Functions, mappings

Def. If A and B are sets, then F is a function (mapping, **Abbildung**) from A to B, notation F: $A \longrightarrow B$ iff

for every $a \in A$, there exists a unique $b \in B$ such that b = F(a).

Functions, mappings

When f: $A \longrightarrow B$ then dom f = A and cod f = B

Let f: $A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = {f(a) | a \in A'} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A')$

So f extends to a function f: $\mathcal{P}(A) \longrightarrow \mathcal{P}(B)$, the image-function.

Functions, mappings

Let f: A \longrightarrow B and B' \subseteq B.

The inverse image (Urbild) of B' is the set $f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$

Again the inverse image induces a function $f^{-1}: \mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

 $a\in f^{-1}(B') \quad \text{iff} \quad f(a)\in B'$

Lemma F1: Let f: A \longrightarrow B, A' \subseteq A, and B' \subseteq B. Then A' \subseteq f⁻¹(f(A')) and f(f⁻¹(B')) \subseteq B' (in general no more than this holds)