), LNCS, pages 242–256. Springer, 2013. .

short description of paper 8 2015/5/21

MS queue

LLD MS queue

LLD Φ
performs

significantly better
than
Φ

Performance

Ana Sokolova FRIDA DisCoTec 5.6.15

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO (k=80)

LL k-FIFO (k=80)
static LL DQ (p=40)

dynamic LL DQ

1-RA DQ (p=80)

(a) FIFO queues and “queue-like” pools

0

2

4

6

8

10

12

14

16

18

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS-interval Stack
k-Stack (k=80)

LL k-Stack (k=80)
static LL DS (p=40)

dynamic LL DS

1-RA DS (p=80)

(b) Stacks and “stack-like” pools

Figure 9: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.

References
[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed

Consistency for Improved Concurrency. In Proc. Conference on
Principles of Distributed Systems (OPODIS), LNCS, pages 395–410.
Springer, 2010. .

[2] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power
of processor consistency. In Proc. Symposium on Parallel Algorithms
and Architectures (SPAA), pages 251–260. ACM, 1993. .

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal
memory: definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. ISSN 0178-2770. .

[4] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scalable
relaxed priority queue. In Proc. Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 11–20. ACM, 2015. .

[5] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. ACM, 41
(5):1020–1048, Sept. 1994. ISSN 0004-5411. .

[6] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for c/c++
concurrency. In Proc. Symposium on Principles of Programming Lan-
guages (POPL), pages 235–248, New York, NY, USA, 2013. ACM.
.

[7] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable refinement
checking for concurrent objects. In Proc. Symposium on Principles of
Programming Languages (POPL), pages 651–662. ACM, 2015. .

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: Specification, verification, optimality. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 271–284,
New York, NY, USA, 2014. ACM. .

[9] P. . A. E. Committee. Popl 2015 artifact evaluation. URL http:
//popl15-aec.cs.umass.edu/home/. Accessed on 01/14/2015.

[10] Computational Systems Group, University of Salzburg. Scal: High-
performance multicore-scalable computing. URL http://scal.cs.
uni-salzburg.at.

[11] J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and
H. Wehrheim. Quiescent Consistency: Defining and Verifying Re-
laxed Linearizability. In Proc. International Symposium on Formal
Methods (FM), LNCS, pages 200–214. Springer, 2014. .

[12] M. Dodds, A. Haas, and C. Kirsch. A scalable, correct time-stamped
stack. In Proc. Symposium on Principles of Programming Languages
(POPL), pages 233–246. ACM, 2015. .

[13] J. Goodman. Cache consistency and sequential consistency. Univer-
sity of Wisconsin-Madison, Computer Sciences Department, 1991.

[14] A. Haas, T. Henzinger, C. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
and A. Sokolova. Distributed queues in shared memory: Multicore
performance and scalability through quantitative relaxation. In Proc.
International Conference on Computing Frontiers (CF). ACM, 2013.
.

[15] A. Heddaya and H. Sinha. Coherence, non-coherence and local consis-
tency in distributed shared memory for parallel computing. Technical
report, Computer Science Department, Boston University, 1992.

[16] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. In Proc.
Conference on Principles of Distributed Systems (OPODIS), LNCS.
Springer, 2005. .

[17] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011. ISBN 012383872X,
9780123838728.

[18] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quan-
titative relaxation of concurrent data structures. In Proc. Symposium
on Principles of Programming Languages (POPL), pages 317–328.
ACM, 2013. .

[19] T. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented lineariz-
ability proofs. In Proc. Internatonal Conference on Concurrency The-
ory (CONCUR), LNCS, pages 242–256. Springer, 2013. .

short description of paper 8 2015/5/21

MS queue

LLD MS queue

LLD MS queue
performs better

than
the best known

pools

Thank You!

