

NFA

Definition

A nondeterministic automaton M is a tuple M = (Q, \sum , δ , q_0 , F) where

Q is a finite set of states $\sum_{\epsilon} = \sum \cup \{\epsilon\}$ \sum is a finite alphabet $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$ In the example M_2 $M_2 = (Q, \Sigma, \delta, q_0, F)$ for $\delta(q_0, 0) = \{q_0\}$ $Q = \{q_0, q_1, q_2, q_3\}$ $\delta(q_0, I) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$ $\sum = \{0, I\}$ F = $\{q_3\}$

ε-closure of q, all states reachable by ε-transitions from q ΝΓΕΑ

 $E(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$

Equivalence of automata

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Now we can prove these too

Nonregular languages

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist x, y, $z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= { $0^n 1^n \mid n \in \mathbb{N}$ } is nonregular.