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Semantics of concurrent 
data structures

• Sequential specification = set of legal sequences 

!

• Consistency condition   = e.g. linearizability /   
sequential consistency
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e.g. pools, queues, stacks

e.g. queue legal sequence 
enq(1)enq(2)deq(1)deq(2)

e.g. linearizable queue  
        concurrent  history

t1: enq(2) deq(1)

enq(1) deq(2)t2:



Consistency conditions
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Linearizability

Sequential Consistency

there exists a sequential 
witness that preserves 

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a sequential 
witness that preserves per-

thread precedence 
(program order)

t1: enq(1) deq(2)

deq(1) enq(2)t2:
1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]



Performance and scalability

Ana Sokolova FRIDA DisCoTec 5.6.15

throughput

# of threads / cores

:-)))

:-)

:-(
:-\



Relaxations allow trading 
!

correctness 
for 

performance
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provide the potential 
for better-performing 

implementations



Relaxing the Semantics

• Sequential specification = set of legal sequences 

• Consistency condition   = e.g. linearizability /   
sequential consistency
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Quantitative relaxations 
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability  
in this talk for queues only 

(feel free to ask for more)

not 
“sequentially 

correct”

too weak



Local Linearizability 
main idea

• Partition a history into a set of local histories 

• Require linearizability per local history

Ana Sokolova FRIDA DisCoTec 5.6.15

Already present in some shared-memory 
consistency conditions  

(not in our form of choice)

Local sequential consistency… is also 
possible 

no global witness



Local Linearizability 
(queue) example
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t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history  
not linearizable

t1-induced history, 
linearizable

t2-induced history, 
linearizable

locally 
linearizable



Local Linearizability 
(queue) definition
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Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with n threads, we put

Inh(i) = {enq(x)i ∈ h | x ∈ V}

Outh(i) = {deq(x)j ∈ h | enq(x)i ∈ Inh(i)} ∪ {deq(empty)}

in-methods of thread i 
enqueues performed 

by thread i 

out-methods of thread i 
dequeues   

(performed by any thread) 
corresponding to enqueues that 

are in-methods 
h is locally linearizable iff every thread-induced history  
                                                                hi = h | (Inh(i) ∪ Outh(i))   
                                                   is linearizable.



Generalizations of  
Local Linearizability
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Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i, 
methods that go in hi

out-methods of thread i, 
dependent methods  

on the methods in  Inh(i) 
(performed by any thread)

h is locally linearizable iff every thread-induced history  
                                                                hi = h | (Inh(i) ∪ Outh(i))   
                                                   is linearizable.

by increasing the 
in-methods,  

LL gradually moves to 
linearizability



Where do we stand?
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In general

Linearizability

Sequential Consistency

Local Linearizability



Where do we stand?
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For queues (and all pool-like data structures)

Linearizability

Sequential Consistency

Local Linearizability



Where do we stand?
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C: For queues

Linearizability

Sequential Consistency

Local Linearizability
& Pool-seq.cons.



Properties
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Local linearizability is compositional

h (over multiple objects) is locally linearizable 
                          iff 
each per-object subhistory of h is locally linearizable

like linearizability 
unlike sequential consistency

Local linearizability is modular / 
“decompositional”

uses decomposition into smaller 
histories, by definition

allows for modular verification



Verification (queue)
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Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue linearizable  
                          iff 
1. h is pool linearizable, and 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)



Verification (queue)
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Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable  
                          iff 
1. h is pool locally linearizable, and 
2. enq(x) <hi enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)



Generic Implementations
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Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:  

segment of dynamic 
size (n)

t2t1 tn…

Φ Φ Φ

local inserts / global (randomly distributed) removes

LLD Φ 
pool linearizable 

& 
locally 

linearizable



Performance
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Figure 9: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.
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of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.
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of the fastest locally linearizable implementation (dynamic LL) to
the fastest linearizable queue (LCRQ) and stack (TS-interval Stack)
implementation at 80 threads is 1.93 and 1.79, respectively.

Note that the performance degradation for LCRQ between 30
and 70 threads aligns with the performance of fetch-and-inc—
the CPU instruction that atomically retrieves and modifies the con-
tents of a memory location—on the benchmarking machine, which
is different on the original benchmarking machine [31]. LCRQ uses
fetch-and-inc as its key atomic instruction.

7. Conclusions & Future Work
Local linearizability utilizes the idea of decomposition yielding an
intuitive and verifiable consistency condition for concurrent objects
that enables implementations with superior performance and scala-
bility compared to linearizable and relaxed implementations. There
are at least two directions for future work: (1) Further implications
of decomposition to correctness; (2) Program-aware correctness,
i.e., identifying classes of programs that are (in)sensitive to notions
of (relaxed) semantics.
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