Nondeterministic Automata (NFA)

no | transition

Informal example

no 0 transition

$$
\Sigma=\{0,1\}
$$

Accepts a word iff there exists an accepting run

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

> | In the example M_{2} | $M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for |
| :--- | :--- |
| $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$ | $\delta\left(q_{0}, 0\right)=\left\{q_{0}\right\}$ |
| | $\delta\left(q_{0}, I\right)=\left\{q_{0}, q_{1}\right\}$ |
| $\Sigma=\{0, I\} \quad F=\left\{q_{3}\right\}$ | $\delta\left(q_{0}, \varepsilon\right)=\varnothing$ |
| $\ldots .$. | |

$$
E(q)=\left\{q^{\prime} \mid q^{\prime}=q \vee \exists n \in \mathbb{N}^{+} . \exists q_{0}, . ., q_{n} \in Q^{2} . q_{0}=q, q_{n}=q^{\prime}, q_{i+1} \in \delta\left(q_{i}, \varepsilon\right), \text { for } i=0, \ldots, n-\mid\right\}
$$

The ex

nded transition function

Given an N
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we can extend $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow P(Q)$ to
$\delta^{*}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathcal{P}(\mathrm{Q})$
inductively, b :

$$
E(X)=U_{x \in X} E(x)
$$

$\ln M_{2}, \delta^{*}\left(\mathrm{q}_{0}, 0 \mid I 0\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
$\delta^{*}(\mathrm{q}, \varepsilon)=\mathrm{E}(\mathrm{q})$ and $\delta^{*}(\mathrm{q}, \mathrm{wa})=\mathrm{E}\left(\mathrm{U}_{\mathrm{q}^{\prime} \in \delta^{*}(\mathrm{q}, \mathrm{w})} \delta\left(\mathrm{q}^{\prime}, \mathrm{a}\right)\right)$

Definition

The language recognised / accepted by a

$$
L\left(M_{2}\right)=\underset{u}{\left\{u l 0 l w \mid u, w \in\{0, I\}^{*}\right\}}
$$ automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is

$$
\left\{u l|w| u, w \in\{0, I\}^{*}\right\}
$$

$$
L(M)=\left\{w \in \sum^{*} \mid \quad \delta^{*}\left(q_{0}, w\right) \cap F \neq \varnothing\right\}
$$

Equivalence of automata

Definition

Two automata M_{1} and M_{2} are equivalent if $L\left(M_{1}\right)=L\left(M_{2}\right)$

Theorem NFA ~ DFA
Every NFA has an equivalent DFA
Proof via the "powerset construction" /
determinization

Corollary

A language is regular iff it is recognised by a NFA

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3
The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Nonregular languages

every long enough word of a
regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \geq p$, there exist $x, y, z \in \sum^{*}$ such that $w=x y z$ and
I. $x y^{\prime} z \in L$, for all $i \in \mathbb{N}$
2. $|y|>0$
3. $|x y| \leq p$

Proof easy, using the pigeonhole principle

Example"corollary"

$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \in \mathbb{N}\right\}$ is nonregular.

