Formale Systeme Test 2, Group 1, 2.2.2016

Task 1. (15) Write down the definitions of the following notions:

- (a) A relation R is reflexive.
- (b) A relation R is transitive.
- (c) A function $f: A \to B$ is surjective.

Task 2. (20) Let A and B be arbitrary sets and let $A \neq \emptyset$. Prove that a function $f: A \to B$ is injective if and only if it has a left inverse, that is, there exists a function $g: B \to A$ such that $g \circ f = id_A$.

Task 3. (15 + 5 + 10) Let $\Sigma = \{a, b\}$. Let $L = \{a^n b \mid n \in \mathbb{N}\}$.

- (a) Prove that $|L| = \aleph_0$.
- (b) Write L with a regular expression.
- (c) Construct an automaton for L.

Task 4. (20) Let n, m be two natural numbers such that n|m. Prove by induction that for all $i \in \mathbb{N}$, $n^i|m^i$.

Recall the inductive definition of n^i for a natural number n: $n^0 = 1$ and $n^{i+1} = n^i \cdot n$.

Recall also the definition of divisibility, i.e., n|m iff $m = n \cdot k$ for some natural number k.

Task 5. (15) Construct a DFA for $L = \{w \in \{0, 1, 2\}^* \mid 3 \mid (\#_0(w) + 2\#_1(w))\}.$

Task 6. (15) Let R be a relation on a set X, i.e. $R \subseteq X \times X$. Let $X \neq \emptyset$. Prove that if R is both an equivalence and a partial order, then $R = \Delta_X$.