Equivalences with quantifiers

Renaming bound variables

Bound variables

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{v a l}{=} \forall_{y}[P[y / x]: Q[y / x]] \\
& \exists_{x}[P: Q] \stackrel{v a l}{=} \exists_{y}[P[y / x]: Q[y / x]]
\end{aligned}
$$

if y does not occur in
P or Q (not even in $\forall y, \exists y$)

Domain splitting

Examples:

$$
\begin{aligned}
& \forall_{x}\left[x \leqslant 1 \vee x \geqslant 5: x^{2}-6 x+5 \geqslant 0\right] \\
& \stackrel{\text { val }}{=} \forall_{x}\left[x \leqslant 1: x^{2}-6 x+5 \geqslant 0\right] \wedge \forall_{x}\left[x \geqslant 5: x^{2}-6 x+5 \geqslant 0\right]
\end{aligned}
$$

$$
\begin{aligned}
& \quad \exists \exists_{k}\left[0 \leqslant k \leqslant n: k^{2} \leqslant 10\right] \\
& \text { val } \exists_{k}\left[0 \leqslant k \leqslant n-1 \vee k=n: k^{2} \leqslant 10\right] \\
& \stackrel{\text { val }}{=} \exists_{k}\left[0 \leqslant k \leqslant n-1: k^{2} \leqslant 10\right] \vee \exists_{k}\left[k=n: k^{2} \leqslant 10\right]
\end{aligned}
$$

Domain splitting

$$
\begin{aligned}
& \forall_{x}[P \vee Q: R] \stackrel{v a l}{=} \forall_{x}[P: R] \wedge \forall_{x}[Q: R] \\
& \exists_{x}[P \vee Q: R] \stackrel{v a l}{=} \exists_{x}[P: R] \vee \exists_{x}[Q: R]
\end{aligned}
$$

Equivalences with quantifiers

One-element domain

$$
\begin{aligned}
& \forall_{x}[x=n: Q] \stackrel{\text { val }}{=} Q[n / x] \\
& \exists_{x}[x=n: Q] \stackrel{\text { val }}{=} Q[n / x]
\end{aligned}
$$

Example:

$$
\forall_{x}[x=3: 2 \cdot x \geqslant 1] \stackrel{v a l}{=} 2 \cdot 3 \geqslant 1
$$

"All Marsians are green"

$$
\begin{aligned}
& \forall_{x}[F: Q] \stackrel{v a l}{=} T \\
& \exists_{x}[F: Q] \stackrel{v a l}{=} F
\end{aligned}
$$

Domain weakening

Intuition: The following are equivalent

$$
\begin{array}{lll}
\forall_{x}[x \in D: A(x)] & \text { and } & \forall_{x}[x \in D \Rightarrow A(x)] \\
\exists_{x}[x \in D: A(x)] & \text { and } & \exists_{x}[x \in D \wedge A(x)]
\end{array}
$$

The same can be done to parts of the domain

De Morgan with quantifiers

De Morgan

$\neg \forall_{x}[P: Q] \stackrel{v a l}{=} \exists_{x}[P: \neg Q]$
$\neg \exists_{x}[P: Q] \stackrel{v a l}{=} \forall_{x}[P: \neg Q]$
not for all = at least for one not
not exists $=$ for all not

Hence: $\neg \forall=\exists \neg$ and $\neg \exists=\forall \neg$

It holds further that:

$$
\begin{aligned}
& \neg \forall_{x} \neg=\exists_{x} \neg \neg=\exists_{x} \\
& \neg \exists_{x} \neg=\forall_{x} \neg \neg=\forall_{x}
\end{aligned}
$$

holds also for quantified formulas!

Substitution

meta rule

holds also for quantified formulas!

The rule of Leibniz

Other equivalences with quantifiers

Exchange trick

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{v a l}{=} \forall_{x}[\neg Q: \neg P] \\
& \exists_{x}[P: Q] \stackrel{\text { val }}{=} \exists_{x}[Q: P]
\end{aligned}
$$

No wonder as

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{\text { val }}{=} \forall_{x}[P \Rightarrow Q] \\
& \exists_{x}[P: Q] \stackrel{\text { val }}{=} \exists_{x}[P \wedge Q]
\end{aligned}
$$

Term splitting

$$
\begin{aligned}
& \forall_{x}[P: Q \wedge R] \stackrel{v a l}{=} \forall_{x}[P: Q] \wedge \forall_{x}[P: R] \\
& \exists_{x}[P: Q \vee R] \stackrel{v a l}{=} \exists_{x}[P: Q] \vee \exists_{x}[P: R]
\end{aligned}
$$

Other equivalences with quantifiers

Monotonicity of quantifiers

$$
\begin{aligned}
& \forall_{x}[P: Q \Rightarrow R] \Rightarrow\left(\forall_{x}[P: Q] \Rightarrow \forall_{x}[P: R]\right) \stackrel{v a l}{=} T \\
& \forall_{x}[P: Q \Rightarrow R] \Rightarrow\left(\exists_{x}[P: Q] \Rightarrow \exists_{x}[P: R]\right) \stackrel{v a l}{=} T
\end{aligned}
$$

tautologies
Lemma El: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. val still hold (in
Lemma W4: $\quad P \models Q$ iff $P \Rightarrow Q$ is a tautology. predicate logic)
Lemma W5: If $Q \stackrel{v a l}{\models} R$ then $\forall_{x}[P: Q] \stackrel{v a l}{\models} \forall_{x}[P: R]$.

Derivations / Reasoning

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$
\begin{aligned}
& P \wedge(P \vee Q) \stackrel{\text { val }}{=}(P \vee F) \wedge(P \vee Q) \\
& \stackrel{\text { val }}{\text { val }} \mathrm{P} \vee(F \wedge Q) \\
& \stackrel{\text { val }}{=} P \vee F \\
& \stackrel{\text { val }}{=} P
\end{aligned}
$$

we can prove this more intuitively by reasoning

Conclusions

$$
P \wedge(P \vee Q) \stackrel{\text { nd }}{=} P(P \wedge(P \vee Q) \Leftrightarrow P \stackrel{\text { nal }}{=} T
$$

An example of a mathematical proof

Exposing logical structure

(sub)goal

Theorem
If x^{2} is even, then x is even $(x \in \mathbb{Z})$.
Let $x \in \mathbb{Z}$
Assume x^{2} is even.
generating hypothesis
pure hypothesis
Assume that x is odd.
Then $x=2 y+1$ for some $y \in \mathbb{Z}$.
Then $x^{2}=(2 y+1)^{2}=4 y^{2}+4 y+1=$

$$
2\left(2 y^{2}+2 y\right)+1 \text { and } 2 y^{2}+2 y \in \mathbb{Z}
$$

So, x^{2} is odd
a contradiction.
So, x is even

Single inference rule

Q is a correct conclusion from n premises $P_{1}, . ., P_{n}$ iff

$$
\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right) \stackrel{\text { val }}{\rightleftharpoons} Q
$$

If $n=0$, then $P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \stackrel{\text { val }}{=} T$
Note that $T \vDash Q$ means that $Q \stackrel{\text { val }}{=} T$

Derivation

Q is a correct conclusion from n premises $P_{1}, . ., P_{n}$ iff

$$
\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right) \stackrel{\text { val }}{\rightleftharpoons} Q
$$

Two types of inference rules:
elimination rules
introduction rules
for drawing conclusions out of premises

for simplifying goals
(particularly useful) instances of the single inference rule
and one new special rule!

Conjunction elimination

Implication elimination

Conjunction introduction

Implication introduction

