
FastConcurrentData-Structures
ThroughExplicitTimestamping

Mike Dodds, Andreas Haas, Christoph M. Kirsch
mike.dodds@york.ac.uk, ahaas@cs.uni-salzburg.at, ck@cs.uni-salzburg.at

Abstract
Concurrent data-structures, such as stacks,
queues and deques, often implicitly enforce a
total order over elements with their underlying
memory layout. However, linearizability only re-
quires that elements are ordered if the inserting
methods ran sequentially. We propose a new
data-structure design which uses explicit times-
tamping to avoid unwanted ordering. Elements
can be left unordered by associating them with
unordered timestamps if their insert operations
ran concurrently. In our approach, more concur-
rency translates into less ordering, and thus less-
contended removal and ultimately higher perfor-
mance and scalability.

Key Ideas
• Order elements in the data-structure only

partially by using explicit timestamping.

• Store elements in thread-local buffers to
avoid synchronization of insert operations.

• Use the RDTSCP CPU instruction for
highly-scalable timestamp generation.

• Use intervals as timestamps to reduce the
order on timestamps while still providing
linearizability.

Partially Ordered Elements
Elements with timestamps are stored in an un-
ordered buffer. Elements which were inserted
concurrently may have the same timestamp.

oldest element:
removed first

in a FIFO queue

youngest element:
removed first

in a stack

same timestamp:
removed in any

order

Buffer

a|1 b|4

c|4
e|7

d|6

Interval Timestamping

enq(a)

enq(b)

enq(a)

enq(b)

artificially
delayed

dequeues compete for
element a before removing

element b

dequeues can remove
element a and b in parallel

time

time

still faster than
enqueues in most other

implementations

Linearizability allows reordering
overlapping operations. Therefore

artificially delaying enqueue
operations can reduce the order

of elements in the data structure.

without interval timestamping

with interval timestamping

Interval Length
Performance of the TS deque with interval
timestamping with an increasing delay in a high-
contention producer-consumer benchmark. All
measurements are done with 80 threads on a 40-
core (2 hyperthreads per core) server machine.
The left y-axis shows the average number of op-
erations (both insert and remove operations) per
millisecond, the right y-axis shows the average
number of CAS retries per remove operation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
 0

 2

 4

 6

 8

 10

 12

 14

o
p
e
ra

ti
o
n
s
 p

e
r

m
s
 (

m
o
re

 i
s
 b

e
tt
e
r)

n
u
m

b
e
r

o
f
re

tr
ie

s
 (

le
s
s
 i
s
 b

e
tt
e
r)

delay in ns

Performance TS-interval Stack

Retries TS-interval Stack

Performance Hardcoded TS-interval Stack

Retries Hardcoded TS-interval Stack

Performance TS-interval Queue

Retries TS-interval Queue

Performance Hardcoded TS-interval Queue

Retries Hardcoded TS-interval Queue

Performance TS-interval Deque

Retries TS-interval Deque

Performance in a Producer/Consumer Benchmark
Performance and scalability of the TS deque in a high-contention producer-consumer benchmark with
an increasing number of threads. The baselines are a Treiber stack, an elimination-backoff stack (EB
stack), a Michael-Scott queue (MS queue), and a flat-combining queue (FC queue). Stack-specific
and queue-specific TS-Buffers (Hardcoded TS Stack and Hardcoded TS Queue) allow additional
performance gains.

Treiber Stack
EB Stack

MS Queue
FC Queue

TS-hardware Stack
TS-interval Stack

Hardcoded TS-hardware Stack
Hardcoded TS-interval Stack

TS-hardware Queue
TS-interval Queue

Hardcoded TS-hardware Queue
Hardcoded TS-interval Queue

TS-hardware Deque
TS-interval Deque

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p
e
ra

ti
o
n
s
 p

e
r

m
s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p
e
ra

ti
o
n
s
 p

e
r

m
s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

(a) TS stack with interval timestamping (b) TS stack without interval timestamping

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p
e
ra

ti
o
n
s
 p

e
r

m
s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 10 20 30 40 50 60 70 80

o
p
e
ra

ti
o
n
s
 p

e
r

m
s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

(c) TS queue with interval timestamping (d) TS queue without interval timestamping

TS-Buffer Design
insR: Each thread inserts at the right side of

its own linked list.

tryRemoveR: A thread searches through the
right ends of all linked lists for the right-
most element to remove. Nodes are re-
moved logically first by setting a removed
flag. Unlinking occurs in later insert or
remove operations. If setting the removed
flag fails, then tryRemoveR returns an
invalid item.

insL/tryRemoveL: Analogous to insR and
tryRemoveR, but the left side of the
linked lists is accessed.

left

left

left

4,R 7,R 8,R

2,L6,L

6,L 3,L 4,R 9,R

......

TS Buffer

...

right

right

right

timestamp side where
the node got

inserted

TS Deque Pseudo Code
TS_Deque {
 TS_Buffer buffer;
 void insertR(Element element) {
 item = buffer.insR(element);
 timestamp = buffer.newTimestamp();
 buffer.setTimestamp(item, timestamp);
 }
 Element removeR() {
 do {
 item = buffer.tryRemoveR();
 } while (!item.isValid());
 if (item.isEmpty())
 return EMPTY;
 else
 return item.element;
 }
}

insertL and removeL are defined analogously.

Correctness
• The TS deque is linearizable with respect

to the sequential specification of a deque.

• The remove operations of the TS deque are
lock-free, the insert operations are wait-
free.

Acknowledgements
This work has been supported by the National
Research Network RiSE on Rigorous Systems
Engineering (Austrian Science Fund (FWF):
S11404-N23).

Additional Informantion
http://scal.cs.uni-salzburg.at/tsstack

