Proofs with \exists-introduction and \exists elimination are unnecessarily long and cumbersome...

There are alternatives!

Proving an existential quantification

$$
\exists x\left[x \in \mathbb{Z}: x^{3}-2 x-8 \geq 0\right]
$$

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying

$$
x^{3}-2 x-8 \geq 0
$$

$x=3$ is a witness, since $3 \in \mathbb{Z}$ and $3^{3}-2 \cdot 3-8=13 \geq 0$

Conclusion: $\exists x\left[x \in \mathbb{Z}: x^{3}-2 x-8 \geq 0\right]$.
also $x=5$ is a witness.

Alternative \exists introduction

Using an existential quantification

We know

$$
\exists x[x \in \mathbb{R}: a-x<0<b-x]
$$

We can declare an $x \in \mathbb{Z}$ (a witness) such that

$$
a-x<0<b-x
$$

and use it further in the proof. For example:
From $\mathrm{a}-\mathrm{x}<0$, we get $\mathrm{a}<\mathrm{x}$.
From $b-x>0$, we get $x<b$.
Hence, a < b .

Alternative \exists elimination

Back to

Naive Set Theory
Relations

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

ordered pairs

Therefore, we define

$$
\left.A \times B \times C=\left(\begin{array}{c}
\text { if } A_{i}=A \text { for all } i \\
\text { then the product is } \\
\text { denoted } A^{n}
\end{array}\right) \text { and } y \in B \text { and } z \in C\right\}
$$

In general, for cts $A_{1}, A_{2}, \ldots, A_{n}$ with $n \geq I$,
sequence of
length n length n
$A_{1} \times A_{2} \times \ldots \times A_{n}=\prod_{1 \leq i \leq n} A_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in A_{i}\right.$ for $\left.I \leq i \leq n\right\}$

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B
similarly, unary relation
(subset), n-ary relation...
Def. R is a relation on A if $R \subseteq A \times A$

Special relations

A relation $R \subseteq A \times A$ is:
reflexive
symmetric
transitive
iff for all $a \in A,(a, a) \in R$
iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
iff for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$
irreflexive iff for all $a \in A,(a, a) \notin R$
antisymmetric iff \quad for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then $a=b$
asymmetric iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \notin R$ total
(infix) notation aRb for $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:
equivalence
partial order iff
strict order iff R is irreflexive and transitive
preorder iff R is reflexive and transitive
total (linear)
order iff R is a total partial order

Obvious properties

I. Every partial order is a preorder.
2. Every total order is a partial order.
3. Every total order is a preorder.
4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with

$$
a \neq b,(a, b) \in R \text { and }(b, a) \in R,
$$

then R is not a partial order, nor a total order, nor a strict order.

