Proofs with 3-introduction and 3elimination are unnecessarily long and cumbersome...

There are alternatives!

Proving an existential quantification

To prove

∃x[x ∈ ℤ : x³ - 2x - 8 ≥0]

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying $x^3 - 2x - 8 \ge 0$.

x = 3 is a witness, since $3 \in \mathbb{Z}$ and $3^3 - 2 \cdot 3 - 8 = 13 \ge 0$

Conclusion: $\exists x [x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0].$

also x = 5 is a witness...

Alternative 3 introduction

Using an existential quantification

We know

$$\exists x [x \in \mathbb{R} : a - x < 0 < b - x]$$

```
We can declare an x \in \mathbb{Z} (a witness) such that

a - x < 0 < b - x

and use it further in the proof. For example:

From a - x < 0, we get a < x.

From b - x > 0, we get x < b.

Hence, a < b.
```

Alternative 3 elimination

Back to Naive Set Theory Relations

Product of multiple sets

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A^{\vee}$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
transitive	iff	for all $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\notin R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

(infix) notation aRb for $(a,b) \in \mathbb{R}$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

- equivalence iff R is reflexive, symmetric, and transitive
- partial order iff R is reflexive, antisymmetric, and transitive
- strict order iff R is irreflexive and transitive
- preorder iff R is reflexive and transitive

total (linear) order

iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.

4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with $a \neq b, (a,b) \in R$ and $(b,a) \in R$, then R is not a partial order, nor a total order, nor a strict order.