Functions, mappings

Def. If A and B are sets, then F is a function (mapping, Abbildung) from A to B, notation $F: A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that $b=F(a)$.

B

$$
\{(a, F(a)) \mid a \in A\} \text { is the graph of the function } F
$$

Functions, mappings

When $f: A \longrightarrow B$ then $\operatorname{dom} f=A$ and $\operatorname{cod} f=B$

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{A}^{\prime} \subseteq \mathrm{A}$.
The image (Bild) of A^{\prime} is the set $f\left(A^{\prime}\right)=\left\{f(a) \mid a \in A^{\prime}\right\} \subseteq B$.

$$
f\left(A^{\prime}\right)=\left\{b \in B \mid \text { there is an } a \in A^{\prime} \text { with } b=f(a)\right\}
$$

$$
\text { if } a \in A^{\prime} \text {, then } f(a) \in f\left(A^{\prime}\right)
$$

So f extends to a function $\mathrm{f}: \mathcal{P}(\mathrm{A}) \longrightarrow \mathcal{P}(\mathrm{B})$, the image-function.

Functions, mappings

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{B}^{\prime} \subseteq \mathrm{B}$.
The inverse image (Urbild) of B^{\prime} is the set

$$
f^{-1}\left(B^{\prime}\right)=\underbrace{\left\{a \mid f(a) \in B^{\prime}\right\} \subseteq A .}_{a \in f^{\prime}\left(B^{\prime}\right) \text { iff } f(a) \in B^{\prime}}
$$

Again the inverse image induces a function $f^{-1}: \mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

Lemma FI: Let $f: A \longrightarrow B, A^{\prime} \subseteq A$, and $B^{\prime} \subseteq B$. Then

$$
A^{\prime} \subseteq f^{-1}\left(f\left(A^{\prime}\right)\right) \text { and } f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}
$$

(in general no more than this holds)

