Finite Automata

Alphabets and Languages

A language L over \sum is a subset $L \subseteq \sum^{*}$

Deterministic Automata (DFA)

alphabet

Accepts the language $L\left(M_{1}\right)=\left\{w \in \sum^{*} \mid w\right.$ ends with a 0$\}=\Sigma^{*} 0$

DFA

Definition

A deterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

$$
\begin{array}{ll}
\text { In the example } M_{I} & M_{I}=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { for } \\
\qquad Q=\left\{q_{0}, q_{1}\right\} \quad F=\left\{q_{1}\right\} & \delta\left(q_{0}, 0\right)=q_{1}, \delta\left(q_{0}, I\right)=q_{0} \\
\Sigma=\{0, I\} & \delta\left(q_{1}, 0\right)=q_{1}, \delta\left(q_{1}, I\right)=q_{0}
\end{array}
$$

DFA

The extended transition function

Given $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$
\delta^{*}: Q \times \Sigma^{*} \longrightarrow Q
$$

$\ln M_{1}, \delta^{*}(q 0, I|00| 0)=q_{1}$
inductively, by:
$\delta^{*}(\mathrm{q}, \varepsilon)=\mathrm{q}$ and $\delta^{*}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{*}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)$

Definition

$$
L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\}
$$

The language recognised / accepted by a deterministic finite automaton $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is

$$
L(M)=\left\{w \in \Sigma^{*} \mid \delta^{*}(q 0, w) \in F\right\}
$$

Regular languages and operations

Definition

$$
\begin{gathered}
L\left(M_{I}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\} \\
\text { is regular }
\end{gathered}
$$

Let \sum be an alphabet. A language L over $\sum\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular operations

Let L, L_{1}, L_{2} be languages over \sum. Then $L_{1} \cup L_{2}, L_{1} \cdot L_{2}$, and L^{*} are languages, where

$$
\begin{aligned}
& L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\} \\
& L^{*}=\left\{w \mid \exists n \in \mathbb{N} \cdot \exists w_{1}, w_{2}, . ., w_{n} \in L . w=w_{1} w_{2} . . w_{n}\right\}
\end{aligned}
$$

$\mathcal{E} \in \mathrm{L}^{*}$ always

Closure under regular operations

Theorem CI

The class of regular languages is closed under union
We can already prove these!

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation
But not yet these two...

Theorem C4

The class of regular languages is closed under Kleene star

Regular expressions

Let \sum be an alphabet. The following are regular expressions
corresponding languages
I. a for $\mathrm{a} \in \Sigma$
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ for R_{1}, R_{2} regular expressions
5. $\left(R_{1} \cdot R_{2}\right)$ for R_{1}, R_{2} regular expressions
6. $\left(R_{1}\right)^{*}$ for R_{1} regular expression

$$
\begin{gathered}
\mathrm{L}(\mathrm{a})=\{\mathrm{a}\} \\
\mathrm{L}(\varepsilon)=\{\varepsilon\} \\
\mathrm{L}(\varnothing)=\varnothing \\
\mathrm{L}\left(\mathrm{R}_{1} \cup \mathrm{R}_{2}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right) \cup \mathrm{L}\left(\mathrm{R}_{2}\right) \\
\mathrm{L}\left(\mathrm{R}_{1} \cdot \mathrm{R}_{2}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right) \cdot \mathrm{L}\left(\mathrm{R}_{2}\right) \\
\mathrm{L}\left(\mathrm{R}_{1}{ }^{*}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right)^{*}
\end{gathered}
$$

Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Proof \Leftarrow easy, as the constructions for
the closure properties, \Rightarrow not so easy, we'll skip it for now...

Nondeterministic Automata (NFA)

no | transition

Informal example

no 0 transition

$$
\Sigma=\{0,1\}
$$

Accepts a word iff there exists an accepting run

