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Semantics of concurrent
data structures

e.g. pools, queues, stacks

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

e Consistency condition = e.q. linearizability /
sequential consistency

enq(2) deq(1)

eng(1) deq(2)
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Consistency conditions

there exists a sequential

witness that preserves . _ o
precedence L|near|zab|l|ty [Herlihy,Wing '90]

\4

there exists a sequential
witness that preserves per-
thread precedence
(program order)
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Performance and scalabillity

-)))

throughput :_)

# of threads / cores
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Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations
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Relaxing the Semantics

Not
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Seqguential specification = set of legal sequences

« Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
IN this talk

for queues only

(feel free to ask for more)
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|_ocal Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

e Partition a history into a set of local histories

 Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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|_ocal Linearizability
(Queue) example

(sequential) history
not linearizable

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable
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|_ocal Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

in-methods of thread i
enqueues performed
by thread |

out-methods of thread |

dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods
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Generalizations of
|_ocal Linearizability

Signhature >

iIn-methods of thread |,
methods that go in h;

by increasing the

IN-methods, |
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)
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Where do we stand?

In general

Llnearlzablhty

Local Lmearlzablllty

\4

q\\ Sequential Consistency
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Where do we stand?

For queues (and all pool-like data structures)

Linearizability

Local Linearizabillity

\4

"SR Sequential Consistency
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Where do we stand?

Linearizability

Local Linearizability /

& Pool-seq.cons.

\4

\ Sequential Consistency
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

allows for modular verification
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Verification (queue)

Queue seqguential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
|ff
1. his pool linearizable, and
2. eng(x) <nenqg(y) A degly)eh = deqg(x)eh A deq(y) deq(x)
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Verification (queue)

Queue seqguential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, ana
2. enq(x @enq A degly)eh = deg(x)eh A deq(y)deq(x)
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Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of
size (n)

LLD ®
pool linearizable
&
locally
linearizable

local inserts / global (randomly distributed) removes
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Performance
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